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Impact of imputation methods on the
amount of genetic variation captured
by a single-nucleotide polymorphism
panel in soybeans
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Abstract

Background: Success in genome-wide association studies and marker-assisted selection depends on good phenotypic
and genotypic data. The more complete this data is, the more powerful will be the results of analysis. Nevertheless, there
are next-generation technologies that seek to provide genotypic information in spite of great proportions of missing
data. The procedures these technologies use to impute genetic data, therefore, greatly affect downstream analyses. This
study aims to (1) compare the genetic variance in a single-nucleotide polymorphism panel of soybean with missing data
imputed using various methods, (2) evaluate the imputation accuracy and post-imputation quality associated with
these methods, and (3) evaluate the impact of imputation method on heritability and the accuracy of genome-wide
prediction of soybean traits. The imputation methods we evaluated were as follows: multivariate mixed model, hidden
Markov model, logical algorithm, k-nearest neighbor, single value decomposition, and random forest. We used raw
genotypes from the SoyNAM project and the following phenotypes: plant height, days to maturity, grain yield, and seed
protein composition.

Results: We propose an imputation method based on multivariate mixed models using pedigree information. Our
methods comparison indicate that heritability of traits can be affected by the imputation method. Genotypes with
missing values imputed with methods that make use of genealogic information can favor genetic analysis of highly
polygenic traits, but not genome-wide prediction accuracy. The genotypic matrix captured the highest amount of
genetic variance when missing loci were imputed by the method proposed in this paper.

Conclusions: We concluded that hidden Markov models and random forest imputation are more suitable to studies
that aim analyses of highly heritable traits while pedigree-based methods can be used to best analyze traits with low
heritability. Despite the notable contribution to heritability, advantages in genomic prediction were not observed by
changing the imputation method. We identified significant differences across imputation methods in a dataset missing
20 % of the genotypic values. It means that genotypic data from genotyping technologies that provide a high
proportion of missing values, such as GBS, should be handled carefully because the imputation method will impact
downstream analysis.
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Background
Marker-assisted selection (MAS) is a powerful tool for
accelerating genetic improvement of plants and animals
[1] through introgression of quantitative trait loci (QTL)
and selection using genomic-enhanced breeding values
(GEBV) [18, 27]. Meuwissen et al. [31] and Xu [64] first
incorporated genome-wide molecular markers into the
estimation of breeding values, and these so-called
genomic selection (GS) methods have improved over
time to handle a large number of loci [24, 59] with
increased accuracy [7].
For genetic improvement and genetic studies in the

post-genomic era, new genotyping platforms such as
genotyping by sequencing (GBS) [10] and single-
nucleotide polymorphism (SNP) arrays [45] provide a
large number of molecular markers, but often with
reduced genotyping accuracy [16, 52] and missing geno-
types due to other factors. The implementation of such
technology in crop breeding programs [18, 22, 48]
helps maximize genetic gain through genomic selection
[27, 56, 57] and also benefits genome wide association
studies (GWAS) [17, 37, 52]. When there is a high
proportion of missing data, consistent imputation may be
challenging [22, 42, 53]. Accurate imputation of miss-
ing values and correction of genotyping errors is es-
sential for eliminating gaps in genome coverage,
integrating data across different arrays, and allowing
robust genome-wide association mapping and predic-
tion [21, 30, 49].
Researchers have proposed a variety of procedures for

adjusting genotypic data to impute missing values and
correct SNP miscalls. Most imputation algorithms, such
as Hidden Markov Models [46], linear models [8, 65]
and pedigree-based haplotyping [58], were designed for
ordered markers which are known because there is a
reference genome available. But some methods of imput-
ation do not require information on marker order or
phase [17, 44] such as k-Nearest Neighbors [55], Single
Value Decomposition [36], or Random Forest [50]. These,
therefore, are well-suited for de novo genotyping [3, 43].
Incorporating genealogical information boosts the

accuracy of genotypic imputation, phasing, and the
power of association analysis [16, 23]. Therefore, here
we describe a new method of imputation based on the
pedigree relationship matrix [62] and covariance
among markers. The proposed method treats geno-
types as response variables within a multivariate
empirical Bayes model traditionally used in plant and
animal breeding [19]. The expectation of narrow-
sense heritability across a set of traits can be trans-
lated into a machine learning approach of pattern
recognition to measure the amount of additive genetic
information captured by the genomic information.
Thus, we then compare the accuracy of each imputation

method based on the amount of genetic variation that can
be accounted for by a SNP panel [16].

Methods
This study employed genotypes and phenotypes from
the SoyNAM project (soynam.org), downloaded on
September 10th, 2014. SoyNAM is a soybean (Glycine
max, Merr.) maturity group III nested association panel
composed of 40 bi-parental crosses sharing a common
parent and inbred for five generations. The panel com-
prises 5,596 recombinant inbred lines, phenotyped in 18
combinations of year and location, for four agronomic
traits: grain yield, plant height, days to maturity, and
seed protein composition. The panel was genotyped with
a designed 5 k SNP chip. After removing non-segregating
markers, low quality SNPs based on marker heritability
(0.99) [11] and minor allele frequency (0.05) [54], we
selected a set of 4,246 SNPs for this study that had 1 % of
its genotypic data missing. To compare imputation
performance under conditions with more missing data, we
generated a second dataset by randomly deleting 20 % of
genotypic data across all individuals using the prodNA
function from the R package missForest [50]. If differences
in imputation methods are detectable for a strict amount
of 20 % missing values, these results will apply to datasets
with a larger proportion of missing values.
We compared imputation approaches using a variety

of methods: a multivariate mixed model (MMM);
Hidden Markov Models (HMM) implemented in three
software packages commonly employed in genetic
studies [30]; a logical algorithm; and three non-
parametric methods k-Nearest Neighbor (kNN), Single
Value Decomposition (SVD), and Random Forest (RF).
Raw and imputed datasets are available upon request.

Imputation methods
Multivariate mixed model
We adapted the multivariate mixed model method for
imputation from Gengler et al. [13] and Yang et al. [65],
based on the concept that marker inheritance will
proceed in a Mendelian manner and therefore, follow
the pedigree [41]. The method bases the numerator
relationship matrix on the expectation of Mendelian
allele inheritance with shared identity by descent (IBD).
This contrasts with expectation-maximization imput-
ation algorithms that rely on observed kinship [47, 65]
and imputation through coalescent analysis [23] that
attempts to recreate the pedigree.
If allele inheritance follows the pedigree, the marker

should be perfectly heritable, except for Mendelian
sampling error. Consequently, SNP heritability is an
indicator of the gene content [11, 13], and we can
estimate it by fitting the marker to a mixed model with
pedigree specified as a random effect, as discussed by
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Forneris et al. [11]. Thus, missing SNPs can be imputed as
empirical Bayes estimates. Expanding the model to a multi-
variate level further improves the accuracy of prediction,
“borrowing strength” from flanking markers and related
individuals [16]. All markers are evaluated in a panel in a
sliding window across the genome, ordered according to
the genetic or physical map [9]. The method considers the
marker of interest (yj) and its flanking markers (yi and yk)
as response variables (Y = {yi, yj, yk}), coding them in an
ordinal or continuous scale [51], and fitting them to a
multivariate mixed model. Thus:

Yn�3 ¼ 1μnx3 þ Zn�nγn�3 þ εn�3

where Z is the design matrices of the random effects,
μ and γ represent the intercept and individual additive
effect, and ε represents the residual term. The variances
associated with the imputed marker are: σ2γj , representing

the genetic variance of the marker j; σij, the genetic co-
variance between marker j and the flanking marker i; σik,
the genetic covariance between marker j the flanking
marker k; and σ2εj , the residual variance of marker j. For

the given mode, variances are expressed as

Var Yð Þ ¼ A⊗σ2γ þ I⊗σ2ε
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where A is the additive numerator relationship matrix
and I is an identity matrix. MMM uses restricted max-
imum likelihood (REML) to estimate genetic covariances
and then replaces missing values for the central position
by the multivariate empirical Bayes estimate [66], also
referred to as the best linear unbiased predictor (BLUP)
[19]. The model is then incremented to the next position
and repeated.
This study used the software BLUPF90 [32, 33] to

compute the covariance components. However, any
existing software that allows multivariate mixed models
incorporating pedigree information can implement the
model, such as Wombat, ASReml, or SAS. Efficient
algorithms to compute mixed models are described by
Zhou and Stephens [66], Legarra and Misztal [24] and
VanRaden [59].

Hidden Markov models
The HMM method is commonly employed in genetics
and genomics for stochastic modeling of Markov pro-
cesses (such as the computation of haplotypes). Assuming
ordered markers, the HMM estimates the most likely path
of states (i.e. genotype) based on the transition probability
of marker Mt to change state given the previous marker
Mt − 1. In genetic terms, the four possible states for a

diploid organism with alleles M1 and M2 for locus M, are:
M1M1, M1M2, M2M1 and M2M2.
This study evaluated three HMM software programs:

fastPHASE [46], Beagle [4], and MaCH [26]. Beagle,
fastPHASE, and MaCH implement HMM with iterative
updating via Expectation-Maximization (Baum–Welch
algorithm). Missing values of each chromosome were
imputed separately and pedigree information was not
provided. HMM is the most common method of imput-
ation and is shown to boost power and resolution of
genome-wide association studies [21, 30].

Logical algorithm
This method is implemented in the program findhap.f90
[58]. The program is computationally efficient, suited for
large datasets, and becomes increasingly accurate as the
proportion of pedigree data increases [38]. Thus it is
advantageous for populations that pursue genotyped
pedigrees.
Findhap.f90 first generates a list of possible haplotypes,

then adds a genotype into the haplotype list and
searches for a matching haplotype, then finds the second
haplotype by subtracting the first haplotype from the
genotype. It then compares each genotype to the
haplotype list and imputes unknown alleles from the
haplotypes. The first two iterations use population-
wide genotypic data, and subsequent iterations locate
matching haplotypes from pedigree data [57].

k-Nearest neighbor
kNN is a non-parametric method commonly used for
prediction and classification. kNN is a memory-based
learning algorithm based on voting [61]. It relies on
filling missing data points with the weighted mean of the
k most similar genotypes based on Euclidean distance
(root sum-of-squares of differences) between standard-
ized observations. Rutkoski et al. [44] evaluated kNN for
genotypic imputation and suggested it was a promising
method. We used the package knnGarden [60] with a
setting of k = 10 to perform our computation.

Single value decomposition
SVD relies on orthogonal expression of the genotypic
matrix [55] from the decomposition M =UDVT. SVD
uses the most significant eigenvectors (columns of U) to
predict missing values. We performed SVD imputations
by chromosome using the bi-cross-validation algorithm
described in Owen & Perry [36] and implemented in
package bcv [40].

Random forest
Random Forest [2] is a non-parametric method of
prediction, classification, and imputation of mixed data
types [50]. It establishes a combination of decision tree

Xavier et al. BMC Bioinformatics  (2016) 17:55 Page 3 of 9



predictors, where the trees are bootstrapped random
independent vectors that constitute training forests [2].
Imputation studies of GBS data in wheat breeding
have reported promising results for RF [42–44]. We
performed imputations employing random forest by
chromosome to generate more informative trees and
reduce computational burden, using the package mis-
sForest [50].

Comparison of methods
Imputation errors impact the reliability of breeding
values [6, 43] and therefore, affect genome-wide selec-
tion. To evaluate the fitness of different imputation
methods for genomic enhanced breeding values (GEBV),
we calculated the intra-class correlation coefficient (ICC)
for the genetic parameter, generally known as heritability,
through average information restricted maximum likeli-
hood, implemented in AI-REMLF90 with a convergence
criterion of 10-11 [33]. The ICC is defined as

h2 ¼ σ2A
σ2Y

given the phenotypic variance σY
2 = σA

2 + σE
2 + σC

2 + σε
2;

where σA
2 is the additive genetic variance, σE

2 is the vari-
ance due to environment, σC

2 is the variance due to
microenvironment (i.e. controls), and σε

2 is the residual
variance. In genetic terms, ICC represents narrow-sense
heritability, which is defined as the amount of genetic
variation that alleles can transmit to the following
generation, and it quantifies the population response to
selection [28]. The rational for using narrow-sense
heritability estimator as a measure of how well genetic
variability is captured by the genotypic information
comes from its practical application of pattern recogni-
tion in machine learning [15, 34]. Genomic relation
matrices generated from a SNP panel imputed through
distinct methods would yield different values of variance
components. Consequently, kernels that provide en-
hanced genetic variance and higher heritability reflect
better estimators of the genetic term [35].
To compare the effect of imputation methods on her-

itability, we performed analysis of variance (ANOVA)
following the linear model yijkl = μ. + τi + βj + γk + εijkl;
where yijkl is the heritability of the ith imputation method
(i = 1, …, 8) with jth percentage of missing loci (j = 1, 20)
of the kth trait (k = 1, …, 4) in the lth observation; μ. is
the overall mean; τi represents the imputation method;
βj is the percentage of missing loci; γk represents the
trait; and εijkl is the residual of the ijkl observation. In
this model, imputation method is the parameter of interest
while blocking trait and percentage of missing. Levene’s
test determined the equality of variances [12]. The
Shapiro-Wilk test of normality verified the normality.

Tukey’s honest significant difference (HSD) (α = 0.05)
grouped the imputation methods when the p-value of
F test was significant (<0.05). Results shown in Fig. 1.

Imputation accuracy and prediction accuracy
This study evaluated imputation accuracy by determining
the proportion of data imputed that was identical to the
standard dataset [56]. For each method, we compared the
imputed genotypic matrix with 20 % of the loci missing to
the genotypic matrix corrected using the same method
with 1 % of loci missing. Thus, the level of accuracy
provides insight into both imputation method and modifi-
cations of the dataset.
To measure prediction accuracy in the context of

genomic selection, we used the correlation of observed
and predicted values in a five-fold cross validation di-
vided by the square root of the heritability as described
by Lehermeier et al. [25]. We used the following whole-
genome regression methods [7, 14] to generate the pre-
dicted values: BayesA, BayesB, BayesCπ, Bayesian LASSO,
and Bayesian Ridge Regression, as implemented by Pérez
and de los Campos [39] with default settings of hyper-
priors. The statistical testing of imputation method on
prediction accuracy followed the same ANOVA model
previously described with an additional term to accommo-
date the whole-genome regression method.

Results
Effect of imputation method on heritability
We found a significant association (p-value < 0.01) be-
tween heritability values (yijkl) and all terms in the statis-
tical model: imputation method (τi), percentage of missing
values (βj) and agronomic trait (γk). The fitted model
provided a coefficient of determination R2 = 0.95 and a
coefficient of variation CV = 6.72. The group means pro-
cedure (Fig. 1) showed that most imputation methods
were similar. MMM had provided the highest across-trait
heritability, although not significantly better than the other
methods except for the kNN and SVD methods, which
were inferior to the others, with SVD being the worst.

Post-imputation quality parameters
The average accuracy of imputation for data ranged
from 79.32 to 99.60 %, (Fig. 2a). MaCH, fastPHASE, and
RF were nearly identical (>99.5 %), followed by kNN
(93.5 %). MMM and Beagle showed the same perform-
ance (85 %). Imputation accuracy reflects the sensitivity
of imputation methods to missing data. However, lower
imputation accuracy can be attributed to more severe
correction of genotyping errors (e.g. SNP miscalls).
We observed a higher number of markers with full

linkage disequilibrium (i.e. repeated markers) after im-
putation with the HMM implementations. MaCH and
Beagle (Fig. 2b) also increased the number of repeated
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markers as the percentage of missing data increased.
Non-parametric methods, SVD and kNN, did not
provide repeated markers. Random forest and both
pedigree-based methods, MMM and findhap, showed
fewer repeated markers as the missing data increased.
The third measure of accuracy of imputation and data

correction is the difference between the observed and
expected proportion of heterozygosity in the data. The
expected proportion of heterozygosity in this dataset is
6.25 % of loci given that the parents were homozygous and

the plants were genotyped in the F5 generation (i.e. after 5
generations of selfing), in which the expected inbreeding
coefficient is 93.75 %. The results show that the proportion
of heterozygous loci tends to increase as the proportion of
missing data increases (Fig. 2c). We observed this in all
but two methods, Beagle and MaCH. SVD and kNN were
more likely to increase the number of heterozygous loci
with more missing data, especially SVD for which propor-
tions of heterozygosity reached 24 %, meaning that hetero-
zygous loci were assigned to most missing loci.

Fig. 1 Average heritability across four soybean traits using genotypic data imputed with different methods. Letters represent the statistical difference
based on Tukey’s HSD procedure (α = 0.05)

Fig. 2 Post-imputation quality parameters. a Imputation accuracy measured as the percentage of identical loci between datasets with 1 and 20 %
missing. b Number of repeated markers (ie. full LD) after imputations with 1 and 20 % missing data. c Percentage of heterozygous loci after imputations
of datasets with 1 and 20 % missing data
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Imputation methods and genetic variation captured
The mean heritability for traits in this study was 0.81 ±
0.04 for plant height, 0.77 ± 0.04 for days to maturity,
0.79 ± 0.06 for seed protein content, and 0.37 ± 0.08 for
grain yield. Grain yield is considered minimally heritable
while the other three are highly heritable. Imputation
method had the greatest impact on the trait with the
lowest heritability (grain yield) when compared to the
impact on traits with high heritability (Fig. 3). The
MMM method was superior to the other methods for
minimally heritable traits while MaCH was best for
highly heritable traits. The SVD and kNN methods were
consistently inferior across traits.
The prediction accuracy across traits ranged from

0.606 (MMM) to 0.628 (RF), but did not differ sig-
nificantly (p-value = 0.537). However, it appears that
the genotypic data imputed with RF may have a
slightly better performance. Whole-genome regres-
sion methods did not provide statistically significant
differences in prediction accuracy (data not shown).

Discussion
The capture of genetic variation
Differences between imputation methods were clearly
detectable on a SNP panel containing 20 % missing
values, raising questions about the quality and reliability
of genotypic data obtained by imputing datasets with an
80 % or greater proportion of missing values, a common
scenario for GBS.
Our results indicate that genotypes imputed with

methods that rely on pedigree information, such as
MMM, better capture genetic variance in complex low
heritability traits, while imputations performed using
HMM may favor traits with high heritability. The choice
of imputation method will affect downstream analysis.
Thus, if the genetic architecture of the traits to be
analyzed is known, it is possible to achieve more accurate
results by selecting the most suitable imputation method.
The genetic architecture of the trait should also influence

the choice of genomic prediction method [7], although this
study found no statistically significant differences, likely

Fig. 3 Narrow-sense heritability for soybean agronomic traits computed for genotypic datasets imputed by various methods

Table 1 Summary of properties of imputation methods under evaluation

Method Better fit for low
heritability traits

High imputation
accuracy

Enlarges
LD blocks

Corrects
Miscalls

Accommodates
pedigree information

Suitable for
unordered markers

Beagle X X X

fastPHASE X X X

findhap X X

kNN X

MaCH X X X X

MMM X X X

RF X X

SVD X
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due to the similar nature of evaluated models also reported
by Howard et al. [20]. Chen et al. [5] and Poland et al. [43]
reported interactions between imputation method and
prediction accuracy for different traits. For example, geno-
typic imputation through SVD showed inferior capture of
genetic variance, but it did not affect prediction accuracy.

MMM: strengths and weaknesses
In this study we presented a mixed model method of
imputation using pedigree information that displayed
interesting properties regarding the capture of genetic
variance and may have advantages for downstream
analysis of complex traits. Some reported advantages of
MMM include imputation of un-genotyped individuals
[41] or with a large percentage of missing data [65]
without losing robustness; and the identity link function
of MMM allows imputation regardless of the allelic
coding [51].
On the other hand, genotypic information imputed by

MMM was not advantageous for analyzing highly herit-
able traits and it did not improve prediction accuracy.
However, NAM populations have a very simple pedigree
structure and more complex pedigree structures may
lead to better results [29]. Another drawback was the
method’s computational burden because the mixed
model computes each molecular marker, a limitation
that can be addressed through parallel computing.
Much as in HMM, the change-of-state of a haplotype

in MMM is controlled by the covariance, with flanking
markers considering linkage disequilibrium (LD), and the
population structure allied to the pedigree information
simultaneously, while forward-backward HMM algo-
rithms work one direction at time using just a subset of
random samples [3]. Imputation methods that incorporate
pedigree do not rely on samples from a reference dataset
that is assumed to comprise all populations [16]. Using
the genomic relationship instead of pedigree, Yang et al.
[65] have reported the superiority of a similar MMM
method over HMM emphasizing better incorporation of
information on LD and IBD.

Choice of the imputation method
Properties of the methods are summarized in Table 1.
Our results support the use of HMM and RF for a
reliable representation of the genotypes, being best for
analyses of highly heritable traits and a good alternative
even if pedigree data are not available. In addition,
imputation though MMM and findhap is preferred to
analyze traits with low heritability when the pedigree is
known. kNN and SVD provided consistently poor repre-
sentations of the genotypes.
For GBS and other technologies where a high percent-

age of missing values is expected, our results support the
use of MaCH, fastPHASE, and RF, methods that have

shown insensitivity to the percentage of missing loci. In
a similar study, [17]) observed inferior performance of
RF over HMM in wheat that could be attributed to the
whole-genome imputation at once as opposed to one
chromosome at a time, resulting into less informative
decision trees and inconsistent imputation. The imput-
ation of each chromosome separately is also a common
practice with HMM [29].

Conclusions
Quality of the imputation disturbs the genetic variance
captured by the genotypic data. We were able to show
that the imputation of genotypic data in the case where
proportion of missing values as low as 20 % can affect
the quality of the genotypic representation by the SNP
panel. This results must be seen as a word of care for
technologies based on low-coverage genotyping, such as
GBS, where the amount of missing information com-
monly achieves values of 80 %. Yet, for the scenario in
study it was not possible to identify significant impact of
imputation method on genomic prediction. Thus, based
on imputation accuracy and genetic variance captured by
the SNP panel, the imputation method choice is hidden
Markov models and random forest for general analysis.
Pedigree-based methods of imputation were recognized to
enhance the heritability of grain yield, the lowest heritable
trait in this study.
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