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Abstract

Background: Selecting a parsimonious set of informative genes to build highly generalized performance classifier is
the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation
methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal
comparison, while individual-gene-ranking method ignores redundancy and synergy among genes.

Results: Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according
to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC)
based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class
gene expression datasets involving human cancers were used to validate the performance of new method. Compared
with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40 %), the
best generalization performance and the smallest informative average gene number (20.56). Compared with the four
reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes,
k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM.

Conclusions: Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with
horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method
combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.

Keywords: Microarray expression data, Gene selection, Direct classify, Relative simplicity, Binary-discriminative
informative genes, Paired votes

Background
Microarray expression data of cancer tissue samples has
the following properties: small sample size yet large number
of features, high noise and redundancy, a remarkable level
of background differences among samples and features,
and nonlinearity [1, 2]. Selecting a parsimonious set of in-
formative genes to build robust classifier with highly gener-
alized performance is one of the most important tasks for
the analysis of microarray expression data, as it can help to
discover disease mechanisms, as well as improve the preci-
sion and reduce the cost of clinical diagnoses [3].

Gene selection depends on a given evaluation strategy
and a defined score. The individual-gene-ranking methods
rank genes by only comparing the expression values of the
same individual gene between different classes (a vertical
comparison evaluation strategy). This can be very far from
the truth, as the deregulation of pathways, rather than in-
dividual genes, may be critical in triggering carcinogenesis
[4]. If a gene has a remarkable joint effect on other genes,
it should be selected as an informative gene, even though
it may receive a lower rank in an individual-gene-ranking
method. This joint effect of genes has been taken into
account in most popular, existing algorithms, including
top scoring pair (TSP) [5, 6], top scoring triplet(TST) [7],
top-scoring ‘N’(TSN) [8], top scoring genes (TSG) [9] and
doublet method [4]. However, the gene pairs score, that is
the percentage of Δij in TSP [5, 6], cannot reflect size
differences among samples. To fully utilize sample size
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information TSG introduces chi-square values as the
score for gene pairs [9]. TSP and TSG are both pair-wise
gene evaluations, which compare the expression values of
the same sample between two different genes (a horizontal
comparison evaluation strategy), and can help to eliminate
the influence of sampling variability due to different sub-
jects [5, 6, 9].
At the level of gene pairs, Merja et al. [10] defined two

patterns based on rank data, rather than absolute
expression, from data-driven perspective: the consistent
reversal of relative expression and consistent relative ex-
pression. This premise allowed us to organize the cell
types in to their ontogenetic lineage-relationships and
may reflect regulatory relationships among the genes
[10]. The first pattern can be subdivided into a consist-
ent reversal of expression (Pattern I) and a consistent
reversal of relative expression (Pattern II) based on abso-
lute expression (see Table 1). Similarly, the second pattern
can be subdivided in to a consistent expression (Pattern
III) and a consistent relative expression (Pattern IV).
Furthermore, a heterogeneous background expression of
samples (Pattern V) and an interaction expression pattern
(Pattern VI) can be defined, if the influence of sampling
variability due to different subjects [9] and paired-gene in-
teractions are considering [11]. Clearly, all twelve genes
(G1 ~G12) in Table 1 should be informative genes from
data-driven perspective. However, individual-gene evalua-
tions, which only detect different expression levels be-
tween positive samples and negative samples, cannot
highlight Pattern V and Pattern VI. Pair-wise gene evalu-
ation with vertical comparison can highlight most patterns
except Pattern V. Only pair-wise gene evaluation with hori-
zontal comparison can highlight Pattern V, even though it
cannot detect most other patterns. Therefore, both vertical
and horizontal comparisons need to be considered in pair-
wise gene evaluation techniques.
We first propose a novel score measure, in this paper,

that of relative simplicity (RS), based on information
theory. We adopt an integrated evaluation strategy to
rank genes one by one, considering not only individual-
gene effects, but also pair-wise joint effects between
candidate gene and others. In particular, for pair-wise
gene evaluations, vertical comparisons are integrated
with horizontal comparisons to detect all six patterns of
pair-wise joint effects. Ultimately, we construct a relative
simplicity-based direct classifier (RS-based DC) to select
binary-discriminative informative genes on training data-
set and perform independent tests. The independent
testing of nine multiclass tumor gene expression data-
sets showed that RS-based DC selects fewer inform-
ative genes and outperforms the referred models by a
large margin, especially in larger m (total number of
classes) datasets, such as Cancers (m = 11) [12]and
GCM (m = 14) [13].

Datasets and methods
Datasets
Ten multi-class datasets have been used in published
previous TSP [5, 6] and TSG [9] papers. We did not in-
clude dataset Leukemia3 [14] in our study because 65 %
of the expression values in it are zero. The remaining
nine datasets references, sample sizes, numbers of genes,
and numbers of classes are summarized in Table 2. Sup-
pose that a training dataset has n samples and p genes,
and that the data can be denoted as (Yi, Xi,j), i = 1,2,…, n;
j = 1,2,…, p. Where Xi,j represents the expression value
of the jth gene (Gj) in the ith sample; and Yi represents
the class label of ith sample, where Yi∈{Class1, Class2, …,
Classt, …, Classm}, t = 1,2,…,m.

Data preprocessing
Adjustment for outliers
Outliers may exist in datasets. For example, in the Lung1
[16] training set, the expression value X54,4290 of the 54th

sample in gene G4290 is 7396.1, while the average expres-
sion value of the other samples in gene G4290 is 80.15
(range from 16 to 197). The outliers overstate the differ-
ences among the classes, and need be adjusted before
gene ranking. For gene Gj, we defined outliers as those
values beyond the scope of [X

—
:j−uασ:j , X

—
:j þ uασ:j ]. If

Xij < X
—
:j−uασ:j or Xij > X

—
:j−uασ:j, then Xij is an outlier,

where α is significance level, �X :j and σ. j represent the
average value and standard deviation of X · j, respect-
ively. Therefore, we adjust the outliers using the follow-
ing formula:

X}
ij ¼

�X ‐i;j−uασ ‐i;j if Xij < �X :j−uασ:j

�X ‐i;j þ uασ ‐i;j if Xij > �X :j þ uασ:j

8<
: ð1Þ

Here �X ‐i;j and σ‐ i,j represent the average value and stand-
ard deviation of X · j without Xi,j, respectively. Xij

" is the
value of Xij after adjusting. ½X—�i;j−uασ�i;j;X

—

�i;j þ uασ�i;j�
represents the distribution interval of X-i,j. We generally set
α to 0.05 (u0.05 = 1.96). Adjustment for outliers was only
used with training set.

Transforming datasets from multi-class to binary-class
with “one versus rest”
Suppose that Yi∈(Class1, Class2, …, Classt, …, Classm),
and we adopt a “one versus rest” (OVR) approach to
transform a multi-class training set to binary-class. This
generates m binary-class datasets, denoted {Class1vs.
non-Class1}, {Class2vs. non-Class2}, …, {Classtvs. non-
Classt}, …, {Classmvs. non-Classm}. In each binary-class
training dataset, Classt are positive samples {+}, and
non-Classt are negative samples {−}.
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Table 1 Six patterns for joint effect of gene pairs in binary-class simulation data

Class Pattern I Pattern II Pattern III Pattern IV Pattern V Pattern VI

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

+ 50 100 5 100 50 50 5 50 50 100 50 50

+ 50 100 5 100 50 50 5 50 5 10 100 100

+ 50 100 5 100 50 50 5 50 50 100 50 50

+ 50 100 5 100 50 50 5 50 5 10 100 100

- 100 50 10 50 100 100 10 100 100 50 50 100

- 100 50 10 50 100 100 10 100 10 5 100 50

- 100 50 10 50 100 100 10 100 100 50 50 100

- 100 50 10 50 100 100 10 100 10 5 100 50

Background difference
between gene pairs

Not exist Exist Not exist Exist Not exist Not exist

Background difference
among samples

Not exist Not exist Not exist Not exist Exist Not exist

Vertical comparisonof
individual-gene

G1
< 75

G1 >
75

G2 <
75

G2 >
75

G3
< 7

G3 >
7

G4 <
75

G4 >
75

G5
< 75

G5 >
75

G6 <
75

G6 >
75

G7
< 7

G7 >
7

G8 <
75

G8 >
75

G9
< 41

G9 >
41

G10
< 41

G10 >
41

G11
< 75

G11 >
75

G12 <
75

G12 >
75

+ 4 0 0 4 4 0 0 04 4 0 4 0 4 0 4 0 2 2 2 2 2 2 2 2

- 0 4 4 0 0 4 4 0 0 4 0 4 0 4 0 4 2 2 2 2 2 2 2 2

Highlight Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

Yes
(χ2 = 4.5*)

No
(χ2 = 0.5)

No
(χ2 = 0.5)

No
(χ2 = 0.5)

No
(χ2 = 0.5)

Horizontal comparison
of pair-wise genes

G1 > G2 G1 < G2 G3 > G4 G3 < G4 G5 > G6 G5 < G6 G7 > G8 G7 < G8 G9 > G10 G9 < G10 G11 > G12 G11 < G12

+ 0 4 0 4 2 2 0 4 0 4 2 2

- 4 0 0 4 2 2 0 4 4 0 2 2

Highlight Yes (χ2 = 4.5*) No (χ2 = 0) No (χ2 = 0.5) No (χ2 = 0) Yes (χ2 = 4.5*) No (χ2 = 0.5)

Vertical comparison
of pair-wise genes

G1
< 75
&
G2
< 75

G1 <
75
&G2 >
75

G1 >
75 &
G2 <
75

G1 >
75
&G2 >
75

G3
< 7
&
G4
<
75

G3 <
7 &
G4 >
75

G3 >
7 &
G4 <
75

G3 >
7 &
G4 >
75

G5
< 75
&
G6
< 75

G5 <
75 &
G6 >
75

G5 >
75 &
G6 <
75

G5 >
75 &
G6 >
75

G7
< 7
&
G8
<
75

G7 <
7 &
G8 >
75

G7 >
7 &
G8 <
75

G7 >
7 &
G8 >
75

G9
< 41
&
G10
< 41

G9 <
41 &
G10 >
41

G9 >
41 &
G10
< 41

G9 >
41 &
G10 >
41

G11
< 75
&
G12
< 75

G11 <
75 &
G12 >
75

G11 >
75 &
G12 <
75

G11 >
75 &
G12 >
75

+ 0 4 0 0 0 4 0 0 4 0 0 0 0 4 0 0 2 0 0 2 2 0 0 2

- 0 0 4 0 0 0 4 0 0 0 0 4 0 0 0 4 2 0 0 2 0 2 2 0

Highlight Yes (χ2 = 4.5*) Yes (χ2 = 4.5*) Yes (χ2 = 4.5*) Yes (χ2 = 4.5*) No (χ2 = 0.5) Yes ((χ2 = 8*)

Values in parenthesis are chi-square values, * denote p < 0.05
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Complexity and relative simplicity score
Entropy stands for disorder or uncertainty. For a discrete
system with k events, its Shannon entropy is defined as:

H ¼ −
Xk
i¼1

ni
N

log
ni
N

� �
ð2Þ

Where ni denotes the frequency of event i, and N is
the total frequency. Here we use base-2 logarithms. H
only reflects the event ratios. Complexity (C) as pro-
posed by Zhang [22] can reflect both event ratios and
event frequencies:

C ¼ −
Xk
i¼1

ni log
ni
N

� �
ð3Þ

For a given 2 × r Contingency table (Table 3), its com-
plexity is the total of row complexities (Crow) and col-
umn complexities (Ccolumn). f+d (d = 1,…,r) and f−d in
Table 3 represent the frequency of the event.

Crow ¼ −
Xr

d¼1

fþd log
fþd

fþ

� �
−
Xr

d¼1

f−d log
f−d
f−

� �
ð4Þ

Ccolumn ¼ −
Xr

d¼1

fþd log
fþd

fd

� �
þf−d log

f−d
fd

� �� �
ð5Þ

C ¼ Crow þ Ccolumn ð6Þ

For contingency Table 1 (2 × r1) and contingency
Table 2 (2 × r2), their complexities are incomparable if r1
is unequal to r2. Therefore we introduce a novel score,

RS, according to their maximum complexity (Table 4).
Table 4 cames directly from Table 3 directly, only the
frequency of each column in the same class is set to be
equal.

Crow‐max ¼ n log rð Þ ð7Þ

Ccolumn‐max ¼ −fþ log
fþ
n

� �
−f− log

f−
n

� �
ð8Þ

Cmax ¼ Crow‐max þ Ccolumn‐max ð9Þ

RS ¼ Cmax−C
Cmax

ð10Þ

Individual-gene evaluation
For a given gene Gj with continued expression values X. j
in a binary-class training dataset, we partition X. j into
two parts (X. j > EPj and X. j < EPj) with an endpoint (EP):

EPj ¼ �X −j þ �Xþj
� �

=2 ð11Þ

Where �X −j and �Xþj are the average expression values
of X. j for negative and positive samples, respectively.
We then generate a 2 × 2 contingency table for gene Gj

(Table 5).
For the individual-gene evaluation of gene Gj, we

then got its RS score, RSGj , according to Table 5 and
formula (10).

Pair-wise gene evaluation
Horizontal comparison of gene pairs
For gene pairs Gj and Gq (j ≠ q) in a binary-class training
dataset, we generate a 2 × 2 contingency table (Table 6)

Table 2 Nine multi-class gene expression datasets

Dataset Platform No. of
classes

No. of
genes

No. of samples Source

Training Test

Leukemia1 Affy 3 7129 38 34 [15]

Lung1 Affy 3 7129 64 32 [16]

Leukemia2 Affy 3 12582 57 15 [17]

SRBCT cDNA 4 2308 63 20 [18]

Breast Affy 5 9216 54 30 [19]

Lung2 Affy 5 12600 136 67 [20]

DLBCL cDNA 6 4026 58 30 [21]

Cancers Affy 11 12533 100 74 [12]

GCM Affy 14 16063 144 46 [13]

Table 3 2×r Contingency table

Class Column1 … Columnd … Columnr Total

+ f+1 … f+d … f+r f+

- f-1 … f-d … f-r f-

Total f1 … fd … fr n

Table 4 2×r Contingency table for maximum complexity

Class Column1 … Columnd … Columnr Total

+ f+/r … f+/r … f+/r f+

- f-/r … f-/r … f-/r f-

Total n/r … n/r … n/r n

Table 5 2 × 2 contingency table for individual gene

Class X. j > EPj X. j < EPj Total

+ f+1 f+2 f+

- f−1 f−2 f−

Total f1 f2 n

f+1 is the number of positive samples with expression values larger than EPj, f
+2 is the number of positive samples with expression values less than EPj, f−1 is
the number of negative samples with expression values larger than EPj, and f
−2 is the number of negative samples with expression values less than EPj.
When Xi,j equals EPj, and Yi belongs to positive sample {+}, f+1 and f+2 increase
by 0.5 respectively; when Xi,j equals EPj, and Yi belongs to negative sample {−},
f−1 and f−2 increase by 0.5 respectively
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for the horizontal comparison with Xi,j > Xi,q and Xi,j < Xi,q,
similar to TSP [2, 3] and TSG [9].
For horizontal comparison of gene pairs Gj and Gq,

We generate the complexity Chor-Gj-Gq and the max-
imum complexity Chor-Gj-Gq-max, of gene pairs Gj and Gq,
for the horizontal comparison, according to Table 6,
formula (6), and formula (9).

Vertical comparison of gene pairs
For gene pairs Gj and Gq (j ≠ q) in a binary-class training
dataset, we partition X. j and X. q into two parts with
endpoint EPj and EPq, respectively. We then generate a
2 × 4 contingency table (Table 7) for the vertical
comparison.
For vertical comparison of gene pairs Gj and Gq, We

then generate the complexity Cver-Gj-Gq and the max-
imum complexity Cver -Gj-Gq-max of gene pairs Gj and Gq

for the vertical comparison according to Table 7, for-
mula (6), and formula (9).

RS score of gene pairs
For gene pairs Gj and Gq in a binary-class training data-
set, we generate RS weight scores, RSGj_Gq, according to
formula (12).

RSGjGq ¼
Chor−Gj−Gq−max þ Cver−Gj−Gq−maxÞ−ðChor−Gj−Gq þ Cver−Gj−Gq
� �

Chor−Gj−Gq−max þ Cver−Gj−Gq−max

ð12Þ

Integrated individual-gene ranking
For a given gene Gj in a binary-class training dataset, the
integrated RS score, IRSGj, can be calculated with for-
mula (13):

IRSGj ¼ RSGj þ
Xp
q¼1

RSGj
RSGj þ RSGq

� RSGjGq

� �
; q≠j ð13Þ

Here, RSGj represents vertical comparison of
individual-gene; RSGj_Gq represents horizontal compari-

son and vertical comparison of pair-wise genes; RSGj
RSGjþRSGq

represents the weight of Gj in the pair-wise comparison.
According to IRSGj, the descending order of all p genes
can be obtained and recorded as {GRank1, GRank2,…,
GRankj,…, GRankp}. The integrated evaluation process of
Gj is shown in Fig. 1.

Informative gene selection
The IRS scores provide a list of top ranked genes. How-
ever, the combination of top ranked genes may not pro-
duce a top ranked combination of genes because of the
redundancy and interaction among genes [23]. Therefore,
we used a forward feature selection strategy to select in-
formative gene subsets, along with our RS-based-DC clas-
sifier and leave-one-out cross-validation error estimates
(LOOCV).
For a given binary-class training dataset with n sam-

ples and p ranked genes:
Step 1: Introduce gene GRank1, get dataset S∈(Yi, Xi),

i = 1,2,…, n; Xi represents the expression value of gene
GRank1 in the ith sample; Yi represents the class label of
ith sample and Yi∈{+, −}. Leave out one sample as the
validation data (S-validation) and the rest as the training
data (S-train). First assign {+} to S-validation as a class
label, merge S-validation and S-train, get RSGRank1(+);
then assign {−} to S-validation as a class label, merge S-
validation and S-train, get RSGRank1(−). If RSGRank1(+) is
larger than RSGRank1(−), the S-validation sample belongs
to the positive sample; otherwise, the S-validation sample
belongs to the negative sample. Repeat prediction for all
the samples in S to get the prediction class labels. Calcu-

Table 6 2 × 2 contingency table for gene pairs of horizontal
comparison

Class Xi,j > Xi,q Xi,j < Xi,q Total

+ f+1 f+2 f+

- f−1 f−2 f−

Total f1 f2 n

Xi,j represents the expression value of the jth gene (Gj) in the ith sample; f+1 is
the number of positive samples with Xi,j larger than Xi,q, f+2 is the number of
positive samples with Xi,j less than Xi,q, f−1 is the number of negative samples
with Xi,j larger than Xi,q, and f−2 is the number of negative samples with Xi,j less
than Xi,q

Table 7 2 × 4 contingency table for gene pairs of vertical comparison

Class X. j > EPj & X. q > EPq X. j > EPj & X. q < EPq X. j < EPj & X. q > EPq X. j < EPj & X. q < EPq Total

+ f+1 f+2 f+3 f+4 f+

- f−1 f−2 f−3 f−4 f−

Total f1 f2 f3 f4 n

f+1 is the number of positive samples with X.j larger than EPj and X.qlarger than EPq, f+2 is the number of positive samples with X.j larger than EPj and X.q less than
EPq, f+3 is the number of positive samples with X.j less than EPj and X.q larger than EPq, f+4 is the number of positive samples with X.j less than EPj and X.q less than
EPq, f−1 is the number of positive samples with X.j larger than EPj and X.q larger than EPq, f−2 is the number of positive samples with X.j larger than EPj and X.q less
than EPq, f−3 is the number of positive samples with X.j less than EPj and X.q larger than EPq, and f−4 is the number of positive samples with X.j less than EPj and X.q
less than EPq
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late the Matthew correlation coefficient (MCC) according
to formula (14) and denote as MCC1.

MCC ¼ TP � TNð Þ− FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð14Þ

Here TP, TN, FP, FN represent true positives, true neg-
atives, false positives and false negatives, respectively.
Step 2: MCCbenchmark =MCC1.
Step 3: Introduce the next top ranked gene. In general,

denote total number of the current genes as r. Get data-
set S = (Yi, Xi,j), i = 1,2,…, n; j = 1,2,…, r. The network RS
score of r gene can be calculated with formula (15).

RSr‐net ¼
Xr

j¼1

Xr

q¼1

RSGRankjGRankq ; q≠j ð15Þ

Leave out one sample as the validation data (S-valid-
ation) and the rest as the training data (S-train). First as-
sign {+} to S-validation as a class label, merge S-validation
and S-train, get RSr-net(+); then assign {−} to S-validation
as a class label, merge S-validation and S-train, get RSr-net
(−). If RSr-net (+) is larger than RSr-net (−), the S-valid-
ation sample belongs to the positive sample; if RSr-net (+)
is less than RSr-net (−), the S-validation sample belongs to
the negative sample. Repeat prediction for all the samples
in S to get the prediction class labels. Calculate MCC ac-
cording to formula (14) and denote as MCC r.
Step 4: If MCC r ≤MCCbenchmark delete X. r, else

MCCbenchmark =MCCr.
Step 5: Repeat Step 3 and Step 4, until the top B rank

genes are successively introduced (our experience suggests
that it is sufficient to set the upper bound of B at 100).
We consequently generate the informative genes subset

for the binary-class dataset (Pseudo-code see Table 8).

Paired votes prediction with RS-based DC
We generate an m binary-class training set, denoted as
{Class1vs. non-Class1}, {Class2vs. non-Class2},…,{Classtvs.
non-Classt},…,{Classmvs. non-Classm}, according our
OVR approach; and the corresponding m binary-
discriminative informative gene (BDIG) subsets, denoted
as BDIGClass1, BDIGClass2, …, BDIGClasst, …, BDIGClassm,
according to our individual-gene evaluation ~ inform-
ative gene selection sections.
For a test sample with m possible class labels, in gen-

eral, for paired vote predictions between Classt and
Classw, we merge the Classt and Classw samples into a

Fig. 1 Integrated evaluation process of Gj

Table 8 Pseudo-code of informative genes selection

Algorithm 1 Informative gene selection (Dateset, GRank)

Require: Dateset is a binary-class training dataset with n samples

Require: GRank is the order of all p genes {GRank1, GRank2,…, GRankj,…,
GRankp}

Ensure: Returns the binary-discriminative informative genes subset of
Dateset

1: ture_Y← class lable of training samples

2: j← 1; MCCbenchmark← 0; B← 100

3: repeat

4: S← GRankj # introducing GRankj

5: if |S|≤ 1 then

6: for i = 1 to n do # leave-one-out cross-validation

7: Yi← +

8: get RSGRankj(+)

9: Yi← −

10: get RSGRankj(−)

11: if RSGRankj(+) > RSGRankj(−) then pred_Yi← +

12: else pred_Yi← −

13: end for

14: MCCbenchmark← get MCC (true_Y, pred_Y) from formula (14)

15: else

16: for i = 1 to n do # leave-one-out cross-validation

17: Yi← +

18: get RS-net(+) from formula (15)

19: Yi← −

20: get RS-net(−) from formula (15)

21: if RS-net(+) > RS-net (−) then pred_Yi← +

22: else pred_Yi← −

23: end for

24: MCC← get MCC (true_Y, pred_Y) from formula (14)

25: end if

26: if MCC >MCCbenchmark then MCCbenchmark←MCC

27: else delete GRankj

28: until j > B

29: retrun S
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new training set with r genes according to {BDIGClasst ∪
BDIGClassw}. We first assign {Classt} to the test sample
as a class label, merge the test sample and the new train-
ing set, generating RSr ‐ net {Classt}; then we assign
{Classw} to the test sample as class a label, merge the test
sample and the new training set, generating RSr ‐ net
{Classw}. If RSr-net {Classt} is larger than RSr-net
{Classw}, the test sample belongs to Classt, else it belongs
to Classw. The winner continues paired vote with the
next class and the prediction class label of the test
sample is the last winner.
After the predictions for all of the testing samples have

been obtained, we calculate the test accuracy, expressed
as the ratio of the number of correctly classified samples
to the total number of samples, for multi-classification.

Results and analysis
Comparison of independent prediction accuracy and the
number of informative genes among different models
We used nine reference models, HC-TSP [3], HC-K-TSP
[3], DT [24], PAM [25], TSG [9], mRMR-SVM, SVM-
RFE-SVM, Entropy-based DC and χ2-based DC, to
evaluate the performance of RS-based DC. Results from
the first five models are cited from the corresponding
literature, and the results from the latter four models are
presented in this paper.

As a feature selection method mRMR has two evalu-
ation criterions: mutual information difference (MID)
and mutual information quotient (MIQ). Here we used
MIQ-mRMR, because MIQ is more robust than MID in
general [26]. mRMR and SVM-RFE [27] only provide a
list of ranked genes, therefore, we adopted the Library
for Support Vector Machines (LIBSVM) as a classifier
[28] to generate an informative gene subset. LIBSVM
supports multiclass classification, and is available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm. We initially
listed the top 2 % of informative genes according to mRMR
or SVM-RFE. Second, we introduced these genes one by
one and conducted 10-fold cross-validation for the training
sets based on SVM. Third, we selected the genes with the
highest cross-validation accuracy as our informative genes
subset, and finally we performed independent predictions
using SVM with informative genes, for the mRMR-SVM
and SVM-RFE-SVM models. Four kernel functions, linear,
radius basis function (RBF), sigmoid and polynomial in
SVM, were evaluated, and the linear kernel produced opti-
mal accuracy with the nine datasets. Therefore, we used
linear kernel in this study, unless specifically stated. Differ-
ent penalty parameters C (C∈[2−5, 215]) were optimized in
different SVM models with the training set. Entropy-based
DC and χ2-based DC uses the same modelling process as
RS-based DC, except entropy [29] is used, rather than

Table 9 Independent test accuracy and the number of informative genes (in parenthesis) among different models

Model Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Cancers GCM Average

HC-TSPa 97.06 71.88 80.00 95.00 66.67 83.58 83.33 74.32 52.17 78.22 ± 13.97

(4) (4) (4) (6) (8) (8) (10) (20) (26) (10.00)

HC-K-TSPa 97.06 78.13 100 100 66.67 94.03 83.33 82.43 67.39 85.45 ± 13.12

(36) (20) (24) (30) (24) (28) (46) (128) (134) (52.22)

DTa 85.29 78.13 80.00 75.00 73.33 88.06 86.67 68.92 52.17 76.40 ± 11.13

(2) (4) (2) (3) (4) (5) (5) (10) (18) (5.89)

PAMa 97.06 78.13 93.33 95.00 93.33 100 90.00 87.84 56.52 87.91 ± 13.34

(44) (13) (62) (285) (4822) (614) (3949) (2008) (1253) (1450)

TSGb 97.06 81.25 100 100 86.67 95.52 93.33 79.73 67.39 88.99 ± 11.11

(6) (20) (44) (13) (63) (60) (16) (81) (112) (46.11)

mRMR-SVM 76.47 78.13 100 75.00 96.67 95.52 96.67 71.62 45.65 81.75 ± 17.54

(7) (13) (19) (9) (97) (120) (16) (89) (57) (47.44)

SVM-RFE-SVM 85.29 78.13 93.33 95.00 90.00 88.06 90.00 93.24 63.04 86.23 ± 10.08

(5) (9) (8) (3) (7) (9) (13) (29) (199) (31.33)

Entropy-based DC 91.18 78.13 86.67 100 83.33 88.06 93.33 78.38 47.83 82.99 ± 14.93

(7) (14) (13) (9) (13) (39) (15) (73) (93) (30.67)

χ2-based DC 94.12 81.00 100 100 90.00 97.02 93.33 90.54 58.70 89.41 ± 12.91

(23) (18) (30) (31) (33) (42) (23) (95) (90) (42.78)

RS-based DC 94.12 84.38 100 100 93.33 98.51 90.00 90.54 71.74 91.40 ± 9.00

(7) (12) (13) (11) (15) (21) (16) (36) (54) (20.56)
aResults reported in [6], bResults reported in [30]. The Average measurement was represented as the average value ± standard deviation. Bold values indicate the
best prediction model of each dataset
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complexity, in Entropy-based DC, and χ2 is used, rather
than RS, in χ2-based DC.
The test accuracy and informative gene number for

nine different multi-class datasets are listed in Table 9.
The best models based on average accuracy were RS-
based DC (91.40 %), χ2-based DC (89.41 %), TSG
(88.99 %), PAM (87.91 %), SVM-RFE-SVM (86.23 %)
and HC-K-TSP (85.45 %). Of the six models, χ2-based
DC, TSG and HC-K-TSP performed poorly in predictive
power with GCM, Cancers and Breast datasets, respect-
ively. PAM generated an unacceptable informative gene
number (an average of 1450), and also demonstrated
poor predictive performance with the Cancers dataset.
RS-based DC and SVM-RFE-SVM performed robustly
with all nine datasets. Compared with the nine reference
models, RS-based DC received the least informative

gene number (an average of 20.56), the highest average
accuracy and the minimum standard deviation (9 %).
The same modeling process was conducted for RS-

based DC, Entropy-based DC and χ2-based DC to com-
pare the merits of the defined score. As mentioned above,
RS scores and χ2 scores utilize sample size information,
whereas entropy scores only reflect the events ratio.
Therefore, our RS-based DC and χ2-based DC have better
predictive performance than Entropy-based DC method.

Comparison of feature selection methods
An excellent feature selection method should perform
well with various classifiers. We used four reference fea-
ture selection methods, mRMR, SVM-RFE, TSG and
HC-K-TSP, to evaluate the performance of RS.

Fig. 2 Accuracy of mRMR-SVM for fitting, LOOCV and independent test

Table 10 Test accuracy of different classifiers with informative genes selected by different feature-selection methods

Classifier Feature-selection method Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Cancers GCM Average

NB ALLa 85.29 81.25 100 60.00 66.67 88.06 86.67 79.73 52.17 77.76

RS 94.12 84.38 100 85.00 93.33 88.06 90.00 85.14 71.74 87.97

mRMR 79.41 68.75 100 90.00 93.33 97.01 96.67 70.27 45.65 82.34

SVM-RFE 67.65 81.25 80.00 95.00 80.00 89.55 90.00 77.03 63.04 80.39

TSG 91.18 84.38 93.33 100 86.67 94.03 100 71.62 65.22 87.38

HC-K-TSP 91.18 81.25 100 80.00 80.00 95.52 86.67 77.03 65.22 84.10

KNN ALLa 67.65 75.00 86.67 70.00b 63.33 88.06 93.33 64.86 34.78 71.71

RS 97.06 78.13 93.33 90.00 93.33 95.52 93.33 72.97 43.48 84.13

mRMR 70.59 68.75 80.00 80.00 96.67 86.57 100 54.05 36.96 74.84

SVM-RFE 76.47 68.75 86.67 100 90.00 86.57 90.00 58.11 45.65 78.02

TSG 91.18 75.00 93.33 100 80.00 88.06 96.67 74.32 39.13 81.97

HC-K-TSP 88.24 87.50 86.67 85.00 83.33 94.03 93.33 64.86 52.17 81.68

SVM ALLa 79.41 87.50 100 100 83.33 97.01 100 83.78 65.22 88.47

RS 94.12 84.38 100 95.00 93.33 95.52 96.67 89.19 65.22 90.38

mRMR 76.47 78.13 100 75.00 96.67 95.52 96.67 71.62 45.65 81.75

SVM-RFE 85.29 78.13 93.33 95.00 90.00 88.06 90.00 93.24 63.04 86.23

TSG 91.18 81.25 93.33 80.00 80.00 94.03 100 68.92 54.35 82.56

HC-K-TSP 85.29 84.38 100 90.00 86.67 98.51 96.67 82.43 60.87 87.20
aResults reported in [6], bThe 30 reported in [3] is 70.00 after validation. Bold values indicate the best average accuracy in each classifier
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As shown in Table 10, with the informative genes se-
lected by the five feature selection methods, the aver-
age independent prediction precisions of Naïve Bayes
(NB) [31] and K-nearest neighbor (KNN) [32] on the
nine datasets were clearly improved. However, surpris-
ingly, the four reference feature selection methods
were ineffective in the SVM classifier. This seems to
challenge the conventional wisdom that feature selec-
tion should be effective in improving the performance
of the model. Fortunately, RS still performed well with
the SVM classifier upholding the conventional wis-
dom. For the SVM classifier, in three (Lung1, SRBCT
and GCM) out of nine datasets, there was basically no
improvement in performing feature selection, regard-
less of the feature selection technique. However, the
NB and KNN classifiers did not always show such a
phenomenon, possibly because SVM is not sensitive to
feature dimensions; therefore, SVM could obtain very
precise prediction without feature selection. RS was
the only strategy that was better than no feature selec-
tion, on average, when combined with SVM, because
on the Leuk1, Breast and Cancers datasets it showed a
sufficiently large improvement was large enough,
while it slightly reduced the precision of the predic-
tion on the other datasets. Thus, the results indicated
that RS is superior to the other four feature selection
methods.

Comparison of generalization performance among
different models
Of the nine models in Table 9, PAM had an unacceptable
informative gene number, DT had the lowest average ac-
curacy (76.40 %), HC-TSP was similar to HC-K-TSP, and
Entropy-based DC and χ2-based DC were similar to RS-
based DC. Therefore, we selected five typical models,
mRMR-SVM, SVM-RFE-SVM, HC-K-TSP, TSG and RS-
based DC, for further evaluation of generalization per-
formance by comparing the accuracy of fitting, LOOCV
and independent testing. For LIBSVM[28], the LOOCV
strategy was used to optimize penalty parameters C
(C∈[2–5, 215]) and the gamma parameter γ(γ∈[2–15, 23])
in the kernel function. Suppose the training set has n sam-
ples, for a given combination of C and γ. We leave one as
a validation sample and the other n-1 as sub-training
samples, and acquire the LOOCV accuracy in this param-
eter combination after predicting n times. Traversing all
parameter combinations, we acquire the highest LOOCV
and the corresponding optimal C and γ. The optimal pa-
rameters and training set are used for constructing the
predictive model. We apply this model to predict the
training set and testing set, and obtain the fitting accuracy
and independent testing accuracy, respectively. In sum,
the fitting and LOOCV are the internal validation in this
paper, and independent testing is the external validation.
The results are shown in Fig. 2, 3, 4 5 and 6.

Fig. 4 Accuracy of HC-K-TSP for fitting, LOOCV and independent test

Fig. 3 Accuracy of SVM-RFE-SVM for fitting, LOOCV and independent test
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Obviously, over-fitting occurred with all five models;
average accuracy always decreased monotonically from
fitting through LOOCV to the independent test. For the
mRMR-SVM and SVM-RFE-SVM models, which require
parameter optimizations, the gaps between LOOCV
average accuracy and test average accuracy were 17.22 %
and 12.76 %, respectively. However, HC-K-TSP, TSG and
RS-based DC models, which adopted a DC core and
were parameter-free, tended to generate smaller gaps
(5.06 %, 3.08 % and 3.67 %, respectively). For those
models that required parameter optimizations, the test
accuracy was always systematically less than the LOOCV
accuracy for each dataset. For the DC core model, the
test accuracy was even higher than LOOCV accuracy for
some datasets, for example, the HC-K-TSP model for
the SRBCT and Cancers datasets, TSG model for Lung1,
Leuk2 and Lung2 datasets, and RS-based DC model for
Leuk2 and Lung2 datasets.
Parameter optimizations may be responsible for SVM’s

over-fitting? It could be argued that informative genes
selected by mRMR and SVM-RFE are not the best fea-
ture subsets for mRMR-SVM and SVM-RFE-SVM
models, respectively. RS resulted in better performance
than the other four feature selection methods (Table 10).
Therefore, we further compared the SVM performances
with parameter optimizations or not, based on inform-
ative genes selected by RS. As shown in Table 11, par-
ameter optimizations considerably improved the fitting

and LOOCV accuracy of SVM. For the linear kernel and
RBF kernel, the gaps between LOOCV average accuracy
and test average accuracy with no parameter optimiza-
tions were 3.76 % and 1.90 %, respectively. However, the
gaps with parameters optimization were 4.90 % and
9.43 %, respectively. That is, over-fitting is deepened by
parameter optimizations in SVM.

Discussion
Outlier adjustment and endpoint selection
A small number of outliers may affect gene ranking by
changing the endpoints. Although not all gene expres-
sion values fit the normal distribution, the standard devi-
ation of a normal distribution has good robustness for
outlier adjustment when the probability of that distribu-
tion is unknown [33]. We compared independent test
accuracies of RS-based DC with different significance
level α (i. no adjustment, ii. α = 0.01, iii. α = 0.05). As
shown in Table 12, the significance level α had an evi-
dent effect on classification performance, and 0.05 is the
most appropriate choice for α. Endpoint selection is the
nature of the binarization procedure for the vertical
comparison of gene evaluation. TSG uses the mean of
gene expression values as its endpoint [9]. In this paper,
the endpoint defined by formula (11) is based on Fisher’s
discriminant principle. We also compared independ-
ent test accuracies of RS-based DC with different end-
point selection approaches. As shown in Table 12, the

Fig. 6 Accuracy of RS-based DC for fitting, LOOCV and independent test

Fig. 5 Accuracy of TSG for fitting, LOOCV and independent test
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endpoint selection approach has very little influence
on classification performance.

Entropy and complexity
In this study, a novel score measure, RS, is proposed
based on complexity. Complexity and entropy are very
similar. The former takes sample size information into
account in addition to entropy. As scores are calculated
based on percentages, sample size information is not
fully utilized in the latter. For example, suppose three
white balls and seven black balls are in a system, the en-
tropy (H) is 0.88. In another case, suppose all the counts
are multiplied by 10, i.e. 30 white balls and 70 black
balls; H is identical to the previous case. The additional
information related to the additional sample size is com-
pletely ignored in entropy measures. For Entropy-based
DC, we used entropy in place of the complexity used in
RS-based DC. The results are shown in Table 9. The
same modeling process was conducted for the two
models, but Entropy-based DC had poorer predictive
performance than RS-based DC. This result shows that
the additional information associated with sample size
can improve a model’s predictive performance.

Horizontal and vertical evaluation of gene pairs
Background differences between pair-wise genes and
among samples are fairly common in microarray expres-
sion data, and result in very diverse joint effect patterns.
It is difficult to fairly evaluate all of the patterns with a
single-strategy. As shown in Table 13, a vertical com-
parison cannot highlight gene G1141 and G4940 in the
GCM dataset, and a horizontal comparison cannot high-
light gene G6678 and G3330 in the Lung1 dataset. RS,
however, highlighted the two pairs of genes by integrat-
ing vertical comparison with horizontal comparison.

Direct classifier
Parameters need to be optimized and adjusted, e.g. the pa-
rameters of a kernel function in SVM, and the connection
weights of neurons in an artificial neural network. This is
the primary reason for classifier over-fitting. SVM inte-
grates the minimum structure risk and the maximal
margin and transduction inference, and thereby should be
able to efficiently control over-fitting. SVM-RFE-SVM and
mRMR-SVM have the highest LOOCV accuracies of those
SVM classifiers we tested, 99 % and 98.97 %, respectively.
Therefore, these two SVM variants should theoretically
both receive high test accuracy. However, results were not

Table 12 Independent test accuracy of RS-based DC with different outlier adjustment and endpoint selection approach

α EP selection Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Cancers GCM Average

No adjustment Formula (11) 94.12 84.38 93.33 95.00 90.00 100.00 90.00 81.08 60.87 87.64

0.01 Formula (11) 94.12 84.38 93.33 100 90.00 97.02 90.00 90.54 63.04 89.16

0.05 Formula (11) 94.12 84.38 100 100 93.33 98.51 90.00 90.54 71.74 91.40

0.05 Mean 94.12 84.38 100 100 93.33 97.01 90.00 90.54 71.74 91.24

Table 11 SVM performances with parameters optimization or not based on informative genes selected by RS

Parameters optimization Kernel Evaluation Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Cancers GCM Average

No (fixed C = 1) linear Fitting 97.37 95.31 100 100 100 97.06 100 100 97.92 98.63

LOOCV 97.37 81.25 98.25 98.41 94.44 94.12 96.55 96 77.78 92.69

Testing 94.12 84.38 93.33 95 93.33 97.01 96.67 87.84 58.7 88.93

Yes linear Fitting 97.37 100 100 100 100 100 100 99 100 99.6

LOOCV 97.37 90.63 100 100 98.15 94.12 100 96 81.25 95.28

Testing 94.12 84.38 100 95 93.33 95.52 96.67 89.19 65.22 90.38

C 0.25 32 0.03125 0.5 0.125 8 0.25 0.25 4

No (fixed C = 1, γ = 1/m) RBF Fitting 97.37 87.50 100 100 100 91.18 100 88.00 45.14 89.91

LOOCV 97.37 79.69 100 98.41 98.15 90.44 86.21 78.00 77.08 89.48

Testing 94.12 78.13 100 95.00 93.33 97.01 93.33 85.14 52.17 87.58

Yes RBF Fitting 97.37 100 100 100 100 95.59 100 100 100 99.22

LOOCV 97.37 90.63 100.00 98.00 98.15 94.12 100 98.00 82.64 95.43

Testing 94.12 84.38 86.67 90.00 93.33 95.52 90.00 87.84 52.17 86.00

C 8 2048 0.125 0.25 0.5 2 1 32768 32

γ 0.0125 0.0075125 0.25 0.125 0.25 0.0625 0.25 0.00390625 0.0625

C is penalty parameters and C∈[2−5, 215]; γ is gamma parameter in kernel function and γ∈[2−15, 23]; m is features number of each SVM models
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as good as expected; obvious over-fitting still appeared
(See Fig. 2 and Fig. 3) and deepened by parameter optimi-
zations (See Table 11).
HC-K-TSP, TSG and RS-based DC models, on the

other hand, simultaneously received high LOOCV accur-
acy, high independent test accuracy, and a small gap.
Test accuracy higher than LOOCV accuracy appeared in
different datasets for the three models, excluding the
possibility that DC preferred a specific dataset. The three
models have different defined scores and different fea-
ture selection methods, only having the same DC core;
therefore, we believe that DC plays an important role in
effectively controlling over-fitting.

Paired votes based on binary-discriminative informative
genes
In most cases, an informative gene can distinguish be-
tween just a few classes much more robustly than all of
the classes in a multi-class dataset. Therefore, it is ne-
cessary to transform datasets from multi-class to binary-
class with a “one versus one” (OVO) or an OVR ap-
proach. For an m-class dataset, OVO gets incredibly
complicated, especially with a big m, as the OVO has to

build m(m-1)/2 binary-classifiers. OVR only needs to
build m binary-classifiers; however, a serious unbalance
between the number of positive samples and negative
samples may distort prediction resulting in non-unique
calls. Therefore, we employ paired votes based on
binary-discriminative informative genes that integrate
OVO with OVR. We first build m binary-classifiers with
OVR to select m BDIG subsets, then build m-1 binary-
classifiers with OVO to perform paired votes. For each
paired votes between Classt and Classw, feature subset
{BDIGClasst ∪ BDIGClassw} was binary-discriminative and
the sample sizes were balanced. Paired votes based on
binary-discriminative informative genes only built 2m-1
binary-classifiers and received robust prediction
precision.

Biological relevance of informative genes selected by RS
Do informative genes selected by RS have any biological
relevance for a particular tissue/cancer type? This is par-
ticularly relevant considering that even a random set of
genes may be a good predictor for defining cancer samples
[34]. In our study we scanned these potentially inform-
ative genes against PubMed. Two examples illustrate: for

Table 14 The 10 tumor related genes selected by RS on original training group of Leuk2 dataset

Symbol Synonym(s) Entrez Gene Name Related carcinoma and
Ref.

FTL LFTD, NBIA3 ferritin, light polypeptide breast cancer [35]

PDK1 pyruvate dehydrogenase kinase, isozyme 1 leukemia [36]

POU2AF1 BOB1, OBF-1, OBF1, OCAB POU class 2 associating factor 1 leukemia [37]

KLRK1 CD314, D12S2489E, KLR, NKG2-D, NKG2D killer cell lectin-like receptor subfamily K, member 1 leukemia [38]

KCNH2 ERG-1, ERG1, H-ERG, HERG, HERG1, Kv11.1, LQT2,
SQT1

potassium channel, voltage gated eag related subfamily H,
member 2

leukemia [39]

VLDLR CAMRQ1, CARMQ1, CHRMQ1CH, VLDLR very low density lipoprotein receptor breast cancer [40]

MEIS1 Meis homeobox 1 leukemia [41]

MLXIP MIR, MONDOA, bHLHe36 MLX interacting protein leukemia [42]

NF2 ACN, BANF, SCH neurofibromin 2 (merlin) tumor suppressor [43]

MAP3K5 ASK1, MAPKKK5, MEKK5 mitogen-activated protein kinase kinase kinase 5 leukemia [44]

Table 13 Horizontal and vertical comparison of gene pairs in real data

GCM
dataset

Horizontal comparison Vertical comparison

X1141 > X4940 X1141 < X4940 X1141 > 33 & X4940 > 232 X1141 > 33 & X4940 < 232 X1141 < 33 & X4940 > 232 X1141 < 33 & X4940 > 232

Class 11 2 9 3 1 1 6

Class 12 10 1 0 0 0 11

p-value 0.0027 0.0908

Lung1
dataset

Horizontal comparison Vertical comparison

X6678 > X3330 X6678 < X3330 X6678 > 7439 & X3330 > 335 X6678 > 7439 & X3330 < 335 X6678 < 7439 & X3330 > 335 X6678 < 7439 & X3330 < 335

Class 1 41 3 18 11 10 5

Non-Class 1 19 1 0 2 1 17

p-value 0.7806 2.0716 × 10−7
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Table 15 The 34 tumor related genes selected by RS on original training group of Cancers dataset

Symbol Synonym(s) Entrez Gene Name Related carcinoma
and Ref.

CYP1A1 AHH, AHRR, CP11, CYP1, P1-450, P450-C,
P450DX

cytochrome P450, family 1, subfamily A, polypeptide 1 lung cancer [45]

PTPRZ1 HPTPZ, HPTPzeta, PTP-ZETA, PTP18, PTPRZ, PTPZ,
R-PTP-zeta-2, RPTPB, RPTPbeta, phosphacan

protein tyrosine phosphatase, receptor-type,
Z polypeptide 1

lung cancer [46]

WT1 AWT1, EWS-WT1, GUD, NPHS4,WAGR, WIT-2,
WT33

Wilms tumor 1 leukemic [47]

ANGPT2 AGPT2, ANG2 angiopoietin 2 lung cancer [48]

LGALS1 GAL1, GBP lectin, galactoside-binding, soluble, 1 hepatocellular carcinoma
[49]

ACPP 5'-NT, ACP-3, ACP3 acid phosphatase, prostate prostate cancer [50]

GC DBP, DBP/GC, GRD3, HEL-S-51, VDBG, VDBP group-specific component (vitamin D binding protein) bladder cancer [51]

PRMT1 ANM1, HCP1,HRMT1L2, IR1B4 protein arginine methyltransferase 1 breast cancer [52]

NOX1 GP91-2, MOX1, NOH-1, NOH1 NADPH oxidase 1 colon cancer [53]

ADH7 ADH4 alcohol dehydrogenase 7 (class IV), mu or sigma
polypeptide

gastric cancer [54]

DSG3 CDHF6, PVA desmoglein 3 bladder carcinoma [55]

NKX2-1 BCH, BHC, NK-2, NKX2.1, NKX2A, T/EBP, TEBP,
TITF1, TTF-1, TTF1

NK2 homeobox 1 lung cancer [56]

EFHD1 MST133, MSTP133, PP3051, SWS2 EF-hand domain family, member D1 colorectal cancer [57]

EREG EPR, ER, Ep epiregulin colorectal cancer [58]

DHRS2 HEP27, SDR25C1 dehydrogenase/reductase (SDR family) member 2 breast cancer [59]

ENPEP APA, CD249, gp160 glutamyl aminopeptidase (aminopeptidase A) prostate cancer [60]

SCGB2A2 MGB1, UGB2 secretoglobin, family 2A, member 2 breast cancer [61]

KRT13 CK13, K13, WSN2 keratin 13, type I breast cancer [62]

SERPINC1 AT3, AT3D, ATIII, THPH7 serpin peptidase inhibitor, clade C (antithrombin), member
1

bladder cancer [63]

SLC12A2 BSC, BSC2, NKCC1, PPP1R141 solute carrier family 12 (sodium/ potassium/chloride
transporter),member 2

esophageal squamous
cell carcinoma [64]

IRF4 LSIRF, MUM1, NF-EM5, SHEP8 interferon regulatory factor 4 hematological
malignancies [65]

GPA33 A33 glycoprotein A33 (transmembrane) colorectal cancer [66]

BCAT1 BCATC, BCT1, ECA39, MECA39, PNAS121, PP18 branched chain amino-acid transaminase 1, cytosolic colorectal cancer [67]

COL10A1 collagen, type X, alpha 1 breast cancer [68]

CEL BAL, BSDL, BSSLL, CEase, FAP, FAPP, LIPA,
MODY8, CEL

carboxyl ester lipase pancreatic cysts [69]

NPC2 EDDM1, HE1 Niemann-Pick disease, type C2 liver cancer [70]

CDH17 CDH16, HPT-1, HPT1 cadherin 17, LI cadherin (liver-intestine) gastric cancer [71]

MEIS1 Meis homeobox 1 pancreatic cancer [72]

KLK3 APS, KLK2A1, PSA, hK3 kallikrein-related peptidase 3 prostrate [73]

CXCL13 ANGIE, ANGIE2, BCA-1, BCA1, BLC, BLR1L,
SCYB13

chemokine (C-X-C motif) ligand 13 breast cancer [74]

ELA3A ELA3,ELA3A chymotrypsin-like elastase family, member 3A pancreatic carcinoma [75]

IRX5 HMMS, IRX-2a, IRXB2 iroquois homeobox 5 prostate cancer [76]

VCAM1 CD106, INCAM-100 vascular cell adhesion molecule 1 ovarian cancer [77]

P4HB CLCRP1, DSI, ERBA2L, GIT, P4Hbeta, PDI, PDIA1,
PHDB, PO4DB, PO4HB, PROHB

prolyl 4-hydroxylase, beta polypeptide Glioblastoma multiforme
[78]
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the Leuk2 dataset, 13 genes out of 12,582 were selected as
informative genes by our method, of which ten genes are
reported in PubMed as being related to tumors, and seven
genes are reported as being related to leukemia (see
Table 14). For the Cancers dataset (prostate, breast, lung,
ovary, colorectum, kidney, liver, pancreas, bladder/ureter,
and gastroesophagus), 36 genes out of 12,533 were selected
as informative genes, of which 34 genes are reported re-
lated to be tumor related in PubMed (see Table 15).
Clearly, most of informative genes selected by RS are sup-
ported by PubMed references (Informative genes selected
by RS method of nine datasets see Additional file 1).

Conclusion
Gene selection and classifier choice are two key issues
in the analysis of tumor microarray expression data.
Gene selection depends on an evaluation strategy and
on a defined score. Diverse patterns of gene pairs can
be highlighted more fully by integrating a vertical com-
parison with a horizontal comparison strategy. The RS
score and the χ2 score, which both consider events ra-
tios as well as events frequencies, were superior to Δij

scores and entropy scores. Parameter optimizations are
the main reason for over-fitting classifiers, a DC core
classifier can effectively control over-fitting. RS-based
DC (Source code of RS-based DC see Additional file 2),
which takes into account all of the above factors, re-
ceives the highest average independent test accuracy,
the smallest informative average gene number, and the
best generalization performance. This was confirmed
by testing our method on nine bench-mark multi-class
gene expression datasets, compared with the nine refer-
ence models and the four reference feature selection
methods.

Additional files

Additional file 1: The binary-discriminative informative genes selected
by RS method of nine datasets. (XLS 26 kb)

Additional file 2: Source code of RS-based DC. (RAR 768 kb)
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