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Abstract

Background: Assays that are capable of detecting genome-wide chromatin interactions have produced massive
amount of data and led to great understanding of the chromosomal three-dimensional (3D) structure. As technology
becomes more sophisticated, higher-and-higher resolution data are being produced, going from the initial 1
Megabases (Mb) resolution to the current 10 Kilobases (Kb) or even 1 Kb resolution. The availability of genome-wide
interaction data necessitates development of analytical methods to recover the underlying 3D spatial chromatin
structure, but challenges abound. Most of the methods were proposed for analyzing data at low resolution (1 Mb).
Their behaviors are thus unknown for higher resolution data. For such data, one of the key features is the high
proportion of “0” contact counts among all available data, in other words, the excess of zeros.

Results: To address the issue of excess of zeros, in this paper, we propose a truncated Random effect EXpression
(tREX) method that can handle data at various resolutions. We then assess the performance of tREX and a number of
leading existing methods for recovering the underlying chromatin 3D structure. This was accomplished by creating in-
silico data to mimic multiple levels of resolution and submit the methods to a “stress test”. Finally, we applied tREX and
the comparison methods to a Hi-C dataset for which FISHmeasurements are available to evaluate estimation accuracy.

Conclusion: The proposed tREX method achieves consistently good performance in all 30 simulated settings
considered. It is not only robust to resolution level and underlying parameters, but also insensitive to model
misspecification. This conclusion is based on observations made in terms of 3D structure estimation accuracy and
preservation of topologically associated domains. Application of the methods to the human lymphoblastoid cell line
data on chromosomes 14 and 22 further substantiates the superior performance of tREX: the constructed 3D structure
from tREX is consistent with the FISH measurements, and the corresponding distances predicted by tREX have higher
correlation with the FISH measurements than any of the comparison methods.

Software: An open-source R-package is available at http://www.stat.osu.edu/~statgen/Software/tRex.
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Background
The three-dimensional (3D) organization of a genome is
closely linked to its biological functions; therefore, it is
important to gain a full understanding of the genomic
structure. In recent years, assays developed to identify
long-range chromatin interactions genome-wide, coupled
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with next generation sequencing technology, revolution-
ize research in genomics and epigenetics. The most well-
known assay for detecting chromatin interaction, Hi-C
[1], produces data that identify pairs of fragments in close
proximity to each other in the cell nucleus, and are com-
monly organized into a two-dimensional matrix (known
as contact matrix) of contact counts. In addition to Hi-
C, other assays for detecting genome-wide long-range
interactions have also been developed, such as ChIA-PET
[2], TCC [3], and single-cell Hi-C [4]. Most recently, in-
situ Hi-C was debuted, achieving 1 Kb resolution with
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4.9 billion contacts [5]. Furthermore, it shortens the
experimental time considerably from the original Hi-C
experiment.
A number of analytical approaches have been proposed

to recapitulate the underlying 3D structure, with most
of them developed for Hi-C data. These approaches can
generally be classified into optimization based and mod-
eling based. Most of the optimization-based approaches
are two-step procedures. The idea is to first translate each
pairwise contact count into a distance using a biophys-
ical property, essentially stating an inverse relationship.
One then obtains a consensus 3D structure by minimiz-
ing some objective function, such as the total “differences”
between the translated distances and those inferred from
the hypothesized 3D architecture [6–8]. ChromSDE [9]
is an example in this category, but it also estimates the
degree of the inverse relationship in addition to the 3D
coordinates in the optimization step. Further, the dis-
tances between pairs with 0 contact frequencies are penal-
ized so that they are more separated in the 3D space.
ShRec3D [10] also falls into this category, except that in
the first step, the contact counts are converted to dis-
tances by not just applying the inverse relationship of the
biophysical model, but by also finding the “shortest path”
connecting two nodes on a weighted graph. Many of the
optimization methods are based on metric or non-metric
multi-dimensional scaling to minimize the objective func-
tion [8, 10, 11].
Modeling-based approaches, on the other hand, are

based on probability models that describe the relationship
between the contact counts with the 3D physical distance.
The contact counts are modeled either by a normal dis-
tribution to account for variability in the estimation [12]
or by a Poisson distribution, as in BACH [13] and PASTIS
[14], with its intensity parameter assumed to be related to
the physical distance by an inverse relationship. Statistical
inferences on the 3D structure (together with other model
parameters) are made either by maximum likelihood [14]
or through casting the problem into a Bayesian frame-
work [12, 13]. Although independence assumption is not
needed for optimization-based methods, this assumption
is central for existing model-based methods. This leads
to the concern that these models may provide a poor
fit to the data as dependency among frequencies in the
contact matrix are expected. Furthermore, methods that
rely on the Poisson distribution fail to capture potential
over-dispersion in sequencing data.
Most of the methods discussed above were proposed

and tested with dilute Hi-C data at 1 Mb resolution for
human lymphoblastoid cell line [1] or at 40 Kb resolution
for mouse embroyonic stem cell line [15]. As discussed
above, with the advancement of the technology, higher
and higher resolution data are being produced at a faster
rate. For a given resolution, regardless of whether it is

high or low, the data are organized into a 2D matrix of
contact counts. However, as the resolution gets higher
and higher, the 2D matrix gets sparser and sparser, that
is, with a higher proportion of zeros in the entries of
the matrix. For example, for the human lymphoblastoid
cell line GM12878 [5], the proportions of zeros at res-
olution 1 Mb, 50, 25, 20, and 10 Kb are approximately
0% (< 1%), 10, 20, 30, and 60%, respectively, for intra-
chromosomal data. As such, questions arise as to whether
existing methods tested for lower resolution data are still
appropriate and effective for analyzing higher resolution
data, and what maybe the likely impact of higher resolu-
tion on the methods. For example, as mentioned above,
ChromSDE [9] takes special care of zero contact counts,
and therefore it would be of interest to evaluate whether
it continues to perform well when challenged with a large
proportion of zeros. On the other hand, for a model-based
method such as those relying on the Poisson distribution,
the underlying distribution may no longer be adequate
for modeling data with excess of zeros. Specifically, if the
proportion of zeros is much higher than the theoretical
probability of getting a zero for a Poisson distribution
that otherwise fits the non-zero frequency counts, then
the model will be a poor fit for the data that include the
zeros. A recently proposed truncated Poisson Architec-
ture Model (tPAM) is an attempt to address this issue,
but its appropriateness for higher resolution data with a
majority of contact counts being zeros (e.g. at 10 Kb res-
olution) has not been evaluated. More seriously, as with
the other model-based methods discussed above, tPAM
also requires the independence assumption and fails to
accommodate overdispersion.
In this article, we propose a truncated Random effect

EXpression (tREX) model, which not only uses a trun-
cated distribution to accommodate excess of zeros in
higher resolution data, but also adds a random effect com-
ponent into the model for counts. Thus tREX is expected
to be robust to resolution specification, takes depen-
dencies between contact counts into consideration, and
addresses the issue of over-dispersion. By doing so, tREX
can achieve greater consistency with observed data. To
thoroughly investigate the performance of tREX and com-
pare it with a number of current methods, we carried
out an in-silico study. We also applied all methods to a
human lymphoblastoid cell line Hi-C dataset for which
FISH measurements are available to substantiate estima-
tion accuracy.

Results
We first describe the design and results from an in-silico
study that generates data from a known 3D structure
that serves as the “gold standard”. A total of 30 different
(zero-inflated) Poisson contact frequency intensity mod-
els are considered. These results are based on synthetic
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datasets to allow for controlled settings to test methods
and quantify relative merits. We emphasize the impact of
resolution on the methods throughout the presentation of
the results. Results for the application to a human lym-
phoblastoid cell line Hi-C dataset are presented following
those for the in-silico study.

An in-silico study
Using an existing estimated structure [16] as the “gold
standard”, we consider several scenarios that mimic vari-
ous data resolutions. This 3D structure is selected as it is
estimated from real data and as it depicts two topologi-
cally associated domains (TADs) (Fig. 3(a)), an important
feature for gauging the relative performance of the meth-
ods subjected to the “stress test”. Two versions of the ran-
dom effect model (NRE and ST) and three sets of model
parameters are used to generate the contact matrix. More-
over, five different proportions of zeros among contact
counts, roughly representing five levels of data resolu-
tion, are considered: 0% (1 Mb), 10% (50 Kb), 20% (25
Kb), 30% (20 Kb), 60% (10 Kb). This setup leads to a
total of 30 simulation settings. Detailed data simulation
process is described in the Methods section. In addi-
tion to tREX, the following methods are also subjected
to the stress test: tPAM [16], BACH [13], PASTIS [14],
ShRec3D [10], and ChromSDE [9], with the first three
being model-based methods like tREX, and the remaining
two being optimization based. Three aspects are evalu-
ated: (1) estimation accuracy of the 3D coordinates of the
estimated structure, (2) consideration of how well the two
TADs are preserved in the estimated structure, and (3)
computational time.

Estimation accuracy of 3D coordinates
We first discuss estimation accuracy of the 3D coordi-
nates using two criteria: RMSD and correlation. Briefly,
RMSD first computes the squared deviations between
the estimated 3D coordinates and the generating coor-
dinates, averages them, and takes the square root of the
average. A more detailed description is provided in the
Methods section. Correlation, on the other hand, simply
computes the Pearson correlation coefficient between the
estimated and the true coordinates. Both criteria measure
estimation accuracy, but with emphases from two differ-
ent angles; thus both are good measures of performance
of a method.
We present the results for data simulated under one set

of model parameters. First we consider the NRE model.
For each method and each resolution, we summarize the
results across all replications in a boxplot, one for RMSD
and one for correlation. The results for all methods and all
resolutions (represented by different percentages of zeros
in the data) are presented in Fig. 1. From these plots, one
can see that BACH (third boxplot under each resolution)

is affected the most by resolution, with both its RMSD
increasing (Fig. 1(a)), while its correlation decreasing
exponentially (Fig. 1(b)). This is not surprising as BACH
was not specifically proposed for data at higher resolu-
tion and thus could not handle an excess of zeros in the
contact matrix. Although the two truncated model-based
methods, tREX and tPAM, appear to be slightly affected
by resolution, they perform much better than BACH, at
all levels of resolution, with tREX edging out tPAM con-
sistently under the RMSD criterion. This is expected since
the truncated Poisson model is specifically designed to
be robust to the proportion of zeros. On the other hand,
the optimization-based method, ShRec3D, does not seem
to be affected by resolution, with RMSD and correla-
tion stay fairly constant through out the entire range, but
its performance is inferior to tREX and tPAM uniformly
across all levels of resolution. Instead of being similar to its
sibling optimization method, the behavior of ChromSDE
is in fact quite similar to the modeling-based methods
tREX and tPAM: as resolution increases, its performance
deteriorates slightly. This feature may be due to its spe-
cial handling of the zero counts as discussed above. The
Poisson-based likelihood inference method, PASTIS, on
the other hand, has rather unpredictable behaviors. The
RMSD generally decreases but then increases very slightly
as the data resolution increases, contrary to the results of
all the other methods. This behavior is also observed for
the correlation measure. Therefore, for higher resolution
data, PASTIS may slightly outperform tREX, even though
tREX is much better at lower resolution. Nevertheless, the
variability of the results from PASTIS increases dramat-
ically (i.e. having wider boxes in the boxplots) with the
increase of resolution, casting a great deal of uncertainty
about its results. Overall, we see that all methods main-
tain over 90% correlation across all resolution, except for
BACH, whose correlation drops down to about 65% (on
average) with about 10 Kb resolution.
The results for the ST models, given in Fig. 2, paints

a clearer picture of the better performance of tREX. For
the RMSD criterion (Fig. 2(a)), all methods appear to be
only slightly impacted by resolution, with tREX having
smaller RMSD compared to the other methods, which
all seem to perform similarly (PASTIS is slightly better
among them for higher resolution data, though). With
respect to correlation (Fig. 2(b)), we can see that, like
the data simulated under the NRE model, BACH is once
again affected by resolution the most, with its correla-
tion dropping down to only barely above 50% with data
at about 10 Kb resolution. In contrast, the correlation
for tREX stays over 90%, with ShRec3D and PASTIS
(at higher resolution) being the best among the rest of
the methods. These observations generally hold for the
other two sets of model parameters (Additional file 1:
Figures S1–4).
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Fig. 1 Boxplots for comparing 3D estimation accuracy of six methods under NRE model and parameter setting (β0,β1, γ1, γ2) = (3,−0.434, 0.3, 0.3).
The comparison are for data simulated from the NRE model based on two criteria: (a) RMSD, and (b) Correlation. For each resolution/percent zeros,
the six boxplots are for tREX, tPAM, BACH, ShRec3D, ChromSDE, and PASTIS, in that order

In summary, tREX achieves consistently good perfor-
mance in all settings. Although some of the other methods
may perform better at a particular resolution with a par-
ticular setting of model or parameters, tREX is always
among the best (and being the best most often) in all 30
combinations of model, parameter setting, and resolution
level under both evaluation criteria.
Although Figs. 1 and 2 provide clear visualizations

of the results, we further quantify the performances by
comparing tREX’s results with those from each of the
other methods by carrying out Wilcoxon signed-rank
tests for the same model and parameter settings. The
results (p-values) are presented in Table 1. The top seg-
ment of the table (Table 1(A)) provides the p-values for
the NRE model. These results provide formal statisti-
cal confirmation for our observations from Fig. 1: tREX

has significantly smaller RMSD and significantly larger
correlation than BACH and ShRec3D, but not necessar-
ily uniformly significantly better than tPAM, PASTIS, or
ChromSDE under both criteria for all resolutions. For the
data simulated from the ST model, the bottom segment of
the table (Table 1(B)) shows, without a doubt, that tREX
has statistically significantly smaller RMSD and larger cor-
relation than any of the other methods across all levels
of resolution. The results for the other two sets of model
parameters are similar (Additional file 1: Tables S1 and 2).

TAD preservation
We next investigate the performance of the comparison
methods for preserving the two topologically associated
domains in the underlying structure. As we can see from
the underlying structure depicted in Fig. 3(a), the two
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Fig. 2 Boxplots for comparing 3D estimation accuracy of six methods under ST model and parameter setting (β0,β1, γ1, γ2) = (3,−0.434, 0.3, 0.3).
The comparison are for data simulated from the NRE model based on two criteria: (a) RMSD, and (b) Correlation. For each resolution/percent zeros,
the six boxplots are for tREX, tPAM, BACH, ShRec3D, ChromSDE, and PASTIS, in that order

domains (red and green balls, respectively) are well sep-
arated, with loci within each domain cluster together
tightly. As such, we use average silhouette width [17] as a
measure of how well the domains are separated. Specifi-
cally, we compute the ratio of the average silhouette width
of the estimated 3D structure to that of the underlying
structure, and a larger value is indicative of better separa-
tion of the two TADs. As we can see from the results of
one parameter setting presented in Table 2, for data simu-
lated under the NRE model, tREX, tPAM, and ChromSDE
are similar in their ability to identify the two topological
domains, with their ability slightly decreased with higher
resolution data. In contrast, ShRec3D performed steadily
across all levels of resolution, but its ability to separate
the two TADs is not as good as the other three methods
just discussed. BACH, on the other hand, sees its per-
formance degraded quickly as the resolution gets higher.

As seen earlier, the performance of PASTIS is rather
unpredictable. It does not performed as well as the other
methods for low resolution data, but its performance gets
much better with the increase of resolution, especially for
mid-level resolution data. For data simulated under the ST
model, tREX has higher average silhouette ratios across
all levels of resolution compared to the other five meth-
ods, among them, BACH continues to perform the worst
as resolution increases. Results for the other two param-
eter settings are similar (Additional file 1: Tables S3 and
4). As an example, we display in Fig. 3(b) the structures
estimated by all six comparison methods across the reso-
lutions for a representative dataset simulated under the ST
model. As we can see from the figure, when the resolution
is low (1Mb or 0% zeros), all methods but PASTIS recover
the two TADs in the underlying structure as shown in
Fig. 3(a). However, as the resolution increases, one can see
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Table 1 P-values of Wilcoxon signed-rank tests comparing the performance of tREX with each of the comparison methods for the
model with parameters (β0,β1, γ1, γ2) = (3,−0.434, 0.3, 0.3)

Resolution/Percent zeros

Criterion Method 0% 10% 20% 30% 60%

(A). NRE Model

RMSD tPAM 8.0 × 10−3 1.2 × 10−2 9.6 × 10−2 1.1 × 10−7 1.3 × 10−7

BACH 5.6 × 10−10 4.1 × 10−10 3.8 × 10−10 3.8 × 10−10 3.8 × 10−10

PASTIS 3.8 × 10−10 2.7 × 10−7 5.5 × 10−3 8.9 × 10−1 9.9 × 10−1

ShRec3D 3.5 × 10−15 3.8 × 10−10 3.8 × 10−10 3.8 × 10−10 3.8 × 10−10

ChromSDE 4.9 × 10−10 5.6 × 10−10 2.7 × 10−9 2.7 × 10−9 5.1 × 10−9

Correlation tPAM 7.6 × 10−1 9.9 × 10−1 9.9 × 10−1 5.5 × 10−2 1.0 × 10−1

BACH 1.5 × 10−6 1.3 × 10−9 8.0 × 10−10 3.8 × 10−10 3.8 × 10−10

PASTIS 9.0 × 10−10 4.5 × 10−1 9.9 × 10−1 9.9 × 10−1 9.9 × 10−1

ShRec3D 3.5 × 10−15 3.8 × 10−10 1.0 × 10−9 7.1 × 10−10 1.7 × 10−9

ChromSDE 3.6 × 10−7 1.3 × 10−3 6.2 × 10−1 1.9 × 10−1 5.7 × 10−2

(B). ST Model

RMSD tPAM 4.9 × 10−9 1.9 × 10−9 1.2 × 10−9 2.2 × 10−8 3.6 × 10−9

BACH 8.5 × 10−10 1.5 × 10−8 2.9 × 10−9 2.1 × 10−9 7.2 × 10−9

PASTIS 6.3 × 10−10 1.0 × 10−5 3.1 × 10−7 2.3 × 10−4 6.3 × 10−4

ShRec3D 4.3 × 10−7 1.5 × 10−6 9.3 × 10−7 8.4 × 10−7 9.6 × 10−9

ChromSDE 1.2 × 10−8 2.0 × 10−8 1.2 × 10−8 1.2 × 10−8 4.6 × 10−8

Correlation tPAM 3.8 × 10−10 3.8 × 10−10 4.1 × 10−10 3.8 × 10−10 1.2 × 10−9

BACH 3.8 × 10−10 3.8 × 10−10 3.8 × 10−10 3.8 × 10−10 4.1 × 10−10

PASTIS 3.8 × 10−10 1.5 × 10−8 4.9 × 10−6 1.5 × 10−4 1.5 × 10−5

ShRec3D 1.0 × 10−9 3.1 × 10−10 5.3 × 10−9 3.6 × 10−8 8.6 × 10−10

ChromSDE 4.1 × 10−10 3.8 × 10−10 4.1 × 10−10 4.3 × 10−10 3.2 × 10−9

The results for the NRE model are given in the top segment (A) and those for the ST model are given in the bottom segment (B)

that the two TADs are preserved only in the structure pre-
dicted by tREX at the highest resolution considered (10 Kb
or 60% zeros). Once again, BACH has the worst perfor-
mance, which started to have trouble separating the two
TAD at the 25 Kb (20% zero contact counts) resolution.

Computational time
Computational feasibility is a major concern for genomic
data, but the concern is even greater for chromatin inter-
action data as the size of the data is O(n2) when there
are n genomic loci, an order of magnitude increase com-
pared to analysis of linear chromosomal data. For model-
based methods (except PASTIS), the computational time
is typically longer as most methods are based on Markov
chain Monte Carlo (MCMC) sampling, a computation-
ally intensive technique. Optimization-based methods are
usually much faster. Among modeling-based methods,
those based on a truncated distribution (e.g. tREX and
tPAM) will have an advantage as its computational cost

can be greatly reduced for data with a higher percentage of
zeros through excluding the zero counts. To illustrate this,
we present some computational time analysis in Table 3
for one set of model parameters.
As we can see, ShRec3D and PASTIS run much faster

than the rest of the methods for each simulated data set.
ChromSDE comes in next, although not an order of mag-
nitude better as in ShRec3D and PASTIS. BACH’s running
time is constant regardless of the percentage of zero con-
tact counts. On the other hand, tREX and tPAM’s compu-
tational time reduces as the percentage of zeros increases
since the number of data points needed to be analyzed
decreases. ChromSDE appears to have a similar trend,
perhaps due to its special way of handling zero count data.
It is noted, though, that the computational time presented
in Table 3 is simply an illustration on how the percentage
of zeros may affect different methods differently. Indeed,
an increase in resolution typically lead to an increase in
the number of zeros in the contact matrix. However, the
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a

b

Fig. 3 Underlying 3D structure and its estimates. a The 3D structure depicted was used for simulating data in the in-silico study. The red and green
balls denote two topologically associated domains that are well separated in the 3D space. b The estimated structures depict results from one
representative replicate simulated under the ST model. For each of the six methods considered, there are five estimated structures, each for the five
levels of resolution/percent zeros

dimension of the contact matrix also increases for higher
resolution data. As such, the decrease in computational
time for tREX and tPAM with an increase in the percent
of zeros does not mean that tREX and tPAM will take less
time to analyze higher resolution data.

Analysis of human lymphoblastoid Hi-C data
We applied tREX to the Hi-C data produced by [1].
In fact, there are two Hi-C experiments performed on
the same karyotypical normal human lymphoblastoid cell
line, which are combined into a single data set in our
analysis given their high reproducibility [1]. For com-
parisons, we also run the other methods, tPAM, BACH,
PASTIS, ShRec3D, and ChromSDE. We focused on chro-
mosome 14 and 22, as experimental validation data based

on Fluorescence In Situ Hybridization (FISH) are available
for several pairs of loci on these two chromosomes and
are publicly available [1]. Specifically, [1] discussed inter-
esting features of spatial interactions, based on the FISH
measures, among 4 loci on chromosome 14 (L1, L2, L3,
and L4, located in that linear order) and 4 loci on chro-
mosome 22 (L5, L6, L7, and L8, in that linear order) using
the FISH experiment. In particular, the spatial 3D distance
between L2 and L4 was observed by the FISH experiments
to be smaller than that between L2 and L3, despite the fact
that L2 is farther apart from L4 than from L3 in terms of
their linear 1D distances. A similar observation was made
for (L6, L7, L8), in that the spatial 3D distance between L6
and L8 is smaller than that between L6 and L7. The reso-
lution used is 1 Mb, which leads to 89 loci in chromosome
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Table 2 Average silhouette width ratio for the model with
parameters (β0,β1, γ1, γ2) = (3,−.434, 0.3, 0.3). Each number
represents the ratio of the average silhouette width of the
estimated structure and the average silhouette width of the
underlying 3D structure

Resolution

Model Method 0% 10% 20% 30% 60%

NRE tREX 0.875 0.847 0.830 0.813 0.757

tPAM 0.893 0.870 0.861 0.823 0.752

BACH 0.851 0.756 0.665 0.597 0.405

PASTIS 0.756 0.875 0.906 0.926 0.900

ShRec3D 0.737 0.732 0.727 0.722 0.683

ChromSDE 0.865 0.849 0.837 0.816 0.735

ST tREX 0.757 0.746 0.734 0.716 0.670

tPAM 0.623 0.592 0.570 0.563 0.540

BACH 0.626 0.570 0.532 0.493 0.358

PASTIS 0.617 0.694 0.720 0.717 0.646

ShRec3D 0.686 0.667 0.658 0.651 0.575

ChromSDE 0.643 0.643 0.630 0.616 0.553

14 and 36 loci in chromosome 22, that is, a total of 125 loci
for a join analysis of both chromosomes.
To make it possible to compare results across different

methods with the FISH measurements due to different
scaling factors, we first standardize all the distances (see
Methods). For greater ease of digesting the information,
we calculated, for each of the 9 pairs of loci for which FISH
measurements of distances are available, the absolute dif-
ference between the median of the FISH measurements
and the median from each of the methods (Table 4).
From the table, we can see that tREX has the small-
est average absolute difference from FISH (last column
of Table 4). ShRec3D’s estimated distances can some-
times be fairly different from those of FISH; for example,
all four distance estimates on chromosome 22 are out-
side of the middle 50% of the FISH measurements, with

Table 3 Typical running time∗ (in minutes) for completing the
3D reconstruction for a simulated dataset

Resolution/Percent zeros

Methods 0% 10% 20% 30% 60%

tREX 7.6 7.3 6.5 5.3 3.3

tPAM 6.8 6.7 5.3 4.7 2.9

BACH 7.9 7.9 7.9 7.9 7.9

PASTIS 1.0 1.0 1.0 1.0 1.0

ShRec3D 1.0 1.0 1.0 1.0 1.0

ChromSDE 2.4 2.6 2.3 1.9 2.1

*For PASTIS and ShRec3D, the typical computational time is less than 1 min.
However, PASTIS took several min to run for a few of the replications

one being outside of the range of all 100 measurements.
This is reflected in its average difference from FISH
being more than 3 times of that for tREX (Table 4).
The other optimization-based method, ChromSDE, per-
formed better, but still, all four distance estimates on
chromosome 22 are also outside of the middle 50% of
the FISH measurements resulting in its average differ-
ence from FISH being more than 2 times of that for
tREX (Table 4). Finally, other than ShRec3D, all meth-
ods predicted the spatial distance between L2 and L4
to be shorter than that between L2 and L3, and that
between L3 and L4, consistent with the FISH results. For
ShRec3D, its estimated distance between L2 and L4 is
indeed shorter than L2 and L3 but longer than L3 and
L4. For the distance between L6 and L8 compared to L6
and L7, all methods provided consistent predictions as
FISH.
The observations of the relative performance of the

methods are also confirmed by the correlation plots of the
estimates with the FISH measurements (Fig. 4(a–f)). We
considered three measures of correlation, Person’s, Spear-
man, and Kendall, with the latter two more suited for
a non-linear relationship. All three correlations confirm
that tREX performed the best overall, with the highest
correlation among all methods; even the smallest corre-
lation, Kendall’s correlation, is at 94%. In comparison,
the Kendall’s correlation can be quite low for most of
the other measures: 83, 67, 67, 56, and 67% for tPAM,
BACH, PASTIS, ShRec3D, and ChromSDE, respectively.
On the other hand, Pearson’s correlation is the high-
est for most of the method: 97, 87, 92, 85, 70, and
93% for tREX, tPAM, BACH, PASTIS, ShRec3D, and
ChromSDE, respectively.

Discussion and conclusions
Three-dimensional organization of a genome has gained
a great deal of attention in recent years. Because the
structure is intimately linked to the biological func-
tions of the genome, especially in long-range gene
regulation, it is important to gain a greater under-
standing of the structure so that its relationship with
key genomic features, such as histone marks, can
be ascertained. The experimental data, organized into
a 2D matrix, has special features, the most impor-
tant ones include correlation among contact counts in
the 2D matrix and the high proportion of zero con-
tact counts (i.e. the matrix being sparse). To address
these issues, in this paper, we propose tREX that
takes correlation between read counts into consid-
eration. In addition, over-dispersion, known to exist
in next generation sequencing read count data, is
also accommodated in tREX. The most important
feature of tREX is that it is robust to resolution
specification.
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Table 4 Absolute difference between median of FISH measurements and median of estimates for each pair of loci and each method

Absolute median difference

Method L12 L13 L23 L24 L34a L56 L57 L67 68 Averageb

tREX 0.083 0.113 0.019 0.176 0 0.017 0.070 0.102 0.155 0.082

tPAM 0.196 0.211 0.152 0.218 0 0.125 0.149 0.084 0.155 0.143

BACH 0.031 0.200 0.175 0.026 0 0.099 0.081 0.118 0.132 0.096

ShRec3D 0.036 0.018 0.354 0.448 0 0.607 0.421 0.456 0.426 0.307

ChromSDE 0.033 0.200 0.191 0.150 0 0.262 0.240 0.295 0.284 0.184

PASTIS 0.063 0.015 0.429 0.136 0 0.129 0.132 0.182 0.203 0.143

aBy design, we standardized all distances so that the median distance between loci L3 and L4 is 1 for all the methods (including FISH). Thus, the difference between each
method and FISH is zero
bAverage is averaging over all pairs

An in-silico study demonstrates these properties by
showing that tREX is much more data consistent regard-
less of the resolution level and the underlying model from
which the data were simulated. The study further shows
that tREX performs at least as well as any of the current
state-of-the art methods, both optimization-based and
modeling-based, and in fact outperforms in most of the
scenarios considered. Even when the data were simulated
from the Poisson model (especially those with no zero-
inflation, which matches exactly with the analysis model
for tPAM, BACH, and PASTIS), tREX was still among
the top performers. When correlation among contact fre-
quencies was introduced, tREX’s advantage was clearly
seen, as it was not only able to take dependencies into
account, but also to accommodate overdispersion intro-
duced by the correlation. In all, a total of 30 combinations
of random effect, model parameters, and resolution level
were considered, and tREX achieved consistently good
performance in all settings. The results indicate that tREX
is not only robust to resolution level, but it is also robust
to model mis-specification and insensitive to parameter
specifications. The comparisons are in terms of 3D struc-
ture estimation accuracy and preservation of topologically
associated domains. However, tREX is slower computa-
tionally compared to the two optimization algorithms and
PASTIS.
Application of tREX to the human lymphoblastoid cell

line data on chromosomes 14 and 22 led to the con-
struction of a 3D structure that is consistent with the
FISH measurements of distances on several pairs of
loci. It is shown that the corresponding distances pre-
dicted by tREX have higher correlation with the FISH
measurements than any of the five comparison methods.
Using the FISH measurements as the “gold standard”, this
result indicates that tREX is a viable alternative to other
existing methods.
Computational intensity is an important issue that

deserves further discussion. As they are currently imple-
mented, tREX, tPAM, BACH, and ChromSDE are all

too computationally intensive to recover the 3D struc-
ture genome-wide in a single run. Nevertheless, compared
among model-based approaches, tREX and tPAM are
more apt for handling higher resolution data as well as
inter-chromosomal data, as the sparse feature of the data
helps with improving computational feasibility. PASTIS
is a model-based approach that is computationally very
efficient, but its performance appears to be unpredictable
and unstable based on our observations from the sim-
ulation (there is large variability and extreme outliers;
e.g. Additional file 1: Figure S1), and thus further evalu-
ation is warranted. Ultimately, faster algorithms and fur-
ther methodological innovations are needed for genome-
wise 3D reconstruction, especially for higher resolution
data. One idea is to use a subset of loci from each
chromosome, “the anchors”, to build an overall architec-
ture of the genome-wide 3D structure. Then a structure
for each chromosome will be constructed and trans-
formed to fit into the overall architecture, confirming
to the positions of the anchors from the corresponding
chromosome. Whether this strategy will work warrants
further investigation, but it is out of the scope of the
current paper.

Methods
In this section, we describe the tREX model, the sta-
tistical inference from the model for estimating 3D
structure, the design and execution of the in-silico
study, the RMSD criterion for performance evalua-
tion, and the standardization of distances to facili-
tate comparisons with the FISH measurement. Each of
these topics will be discussed in turn in the following
subsections.

Truncated Random effect EXpression (tREX) model
Let yij be the count (an entry in the contact matrix) that
represents the interaction intensity between loci i and j.
For a set of n loci, their coordinates in the 3D space are
denoted by ω ≡ {�pi = (pxi , p

y
i , p

z
i ); i = 1, . . . , n}. We
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Fig. 4 Results from analysis of human lymphoblastoid cell line Hi-C data. These plots depict correlation between the median distances from the
estimates and the FISH measurements. The nine points on each plot corresponds to the nine pairs of loci. a tREX; (b) tPAM; (c) BACH; (d) PASTIS;
(e) ShRec3D; and (f) ChromSDE

further use dij to denote the Euclidean distance between
loci i and j:

dij =
√

(pxi − pxj )2 + (pyi − pyj )2 + (pzi − pzj )2.

For reconstruction of 3D structure, the goal is to make
inference on ω based on y = {yij, 1 ≤ i < j ≤ n}, the
data on the upper triangle of the 2D contact count matrix.
Since yij represents count data, it has been modeled as

from the Poisson distribution, that is, Yij ∼ Poisson(λij)
with intensity parameter λij, in the literature [13, 14, 16].
Note that the 2D data matrix is constructed for a given

resolution. As resolution changes, the data matrix will
change accordingly. For data at 1 Mb resolution, the pro-
portion of zeros in intra-chromosomal data are minimal
(< 1%). However, as resolution gets higher and higher,
the percentage of zeros in the contact count matrix will
get larger and larger. Large proportion of zeros is also
observed for inter-chromosomal read count matrix when
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data from multiple chromosomes are analyzed together.
Further, we would also like to point out that contact
counts are correlated, but this nature of the data is
being ignored in current methods that are model-based
[12–14, 16].
To address the above features inherent in Hi-C data,

we propose a truncated Random effect EXpression (tREX)
model:

log λij = β0 + β1 log dij + zTij γ + Wij, (1)

with the likelihood of y for I ≡ {(i, j); yij �= 0} (i.e.
excluding zero counts) being

log p(y; θ ,ω) ∝
∑ ∑
(i,j)∈I

{
yij log λij − log(eλij − 1)

}
.

(2)

In Eq. (1), λij is the interaction intensity between loci
i and j as defined earlier; dij is the Euclidean distance
between i and j, also as defined earlier; zTij is a vec-
tor of covariates (e.g. fragment length, GC content, and
mappability score) to address systematic biases (acting as
normalization of the data); Wij is the random effect that
will be discussed more below; β0,β1, and γ are the coef-
ficients (effect sizes) of the corresponding factors. Note
that the restriction of β1 < 0 is imposed to reflect the bio-
logical property that two loci in close proximity in the 3D
space is likely to interact more. In Eq. (2), θ denotes the
collection of all model parameters, and ω is the collection
of the coordinates of the 3D structure. It is noteworthy
that the number of summations necessary for the evalua-
tion of the log-likelihood (2) is decreased for a data matrix
with many zeros. This can lead to significant reduction in
computational time.
We can see that the truncated Poisson Architecture

Model (tPAM), as detailed in the Additional file 1: S1, is
a special case of tREX. The addition of the random effect
Wij to the tREX model for the intensity parameter of the
truncated Poisson is a nontrivial generalization that leads
to two very important properties. First, in tPAM, all fre-
quencies {yij} in the contact matrix are assumed to be
independent, thus ignoring the dependency inherent in
the data for pairs of contacts that share a common locus.
On the other hand, tREX takes such dependency into
account through the inclusion of the random effect com-
ponent Wij. This effectively induces correlation between
the mean contact frequencies of two pairs that share
a common locus. That is, the mean values of contact
frequencies are no longer fixed values; they are in fact
random variables with potentially non-zero correlations
(See Additional file 1: S2 for a detailed derivation). Fur-
ther, a Poisson model may not fit the data well as it
cannot accommodate overdispersion that is typically seen

in sequencing data. More specifically, we can see that the
mean of a truncated Poisson distribution is in fact larger
than its variance (Additional file 1: S1). By introducing
the random effect component, tREX can accommodate
data with a greater variability. Details are provided in
Additional file 1: S3, which shows that the variance of a
contact frequency can be greater than its mean under the
tREX model.

Inference
Model (1) suffers from non-identifiability because the esti-
mated 3D structure ω̂ is not invariant to scale, rotation,
reflection, and translation [16]. To resolve this issue, with-
out loss of generality, we can fix β0 to be an arbitrarily pre-
defined quantity. Note that β0 controls the scale of the 3D
structure; thus fixing β0 will effectively lead to the struc-
ture being estimated only up to a scale. However, this is
not an issue since the relative distance does not affect the
predicted structure and its correlation with genomic func-
tions [9]. Following [16], we further place the following
restrictions on ω to make it estimable, as four conditions
on the structure are sufficient to uniquely determine the
3D structure: �p1 = (0, 0, 0), �p2 = (px2, 0, p

z
2) with pz2 > 0,

�p3 = (px3, p
y
3, p

z
3) with py3 > 0, and �pn = (pxn, 0, 0) with

pxn > 0. Further, to accommodate the estimable condi-
tions imposed on ω in the course of inference, we consider
an isometric transformation 
, which is compositions of
translation, rotations, and reflection. Details can be found
in [16]. To sample from the posterior distributions of θ ,
we use Metropolis-Hastings algorithms and in particular
the Gibbs sampler whenever the conditional distribution
of a parameter is of a commonly known one. In sampling
the posterior of ω, we employed Hamiltonian MCMC to
handle more effectively the high correlations among the
samples [18].

Design, simulation, and analysis of data in the in-silico
study
The structure we used as the “gold standard”, ωgs, is one
used in the literature already [16]. We selected this struc-
ture because it was estimated from real Hi-C data. Further,
it depicts two topological domains [15] so that there
are two clear substructures within the overall structure
(Fig. 3(a)). With this feature of the underlying structure, it
is feasible to study the ability of a method for detecting the
domains and to assess the impact of resolution on each
method.

Twomodels for simulating data
Recall that higher resolution data will lead to sparser 2D
contact matrix, that is, higher percentage of zeros in the
entries. As such, we design our in-silico study to assess
the impact of resolution on the performance of the meth-
ods by simulating from a zero-inflated Poisson model to
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mimic different levels of resolution in Hi-C data:

P(Yij = 0) = π + (1 − π)e−λij ,

P(Yij = yij) = (1 − π)
λ
yij
ij e−λij

yij!
, yij = 1, 2, · · · , (3)

where i, j = 1, 2, · · · , 43 and i < j as ωgs is a struc-
ture with 43 loci, and π is the mixing proportion used to
represent data resolution. From the human lymphoblas-
toid Hi-C intra-chromosomal data [1], percentages of zero
counts for 1 Mb, 50, 25, 20, and 10 Kb are approximately
0% (< 1%), 10, 20, 30, and 60%, respectively. Therefore,
we use these five different percentages as a surrogate for
representing the different levels of resolution, and these
two terms, level of resolution and percentage of zeros, are
used interchangeably in this article. The specification of
the mean interaction intensity, λij, leads to two different
models. For each of the model and a resolution, 50 data
sets are simulated.

NRE The first model we consider is the No Random
Effect (NRE) model:

log λij = β0 + β1 log dij + γ1 log(zl,izl,j)
+ γ2 log(zg,izg,j) + log(zm,izm,j),

where the coefficient β1 was set to be −0.434, which
was the estimate obtained along with the gold stan-
dard structure ωgs [16]. Note that this parameter is far
from −1 used in many optimization-based methods. For
(γ1, γ2), three sets of values are considered to enter-
tain a variety of potential covariates: (0.3, 0.3), (0.05, 0.25),
and (0.05,−0.25). Following the argument in [9], we set
β0 = 3 arbitrarily as its value only affects the scale of
the predicted structure, thus not altering its correlation
with genomic functions. Finally, to mimic real Hi-C data
and guided by the ranges of data for three factors that
can affect the counts [1], we set zl,i ∼ Unif (0.2, 0.3),
zg,i ∼ Unif (0.4, 0.5) and zm,i ∼ Unif (0.9, 1), whereUnif (.)
denotes a uniform distribution. Note that this model coin-
cides with the analysis model employed by tPAM, BACH,
and PASTIS, and therefore these methods are expected to
perform well, especially when there is no zero-inflation.

ST In real Hi-C data, the contact counts are correlated.
To investigate the performance of themethods in the pres-
ence of dependency between Yij, we also consider the
model
log λij = β0 + β1 log dij + γ1 log(zl,izl,j) + γ2 log(zg,izg,j)

+ log(zm,izm,j) + Wij,

where we set Wij = Xi + Xj + Uij, and we assume Xi, i =
1, 2, · · · n to be independently distributed as skewed-t:
ST(0, scale = 0.3, shape = 1, df = 10), and Uij

iid∼ N(0, σ 2
u )

for all pairs of i and j. This model is referred to as the ST

model. The other parameters are set as in the NRE model;
in particular, three sets of values for (γ1, γ2) are consid-
ered. In the tREX analysis model, on the other hand, Wij
is treated as normally distributed (which is also assumed
in Additional file 1: S2 and 3). Thus, the analysis model is
different from the simulation, which provides a means to
study robustness to model mis-specification for tREX and
the other model-based methods.

Analysis and RMSD evaluation criterion
We compared tREX with its fellow modeling-based
methods (BACH [13], tPAM [16] and PASTIS [14]) as
well as optimization-based methods (ShRec3D [10] and
ChromSDE [9]). In fitting tREX, tPAM, and BACH to the
simulation data, we normalized the data by incorporating
the systematic bias information as covariates to themodel.
In contrast, we first normalized the data by HiCNorm
[19] before using ShRec3D, ChromSDE and PASTIS to the
normalized data. In order to assess and compare estima-
tion accuracy of themethods, we need to take into account
the fact that the estimated architecture is accurate only up
to a scaling factor. Therefore, we first estimate the scaling
factor α by the least squares model as

α̂ = argmin
α

⎧⎨
⎩

∑ ∑
1≤i<j≤n

(
dij − αd̂ij

)2
⎫⎬
⎭ .

Then we employ the root mean square deviation
(RMSD) to compare the estimated 3D coordinates with
the underlying 3D coordinates:

RMSD =
√√√√1

n

n∑
i=1

{
(α̂p̂i) − 
(pi)}2,

where 
 is the composition of isometric transformations
as described above. Note that in Figs. 1 and 2, the RMSD
plotted is in fact

√
nRMSD to make it easier to label the

y-axis.

Standardization of distances
To evaluate the performance for tREX and the othermeth-
ods on the real data, we compared the estimates of the
pairwise distances to those of FISH, the gold standard
measurements. To facilitate such a comparison due to
scale differences, we first calculated a unit-less distance
d̃(Li, Lj) by dividing each distance d(Li, Lj) by the median
distance between L3 and L4 (the largest median distance
among all pairs from FISH). Note that the median is taken
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over 100 measurements for FISH and 10,000 estimates
for tREX, tPAM, and BACH. For PASTIS, ShRec3D and
ChromSDE, there is only a single consensus estimate.

Additional file

Additional file 1: Web-based supplementary materials for “impact of
data resolution on three-dimensional structure inference methods”.
(PDF 234 kb)
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