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Abstract

Background: Automated classification using machine learning often relies on features derived from segmenting
individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm
in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm
obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some
benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy.

Results: We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in
(i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for
segmentation. In order to make such an image-based classification method easily accessible to the biological research
community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature
extraction. To validate our method, we reproduced WND-CHARM’s results and ensured that CP-CHARM obtained
comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images.
We designed these new training and test sets to reduce the effect of batch-related artifacts.

Conclusions: The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of
morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it
makes the methods easily accessible for researchers without computational expertise by implementing them as a
CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems,
including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides
for the first time a realistic and reliable assessment of the whole image classification strategy.

Keywords: Image classification, Biological imaging, Image features, Segmentation-free analysis, High-dimensional
classification

Background
Images are essential in biomedical research. As large
amounts of data are routinely acquired, automated image
analysis has become unavoidable. A variety of important
biomedical research problems therefore rely on super-
vised image classification, and automated image classifica-
tion using machine learning is increasingly used in many
biomedical research laboratories in order to extract infor-
mation from the rapidly expanding amount of acquired
data. A common paradigm when classifying biological
images is to first segment the objects in the image to
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isolate them from the background and then to extract fea-
tures from them. Unfortunately, configuring algorithms
for accurate object segmentation is often not trivial and
is likely to be the bottleneck that constrains the quality of
an analysis, as inaccurate segmentation yields inaccurate
results. In addition, the design of a custom segmenta-
tion algorithm often requires significant expertise. Finally,
because of the absence of widely generalizable segmenta-
tion methods, reusing existing algorithms for a new task
is often tedious, time-consuming and sometimes even
impossible.
To address this problem, it has been proposed that

classification can also be performed without segment-
ing regions of interest, by computing a large number
of features on the whole image and then selecting the
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most discriminative ones. Segmentation-free image clas-
sification using whole-image features has already been
widely used in computer vision, especially for image
databases [1, 2]. It is however less popular for bioimage
analysis, where segmentation remains the most common
paradigm. Recently, several whole image-based meth-
ods have been proposed for particular biological imag-
ing classification problems such as protein subcellular
localization [3–5] and immunostaining pattern identi-
fication [6]. Among these, some more general-purpose
and customizable software for high-throughput screen-
ing have been released [7, 8]. One such approach,
named WND-CHARM (Weighted Neighbor Distances
using a Compound Hierarchy of Algorithms Represent-
ing Morphology, [9]), obtained promising results on a
wide range of different datasets, including biological ones
[10, 11]. It appeared as particularly interesting from its
adaptability to a variety of classification problems. Con-
cerns were however later raised because in some of these
data sets, training and test images were taken from the
same experimental batch and reasonable classification
accuracy could be obtained using background regions of
the images or images where the biological entities of inter-
est had been replaced with featureless boxes [12]. This
indicated that the classification signal actually derived
from unanticipated information due to some systematic
effect on sample preparation or image acquisition that can
distinguish classes, leading to results that were not repre-
sentative of the actual performance of the method. As an
example of this situation, consider a case where positive
controls are imaged on a single day and negative controls
are imaged the following day. Even slight, subtle changes
in experimental conditions (such as the brightness of the
lamp on the microscope, which changes depending on
how long it has been warmed up) could be present such
that the two image classes are distinguishable. A classi-
fier trained and tested on these data could then separate
classes very efficiently based on illumination differences,
which have no biological meaning. As this effect is spread
over the whole image, segmenting the biological objects
of interest does not solve the problem. We refer to these
effects as batch-related or global artifacts through the
paper.
Solutions to avoid these artifacts have been proposed,

which include ensuring that the training and test sets are
collected in a way that systematic effects in the images
cannot enable spurious discernment among the classes
or relying on image metadata to exclude repetition of
samples acquired in similar conditions [12]. Alternatively,
“manual” assessment of the quality of results is possible,
for instance by removing biologically relevant content and
observing the effect on classification accuracy, as pro-
posed by [12]. Similar findings have been reported by [13]
in the particular case of subcellular protein localization.

It was observed that relying on a single type of protein
for each location class yielded overoptimistic classifica-
tion results that did not generalize well when considering
multiple proteins in each location class. Ensuring the same
protein never to be present both in the training and test
set was demonstrated as a good way to avoid this kind of
bias.
In this study, we developed and tested a segmentation-

free algorithm that is inspired by WND-CHARM, has the
same advantages, and ismore readily usable by those with-
out computational expertise. Our particular interest in
focusing on WND-CHARM is driven by its ability to per-
form on a wide range of different classification problems
as well as its algorithmic simplicity. Thus, it is a simpler
yet efficient alternative to more complete and complex
tools such as BIOCAT [8]. Our method can hence be
seen as a variation ofWND-CHARMwhich benefits from
enhanced user-friendliness and holds the same applica-
tion potential. Being designed as a command-line tool,
WND-CHARMunfortunately requires considerable com-
putational expertise to execute. Therefore, our motivation
for the design of CP-CHARM is two-fold. First, we fol-
lowed the steps of WND-CHARM in order to mimic its
global algorithmic workflow and reproduce its capacity to
be effective on many types of data. Then, we adapted all of
these steps to rely on standard and widely used methods
so as to make the approach comprehensive and user-
friendly while also paying attention to execution time. In
particular, feature extraction is performed in CellProfiler
(CP, [14–16]), an open-source software that has already
been widely adopted by the biology community. Although
methods that do not require segmentation have achieved
state-of-the-art classification results, they have not pre-
viously been available in existing GUI frameworks such
as CellProfiler. CellProfiler is a unique tool that allows
scientists to perform advanced image analysis on large
image sets even in the absence of extensive computer pro-
gramming skills. Image processing steps are organized in
a user-friendly “pipeline”, and the various operations on
images can be performed by simply adding “modules” to
the pipeline. Its simple interface makes the software easy
to use, as the various parameters required by the differ-
ent image analysis algorithms are listed and described in
a comprehensive manner. It has been independently rated
as the most feature-filled and user-friendly software in its
class [17].
We first validated our approach by reproducing WND-

CHARM’s original results and ensuring that CP-CHARM
could achieve similar performance. Then, we illustrated
the usability of our approach on several kinds of bio-
logical datasets, namely high-throughput cell-based assay
data freely available from the Broad Bioimage Bench-
mark Collection (BBBC, [18]) and tissue images from the
Human Protein Atlas (HPA, [19]). In our experiments,
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we carefully conducted the validation to avoid allowing
systematic artifacts to yield falsely optimistic classifica-
tion accuracy. As such effects could appear when taking
multiple images from the same biological “batch” (for
instance in cases where images are actually sub-images
of a larger image, or where several images are acquired
from the same well), we relied on metadata to make sure
not to include a given batch’s images in both the training
and test sets. In this way, we ensured that image artifacts
unique to each batch (if present) would not yield accu-
rate classification of that batch, irrespective of the actual
biological content/phenotype in the image, hence reduc-
ing the risk of misleading classification results that can be
attributed to global image artifacts. Although not imple-
mented in this paper, the solution proposed by [13] for
reducing classification bias could further improve the gen-
eralization capabilities of CP-CHARM for the particular
classification experiments where different subpopulations
belonging to the same class can be identified and hence
separated for the training and the testing phase. As a sum-
mary, our main contribution in this work is to provide
a user-friendly whole-image-based classification method
inspired by WND-CHARM, to demonstrate that it yields
similar performance, to characterize some of its behavior
on biological data sets, and to attract researchers’ atten-
tion to batch effects when relying on such approaches.
The paper is organized as follows: in the ‘Imple-

mentation’ section, we first recall the structure of the
WND-CHARM algorithm and then present and motivate
the construction of CP-CHARM. In the ‘Experiments’
section, we present the methodology for the different
validation experiments we performed and introduce the
additional datasets we used to further test the applica-
bility of CP-CHARM. Experimental results are presented
and discussed in the the ‘Results and discussion’ section,
followed by concluding remarks.

Implementation
Review of WND-CHARM
WND-CHARM is a four-step algorithm. A thorough
mathematical description of each step can be found

in [10]. First, features are extracted to build the
CHARM (CompoundHierarchy of Algorithms Represent-
ing Morphology) vector composed of 1025 elements (see
Additional file 1: Section 1), which is the main novelty of
the algorithm. The second step is a selection of the ele-
ments of the feature vector to reduce the dimensionality of
the feature space. A weight based on the Fisher Discrimi-
nant score is computed for each feature. These features are
then ranked, and the features corresponding to the 15 %
top-ranked weights are used to train a classifier based on a
weighted k-nearest-neighbors-like algorithm. The differ-
ence between this Weighted Neighbor Distance (WND)
method and the traditional k-nearest-neighbors approach
is that, given a feature vector input, WND computes
its weighted distance to all elements in the training set.
Every training set element therefore plays a role in the
actual classification, while being weighted by some mea-
sure of its information content, here based on the ratio
between intra- and inter-class variance. Conversely, in k-
nearest-neighbors only k elements from each class equally
influence the classification result. Finally, the performance
of the classifier is validated using a custom method where
25 % of the data in each class sampled at random are saved
to constitute the test set, while the remaining 75 % in each
class is used as a training set. We refer to this method as
lone 4-fold cross-validation through the rest of the paper.

Design of CP-CHARM
In order to build CP-CHARM, we independently investi-
gated and adapted each of these four steps, namely feature
extraction, dimensionality reduction, classification, and
validation. CP-CHARM therefore follows the basic con-
cept of WND-CHARM while relying on more common
and readily usable tools. A global view of the proposed
algorithm is depicted in Fig. 1. Its workflow is summarized
in the following.

1 Feature extraction: A total of 953 features are
extracted on a whole-image basis using CellProfiler.

2 Dimension reduction: Features are projected in
principal components space, and a subset of principal

Fig. 1 Comparison between WND-CHARM [10] and the CP-CHARM algorithm presented in this paper. The overall construction of the algorithm is
retained, but individual operations have been modified
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components analysis (PCA) vectors is retained such
that 98 % of the variance present in the original data
distribution is conserved.

3 Classification: Linear Discriminant Analysis (LDA)
is used to classify the selected PCA-transformed
feature vectors.

4 Validation: The classifier’s performance is assessed
with 10-fold cross-validation.

Feature extraction
Regarding feature extraction, we hypothesize that it is
more the image-based aspect rather than the actual
features extracted that grant WND-CHARM its analy-
sis power. We thoroughly studied the CHARM vector
composition as well as the dimension reduction and
classification methods in [20]. We explored the fea-
ture vector composition, to study the impact and dis-
criminative power of each element (or rather “groups”
of elements) in the original CHARM vector so as to
get insight on how to construct a feature vector that
could achieve similar classification performance. To do
this, we first split the CHARM vector into eight fea-
ture “groups” (moments features, texture features, edge
features, etc.), and then into three feature “levels” (fea-
tures extracted on the original image, on transform
of the image, and on transforms of transforms of
the image). The seven datasets from WND-CHARM’s
reference suite were then classified by excluding each
“group” and “level” at the time, in order to identify which
“group” or “level” could best explain classification per-
formance. It appeared that, over the seven considered
datasets, no single feature “group” could be identified as
consistently being more discriminative than the others
(Additional file 1: Section 4, Figure S3). Similarly, although
features from the first “level” (i.e., extracted directly from
the original image) explained most of the good clas-
sification results, the other feature “levels” could not
totally be discarded in order to reach WND-CHARM’s
performance (Additional file 1: Section 4, Figure S4).
Finally, the composition of the top 15 % features subset
used by WND after feature selection was also studied.
There again, it appeared that features from all “groups”
and “levels” played a role among the different datasets
(Additional file 1: Section 4, Figure S5). More details on
these experiments can be found in [20]. We thus drew
the conclusion that no isolated feature group seemed
to be sufficient to explain the good performance on
diverse datasets. All the groups and levels appeared to
be important, as class separation was achieved using dif-
ferent morphological aspects depending on the nature of
the images. A multi-groups and multi-level vector like
CHARM therefore seemed to be an efficient solution to
ensure good generalization capabilities, giving additional

support for the construction of our CellProfiler feature
vector. In this setting, another whole-image-based fea-
ture vector composed of judiciously chosen elements
might give equally good results. We therefore retained
the global construction of the CHARM vector relying on
feature groups (high contrast features, polynomial decom-
positions, pixel statistics and texture measurements) and
image levels (transforms and compound transforms), but
did not necessarily select the same individual measure-
ments inside each group. Following our goal to develop
a flexible and user-friendly tool, we designed the fea-
ture extraction step as a CellProfiler pipeline composed
of different modules for the extraction of the many mea-
surements required to build the feature vector (Additional
file 1: Section 2). In this situation, the parameters of
each module are visible to the user and can hence eas-
ily be fine tuned to refine the analysis depending on
the dataset. The content of the resulting CHARM-like
CellProfiler feature vector is depicted in Table 1. While
mostly similar to the CHARM vector in the way it is
built, it does not contain the exact same elements. We
note that the set of features present in the CHARM-
like vector is likely to capture image information at a
variety of scales. The feature vector contains, in partic-
ular, features computed on the wavelet transform of the
original image. One of the main interest of the wavelet
transform is its ability to extract image features from
structures at different scales by tuning the number of
wavelet scales to be computed. The Gabor features serve
the same purpose, and extract information at different
scales. Therefore, we have no reason to believe the pro-
posed approach to be only able to discriminate classes
based on a limited range of structure size. Image mea-
surements are extracted using pre-existing CellProfiler
modules as well as several newly implemented ones.
In particular, modules computing histograms, moments,
Tamura texture descriptors, as well as modules comput-
ing the Fourier, Haar wavelet and discrete Chebyshev
transforms have been developed and added to CellPro-
filer in the context of this work. In these new modules,
we relied on functions from the popular Python library
scikit-learn [21] when possible in order to minimize dupli-
cation of code. This strategy, and the resulting vector
components, are also reminiscent of the feature set pro-
posed by [22] for the task of classifying protein cellular
localization.

Dimensionality reduction
As in WND-CHARM [23], we followed the strategy
of computing a large set of features and subsequently
applying dimension reduction. In this way, the algo-
rithm can automatically adapt to a given dataset through
the dimension reduction step. We replaced the custom
dimensionality reduction method of WND-CHARMwith
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Table 1 Composition of the CHARM-inspired CellProfiler feature vector. The groups and levels construction of CHARM was recreated, although the final measurement set is not
identical

High-contrast features Polynomial decompositions Pixel statistics Textures

Edge Gabor Image Chebyshev Chebyshev- Moments∗ (4) Multiscale Haralick Tamura
statistics (4) features∗ (2) statistics (15) statistics (32) Fourier histogram∗ (24) textures∗ (104) textures∗ (6)

Statistics (32)

Mean Gabor features
computed at four
angles

Max∗ 32-bins histogram of the
400 coefficients of the
Chebyshev transform of
the image

Modulus of the
complex coefficients of
the Fourier transform of
the Chebyshev transform
of the image

Mean (1st) 3-bins
histogram

Statistics
based on the
co-occurence
matrix of the
image

Contrast

Max Mean∗ Variance (2nd) Coarseness

Variance Percent
minimal∗

5-bins
histogram

Directionality

Number of edge
pixels

Skewness (3rd) 3-bins
histogram
of coarseness

Percent
maximal∗

7-bins
histogram

Kurtosis (4th)

Variance∗ 9-bins
histogram

Total intensity∗

Mean intensity
after thresholding

Variance on
thresholded
image

Number of
pixels above
threshold

*denotes features extracted on higher image levels, namely on the original image, on its Wavelet transform, on its Chebyshev transform, on its Fourier transform, on the Wavelet transform of its Fourier transform, and on the
Chebyshev transform of its Fourier transform
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a commonly-used and mathematically well-characterized
algorithm. CP-CHARM therefore relies on Principal
Components Analysis (PCA, [24]) for dimension reduc-
tion. The choice of PCA for feature selection brings
several advantages over the weighting and subsequent
thresholding used in WND-CHARM. First, the method
is more standard. Second, its underlying parameters
can directly be related to the data distribution, while
the threshold value in WND-CHARM is purely empir-
ical. Moreover, the dimension reduction method used
in WND-CHARM that selects 15 % of the 1025 com-
puted features is unstable and does not account for pos-
sible redundancy. We assessed the stability of the feature
selection algorithm by computing the Tanimoto distance
between the set of remaining features after selection
over 100 classification runs on the same data. There, we
observed that the selected feature set is unstable (i.e., dif-
ferent sets of features are selected over different runs,
see Additional file 1: Section 4, Figure S6). We assessed
redundancy by identifying selected features and trying
to classify the same datasets by removing some of these
features from the feature vector. We found that this did
not always affect classification accuracy (as can be seen
by comparing Figures 3 and 5 in the Additional file 1:
Section 4). Therefore, the feature set selected by WND-
CHARM’s custom dimension reduction method seems to
exhibit a fair amount of redundancy. Using PCA alleviates
this issue, as it provides an orthogonal basis that is non-
redundant as well as effective in separating the classes. By
doing so, we preserve information that is otherwise lost in
WND-CHARM when 85 % of the features are discarded.
We note that there are other algorithms such as mRMR
[25] that address the same problem of feature redundancy.
Finally, by varying the feature reduction method/classifier
pair, we observed that methods allowing for nonlineari-
ties (such as kernel SVM) did not improve classification
performance (Additional file 1: Section 4, Figure S7). We
therefore believe that for the datasets tested, linearly sep-
arability is a reasonable assumption in the CP-CHARM
feature space. Many other feature reduction procedures
have been studied for the problem of protein location
classification from image-based features [26] and could
also have been selected. Further, regularized LDA [27, 28]
is another alternative to performing PCA prior to LDA,
an approach we have not explored in our experiments.
We finally opted for PCA for four main reasons: it is not
too computationally demanding, it requires little param-
eter tuning, it reduces the risk of selecting noisy vari-
ables, and it was observed a posteriori to lead to good
classification results onmany different classification prob-
lems. In our implementation, the amount of informa-
tion (variance) to be preserved when performing PCA
can be tuned by the user. It is set by default to 0.98
(98 %).

Classification
Our goal was to provide a user-friendly, easy to tune
and general-purpose method for classification. We chose
Linear Discriminant Analysis (LDA, [29, 30]) as classifica-
tion method for three principal reasons. First, it has the
advantage of being more standard than WND. In addi-
tion, the way class separation is determined in LDA is
closely related to the Fisher Discriminant score, retain-
ing the initial idea present in WND-CHARM. Finally, we
compared the performance of several popular classifiers
(PCA-LDA, penalized LDA, radial basis functions sup-
port vector machines (SVM), linear SVM, and random
forests) using the caret package for R [31] on the test
datasets from [10] and [11] and observed PCA-LDA to be
the best option as it consistently provided the best trade-
off between good classification performance, generaliza-
tion power and short execution time (Additional file 1:
Section 4, Figure S8).

Validation
We suspected that the custom validation method used
in WND-CHARM might give bad estimates of the true
classification efficiency because the classification result
is based on only one training set-testing set split of the
data. WND-CHARM’s validation method is in fact equiv-
alent to performing only one fold of stratified 4-fold
cross-validation: classification accuracy is directly esti-
mated by classifying 1

4 of the input data after training
on the remaining 3

4 . This could be a possible expla-
nation for the larger standard deviations of classifica-
tion accuracy observed when repeating the classification
experiments with WND-CHARM’s validation method. In
CP-CHARM, we decided to rely on unstratified k-fold
cross-validation [32]. In this method, k splits of the data
are built regardless of their classes. Nothing prevents a
split to have no representative of some classes, or con-
versely to contain all elements of a given class, with the
exception of samples being held out to prevent batch
effects. In practice, we selected k = 10. This choice
stemmed from the fact that biological datasets are usu-
ally composed of a large number of elements. With large
sample sizes, the possible number of combinations for
each fold becomes large enough that iterations of 10-fold
cross-validation do not run a large risk of being dupli-
cates. As this modification had a direct impact on the
measure of performance of the method, we performed
an extensive validation to assess its effect (see Addi-
tional file 1: Section 3). For several datasets, we also
compared WND-CHARM’s custom validation method
and k-fold cross-validation for various values of k. We
repeated each experiment a hundred times in order to
get robust estimates for the median and standard devia-
tion of classification accuracy. The value of k = 10 was
found to be a good choice for obtaining stable estimates
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of the classification accuracy on all the datasets we
considered.

Experiments
Validation of the proposedmethod
Our main goal with CP-CHARM being to propose an
equally efficient but more user-friendly version of WND-
CHARM, we performed several experiments to ensure
that similar performance could be obtained with our
algorithm. In order to allow for objective comparison,
we re-implemented WND-CHARM in Python, the same
programming language as CP-CHARM, following the
description of the algorithm given by [10] and the C++
source code from [9]. Our Python version of the WND
classifier and its custom validation method is freely avail-
able online at [33].We performed extensive tests to ensure
the similarity of results obtained with the original C++
version and our re-implementation [20]. We first investi-
gated the effect of changing WND-CHARM’s validation
method while keeping the rest of the algorithmic struc-
ture unchanged (Additional file 1: Section 3), and then
reproduced WND-CHARM’s published results on two
collections of datasets and compared it with the perfor-
mance of CP-CHARM. Processing time both for WND-
CHARM and for our method was on the order of hours,
depending on the input image sizes and on the number
of elements in the dataset. For both approaches, the most
computationally expensive step was feature extraction.

Reproduction ofWND-CHARM’s results
We based our comparison of CP-CHARM and WND-
CHARM on two collections of datasets. The first col-
lection is composed of seven diverse datasets used to
assess WND-CHARM’s efficiency in [10]. It is composed
of biomedical to face recognition images and aims at
showing the algorithm’s usability on a wide range of
data. We refer to this collection asWND-CHARM’s refer-
ence suite. The second collection is the IICBU Biological
Image Repository [11], a benchmarking suite for biolog-
ical image analysis algorithms covering a wide range of
biological applications. Results using WND-CHARM on
these data are available in [9]. It has been shown [12]
that some of the datasets from these two suites, in par-
ticular CHO, HeLa, Binucleate and RNAi, contain images
likely taken from the same batch. As a consequence, suf-
ficient batch-specific information is present in the images
to classify well even in the absence of portions of the
images containing cells. Therefore, the computed classifi-
cation accuracy is overly optimistic and should be taken
with caution. We nevertheless included results on these
image sets for comparison purposes withWND-CHARM.
In all of our experiments, we performed 100 runs of
training and testing, each time with different splits of data.
The median and standard deviation of the distribution

composed of the 100 validation results were taken as
measures of classification accuracy.

Experiments on further biological data
We selected several high-throughput biological image
datasets in order to further test the performance of CP-
CHARM. In all cases, we relied as much as possible
on available metadata to identify images from the same
experimental batch. For validation, we made sure not to
include images from the same batch in both the training
and test sets. In this setting, we limited the chances of suc-
cessfully classifying a test set element based on common
artifact features of one of the training set elements, thus
reducing the likelihood of obtaining erroneous classifica-
tion signal from global artifacts.

Broad Bioimage Benchmark Collection image sets
The Broad Bioimage Benchmark Collection (BBBC, [18])
provides several benchmarking sets for image analysis
algorithms. The four sets we selected are two-class prob-
lems involving a negative and a positive phenotype. All
sets are composed of two channel images acquired in
96-well plates, the first channel containing a GFP sig-
nal linked to the protein to be observed, and the second
containing signal from a stain that labels the cell nucleus.
BBBC013 and BBBC014 feature images from human

osteosarcoma cell (U2OS) cytoplasm—nucleus translo-
cation assays. In BBBC013, cells are treated with two
different drugs (Wortmannin and LY294002) such that the
proteins responsible for the nuclear transport are inhib-
ited and the protein of interest is therefore trapped in the
nucleus. Images from the eight positive control wells along
with the second highest dose and the negative controls
along with the lowest dose of each drugs were selected
to constitute the 32 original 640 × 640 pixel images. The
setup of BBBC014 is quite similar but involves a differ-
ent protein of interest and was composed of 32 1360 ×
1024 pixel images. In both cases, drug-treated cells were
considered as positive.
BBBC015 and BBBC016 are two human U2OS cell

transfluor assays. In this setting, cells express a receptor
and a GFP-tagged protein such that, when stimulated by
a particular compound, the receptor triggers a cascade of
events leading to the generation of protein vesicles inside
the cell. In BBBC015, we selected images of the wells
containing the two highest and two lowest compound
concentrations, yielding 48 1000×768 pixel images evenly
split between positive and negative phenotypes. Built in a
similar way, BBBC016 is composed of 18 512 × 512 pixel
images.
Examples of images for each class of the four datasets

are presented in Fig. 2. In all cases, we excluded the
nucleus channel and classified the GFP images only, mak-
ing the classification challenge more difficult than in [34].
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Fig. 2 Example of images from each of the tested BBBC datasets. BBBC013: (a) positive, (b) negative; BBBC014: (c) positive, (d) negative; BBBC015:
(e) positive, (f) negative; BBBC016: (g) positive, (h) negative

To avoid batch effects, we excluded images from the same
well, hence being left with only one field of view per well.
For robustness purpose, we performed 100 iterations of
training and testing.

Human Protein Atlas tissue image set
The tissue dataset compiled by [35] is composed of 1057
64 × 64 pixel images manually selected from 61,354
patches created by tiling 3000 × 3000 pixel images of
19 normal and 10 cancerous breast tissue samples from
the Human Protein Atlas (HPA, [19]). The classification
task is to identify to which of four different subcellular
compartments each small image belongs. Samples from
each class are presented in Fig. 3. The original color
images were composed of two channels, a brown dye
targeting a protein of interest and a blue dye nonse-
lectively labeling some cellular components, which were
both used for feature extraction. Ground truth was pro-
vided as the annotation of the set by a trained expert.
In order to reduce the risk of global image artifacts, we
grouped patches coming from the same large image such

that they would not be split between the test and training
sets. Results were obtained from 10 runs of classification
experiments.

Results and discussion
We here present and discuss results of the various experi-
ments we described in the ‘Implementation’ section. First,
we show and discuss several comparisons of performance
between CP-CHARM and the original WND-CHARM.
We then provide classification results using CP-CHARM
on the BBBC and tissue datasets.

Comparison with WND-CHARM performance
We used CP-CHARM to classify datasets from theWND-
CHARM’s reference and IICBU suites. We first repro-
duced published results using our Python implementation
of WND-CHARM, which has been shown to give sim-
ilar results as the published C++ version [20]. Then,
we ran CP-CHARM in similar experimental conditions.
We obtained results comparable with WND-CHARM,
as shown in Table 2. This confirmed that the extracted

Fig. 3 Examples of elements of the four cell compartments classified in the HPA tissue dataset. (a) Cytoplasm, (b) nuclei, (c) connective tissue, and
(d) background
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Table 2 Classification results on WND CHARM’s reference datasets and IICBU suite

WND-CHARM1 CP-CHARM2

Dataset Median Std Dev. Median Std Dev.

WND-CHARM’s reference suite AT&T 0.97 0.02 0.98 5e-3

Brodatz 0.91 0.01 0.91 3e-3

CHO∗ 0.93 0.02 0.99 3e-3

COIL-20 1.00 1e-3 1.00 1e-3

HeLa∗ 0.87 0.09 0.84 4e-3

Pollen 0.95 0.02 0.95 3e-3

0.83 0.07 0.84 0.01

IICBU suite Binucleate∗ 1.00 0.01 0.95 0.02

Liver Aging 0.93 0.03 0.89 4e-3

Liver Gen. AL 0.98 0.01 0.98 5e-3

Liver Gen. CR 0.99 0.01 0.99 1e-3

Lymphoma 0.79 0.04 0.66 0.01

RNAi∗ 0.78 0.04 0.73 0.02

Terminal Bulb 0.59 0.04 0.55 6e-3

Note: 1.0 corresponds to 100 % correct classification
Datasets marked with a star (∗) are likely to be subject to global image artifacts. See explanations in text
1Using lone 4-fold cross-validation
2Using 10-fold cross-validation

features, which differ to some degree from those in the
original WND-CHARM algorithm, are nonetheless com-
parably effective at these classification tasks. We were
therefore confident that the proposed method was a reli-
able whole-image based classification algorithm with per-
formance equaling state of the art. We carried out several
experiments investigating the feature vector construc-
tion, feature reduction method, classifier and validation
method in order to identify which aspect of the algo-
rithm improved performance over WND-CHARM [20].
The choice of the feature reduction and classification algo-
rithms appeared to have a greater impact on classification
results than the feature vector composition and validation
method. The increase in performance using CP-CHARM
is therefore most likely not a validation artifact, but a true
improvement that can be attributed to the change of the
feature reduction and classification methods.
We note that, in both data suites, CP-CHARM exhibits

less variance in its classification accuracy results. This
is not surprising as we used here the original WND-
CHARM, including its custom validation technique. The
larger variance hence corroborates with the observa-
tions drawn from the validation comparison experiment
(Additional file 1: Section 3), namely that 10-fold cross-
validation is more stable across repetitions of training and
testing for the same dataset. We recall that the CHO,
HeLa, Binucleate and RNAi datasets have been shown
[12] to give good classification results even in the absence
of biological information. Although these results should

be considered with caution, they nevertheless allow us
to compare the kind of performance obtained with CP-
CHARM and WND-CHARM. Note that these results
compete with state-of-the-art performances [13].
Being confident in the overall approach and imple-

mentation of CP-CHARM, we next sought to study its
performance on additional datasets.We therefore selected
several biological image collections in which inter-class
differences are more subtle than in the two test suites
and where metadata was available to reduce the impact of
global image artifacts.

Application to additional biological datasets
We found that CP-CHARM yielded good results on the
BBBC and the tissue datasets, as observed in Table 3. To
assess the significance of these results, we generated ran-
domized versions of each dataset by shuffling class labels.

Table 3 CP-CHARM classification results on additional biological
datasets

Dataset Median Standard deviation

BBBC013 0.99 0.01

BBBC014 0.84 0.03

BBBC015 0.99 8e-3

BBBC016 0.81 0.07

Tissue 0.91 4e-3

Note: 1.0 corresponds to 100 % correct classification
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We then classified the shuffled data in order to estimate
the median and standard deviation of random classifica-
tion accuracy. We obtained for BBBC013 0.5 ± 0.05, for
BBBC014 0.5±0.05, for BBBC015 0.5±0.04, for BBBC016
0.5 ± 0.07, and for the tissue dataset 0.32 ± 0.02 (tis-
sue dataset has imbalanced classes). Resulting p-values
allowed us to statistically ensure that CP-CHARM was
significantly more efficient than a random classifier.
Results on the tissue dataset are especially exciting. Tis-

sue image analysis in the context of the HPA project
is mostly performed manually so far because segmen-
tation is not well-suited as every part of the image
contains information. The good classification accuracy
obtained with our algorithm seems to indicate that auto-
mated annotation could be possible with a reasonable
error rate. Whole-image-based classification algorithms
like WND-CHARM fully display their strength in tissue
images. On the other hand, cell-based screens like the
BBBC image sets are mostly composed of background.
One must also keep in mind that whole-image-based
analysis sacrifices single cell resolution and is therefore
unable to capture phenotypic heteogeneity inside each
class. In such situations, cell-based approaches might be
equally effective and perhaps even preferred, for example
when cell density would be better ignored. More gen-
erally, the choice between segmentation or whole-image
based approaches shall be driven by considering the effort
needed to set up pre-processing/segmenting and the
desired results. When segmentation is time-consuming
to set up or impossible, whole-image based classifica-
tion is of particular interest, as even though results
might be outperformed by segmentation-based meth-
ods, they are obtained rapidly and at minimal hands-on
effort.
Good performance of image-based classifiers should be

considered with caution as batch-related artifacts might
be sufficient to discriminate between the images, leading
to results that are not driven primarily by the biolog-
ical content. It is therefore important to pay particu-
lar attention to training and test set composition to
reduce batch effects whenever possible, as we did in this
study.

Conclusions
In this paper, our contributions include first the presen-
tation of CP-CHARM, an easy-to-use whole-image-based
classification algorithm inspired from the method pro-
posed by [10]. Similar to WND-CHARM, CP-CHARM
is generalizable across a wide range of applications, obvi-
ating the need for image segmentation. In addition, the
proposed approach offers improved user-friendliness, as
feature extraction is performed in an easily editable and
modular CellProfiler pipeline. As a direct implication,
intermediate results are more easily accessible, and the

generalization potential of the method is enhanced. The
overall structure of WND-CHARM is conserved in CP-
CHARM, while its building blocks have been modified:
the underlying feature vector is built following CHARM’s
structure, dimension reduction and classification are
carried out using PCA-LDA, and testing is performed
through 10-fold cross-validation. We also demonstrated
that CP-CHARM could achieve similar performance as
WND-CHARM, and further illustrated the practical use
of our approach on other biological image sets, includ-
ing some with more subtle phenotypes than in the
original datasets. In our experiments, we highlighted
and discussed possible batch effects and how to avoid
them.
We close with a remark regarding the use of machine

learning approaches in bioimaging. It is important to
note that even using an appropriately designed reference
image set where batch-related artifacts have been handled,
whole-image-based methods still do not guarantee sepa-
ration of classes to be based on biological mechanisms of
interest. As an example, a biologist might train the sys-
tem to successfully recognize a phenotype induced by a
chemical compound of interest as compared to a nega-
tive control, but this recognition might entirely be based
on the chemical simply slowing the cells’ growth rate.
Because a slow growth rate yields more sparse cells in the
images, the classifier may recognize this rather general
phenotype rather than the specific cellular appearance
caused by the chemical and of interest to the biologist.
In such a case, including positive and negative control
samples with varying cell density could mitigate this
issue.
Therefore, care should be taken, not just to reduce the

impact of potential batch-related artifacts, but also to
interpret the classification results using biological com-
mon sense.

Availability and requirements
• Project name: CP-CHARM
• Project home page: https://github.com/CellProfiler/

CPCharm
• Operating system(s): Platform independent
• Programming language: Python
• License: BSD 3-Clause License

Availability of supporting data
CP-CHARM code is freely available at [33]. It includes
pipelines for feature extraction which can be used with
CellProfiler release 2.1.0 [36], the code to execute the clas-
sifier, a user manual, and a complete runnable example.
The classifier and the CellProfiler modules are imple-
mented in Python and released under BSD 3-Clause
license. The image databases used in this paper are avail-
able for download from the original provider’s site.

https://github.com/CellProfiler/CPCharm
https://github.com/CellProfiler/CPCharm
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