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Abstract

Background: Computer simulation is a resource which can be employed to identify optimal breeding strategies to
effectively and efficiently achieve specific goals in developing improved cultivars. In some instances, it is crucial to
assess in silico the options as well as the impact of various crossing schemes and breeding approaches on performance
for traits of interest such as grain yield. For this, a means by which gene effects can be represented in the genome
model is critical.

Results: To address this need, we devised a method to represent the genomic distribution of additive and dominance
gene effects associated with quantitative traits. The method, based on meta-analysis of previously-estimated
QTL effects following Bennewitz and Meuwissen (J Anim Breed Genet 127:171–9, 2010), utilizes a modified
Dirichlet process Gaussian mixture model (DPGMM) to fit the number of mixture components and estimate
parameters (i.e. mean and variance) of the genomic distribution. The method was demonstrated using several
maize QTL data sets to provide estimates of additive and dominance effects for grain yield and other
quantitative traits for application in maize genome simulations.

Conclusions: The DPGMM method offers an alternative to the over-simplified infinitesimal model in computer
simulation as a means to better represent the genetic architecture of quantitative traits, which likely involve
some large effects in addition to many small effects. Furthermore, it confers an advantage over other methods in that
the number of mixture model components need not be known a priori. In addition, the method is robust with use of
large-scale, multi-allelic data sets or with meta-analyses of smaller QTL data sets which may be derived from bi-parental
populations in precisely estimating distribution parameters. Thus, the method has high utility in representing
the genetic architecture of quantitative traits in computer simulation.
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Background
Computer simulation is a resource which can be employed
to identify optimal breeding strategies to effectively and
efficiently achieve specific goals in developing improved
cultivars [1, 2]. Once identified, optimal strategies can be
incorporated in the development ‘process’ to facilitate

maximal genetic gains and accelerate the breeding process
[3]. Through computer simulation, innovative approaches
heretofore not feasible without use of current genomic-
based technologies can be specifically tailored to meet the
need at hand. In some instances, it is crucial to assess in
silico, the options as well as the impact of various crossing
schemes and breeding strategies on performance for certain
key agronomic traits such as grain yield. Such is the case
with introgression (i.e. integration) of value-added traits by
means of backcross breeding, the goal of which is the
recovery of all the performance attributes of the elite variety
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or hybrid targeted for conversion along with the new gen-
etic elements (e.g. genes, QTL, or transgenic events) associ-
ated with the value-added trait. For this, a means by which
the gene effects for the performance attributes of the line to
be converted can be modeled in the simulation is particu-
larly advantageous, yet it requires an accurate depiction of
the distribution of gene effects. Typically, recovery of the
target line (i.e. recurrent parent) is estimated by the average
proportion of genetic material carried through the back-
crossing process and this estimate implicitly assumes that
the many genes for key quantitative traits like grain yield
are dispersed uniformly across the genome, each contribut-
ing only small effect. By including a more realistic represen-
tation of gene effects in the genome model to assess
backcross breeding strategies, the means to most rapidly
and effectively recover not only the germplasm per se, but
the important genes contributing to performance of the
variety or hybrid targeted for conversion, can be considered
in evaluating strategies and approaches.
Bennewitz and Meuwissen [4] explored the distribu-

tion of additive and dominance effects of identified
QTL (quantitative trait loci) from three F2 popula-
tions of pigs evaluated for 34 meat quality and
carcass traits, recognizing the value of modeling these
effects, some of which are large, over use of the in-
finitesimal model which assumes an infinite number
of QTL each with small effect. Capitalizing on the
large number of QTL studies, Bennewitz and Meu-
wissen [1] conducted a meta-analysis of published
QTL mapping data across traits to infer the distribu-
tion of additive QTL effects as well as dominance co-
efficients, fitting a Gaussian mixture model (GMM).
The idea of utilizing GMM is based on the notion
that various QTL and associated genes fall into a
number of classes of different-sized effects. The merit
of employing GMM is its flexibility with different
combinations of mixtures of normals leading to differ-
ent shapes of the distribution.
In the finite mixture model, the number of compo-

nents K must be pre-specified. The value could be deter-
mined based on some specific information or criteria,
such as the Akaike information criterion or the Bayesian
information criterion. This requirement, frequently en-
countered in parametric statistics, can be sidestepped by
introducing a nonparametric Dirichlet process which
assumes an infinite number of components. The Dirich-
let process is defined as a random process by which a
sample drawn is a discrete distribution; it can be consid-
ered a ‘distribution over distributions’ and has been used
widely in the field of population genetics to explain
population structure [5, 6].
Also desiring to capitalize on the large number of

QTL studies, we took the meta-analysis concept a step
further. We devised a method to represent the genomic

distribution of additive and dominance gene effects
associated with quantitative traits, which utilizes a
modified Dirichlet process Gaussian mixture model
(DPGMM) [7] to fit the number of mixture compo-
nents and estimate parameters. As a departure from
traditional DPGMM which only models QTL effects,
we modified the model to be able to accommodate both
QTL effects and their respective variances. Utilizing
previously-identified QTL for a number of quantitative
traits in maize, the modified Dirichlet process imple-
ments a Chinese Restaurant Process (CRP) to assign
component (cluster) membership and uses Gibbs sam-
pling to update conditional posterior distributions. Our
purpose in devising this method was to facilitate repre-
sentation of the genetic architecture of grain yield and
other key traits for use in computer simulations to
optimize breeding strategies for multiple trait introgres-
sion (see Sun and Mumm [8] for an example of
utilization of DPGMM output). Trait introgression in-
volves backcross breeding and, therefore, bi-parental
populations with no more than two potential alleles for
a given locus; this was the primary scenario we
intended to model. However, we also explored whether
the method would be pertinent to other modeling
activities that may involve estimation of breeding value
(such as for choice of parents) or prediction of
performance based on priors [9], scenarios which could
involve multi-allelic populations in various crop or
animal species. Besides use in computer simulation, an
accurate depiction of the QTL effects could contribute
to a better understanding of the overall genetic archi-
tecture contributing to variation of expression of a par-
ticular trait of interest [10].

Methods
Description of DPGMM and priors
To begin, we modeled the distribution of additive QTL
effects and dominance coefficients using mixtures of
normal distributions, namely GMM [11] . The goal was
to assign genetic effects to different mixture compo-
nents. Two latent variables were introduced: 1) the total
number of mixture components (cluster size, K) and 2)
the assignment of ith QTL effect to components (cluster
indicator, ci ∈ {1,…, K}). The GMM model was modified
to accommodate the standard errors of QTL effects:

p yijλ1;…; λKð ÞeXK
k¼1

πkN yi; μk ; σ
2
k þ τ2i

� �
; ð1Þ

where yi is the ith observed QTL effect, τi is the known
standard error of ith effect which is calculated from the
QTL analysis, and λk = {πk, μk, σk

2} is the kth parameter
set, where variables πk, μk and σk

2 are the mixing propor-
tion, mean and variance of the kth mixture component,
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respectively. The DPGMM can be formulated hierarchic-
ally as follows [7]:

p yijci;Λð Þ e N yi; μci ; σ
2
ci þ τ2i

� �
cijπ1:K e Discrete π1;π2;…πKð Þ
μk ; σ

2
k

� � e G0

π1;π2;…πK e Dirichlet α=K ;…; α=Kð Þ
Λ ¼ λ1; λ2;…λKf g

ð2Þ

where G0 is a joint prior distribution for (μk, σk
2) and

mixing proportions π1 : K are drawn from a symmetric
Dirichlet distribution with concentration parameter α.
Conditional on the mixing proportions, the latent indi-
cator variables ci’s were sampled from a discrete distri-
bution, specifically a multinomial distribution, and the
prior for the ci in model [2] could be written as a prob-
ability conditional on c− i [12]:

p ci ¼ kjc−i; αð Þ ¼ n−i;k þ α=K
n−1þ α

;

where n− i,k is the number of effects, not including yi that
are linked with class k. And as K goes to infinity
(K→∞), the limits of the prior for the ci reach the
following:

p cijc−i; αð Þ ¼
n−i;k

n−1þ α
ci ¼ k; n−i;k > 0

α

n−1þ α
∀i≠i

0
; ci≠ci0

:

8<: ð3Þ

where i’ is the complement of the set i. As K→∞, the
Dirichlet distribution becomes a Dirichlet process in the
limit [12, 13]. Thus, infinite limit of model [2] can be
written as a DPGMM:

yi e N yijθi; σ2i
� �

μi; σ
2
i

� � e G
G e DP α;G0ð Þ;

ð4Þ

where θi ~N (μi, τi
2) is a nuisance parameter, G is a

random discrete distribution drawn from DP, and G0

was the base distribution, which specified the joint prior
distribution of (μi, σi

2). Given that the regular choice of
priors for the mean and variance of the Gaussian are
normal and inverse gamma distributions, respectively,
conjugate joint priors N (μi; μ0, σ0

2)* IG (σi
2; r1, r2) were

chosen in the model in order to implement the following
Gibbs Sampling.

Gibbs Sampling
In Bayesian framework, unknown variables were sam-
pled and updated from the conditional posterior distri-
bution using Markov Chain Monte Carlo (MCMC) [14].
Considering the likelihood and priors in Formulae 3 and

4, the full joint posterior distribution can be written as
follows:

p c;μ; σ2jyð Þ∝
Yn

i¼1
Nðyi; θi; σ2i Þπ θi;μi; σ

2
i ; ci

� �
¼
Yn

i¼1
Nðyi; θi; σ2i ÞNðθi; μi; τ2i ÞNðμi;μ0; σ20Þ

IGðσ2
i ; r1; r2Þp cijc−i; αð Þ:

ð5Þ

Unobservables (c, μ, σ2) were repeatedly sampled and
updated from their posteriors, conditional on all other
variables. The Gibbs sampler was implemented as follows:

1) Initialization: Assign initial values for (μk, σk
2) where

k = 1 and ci = 1, for i = 1 : n.
2) Update θi : The conditional posterior distribution of

θi was

P θijelseð Þ∝Nðyi; θi; σ2
kÞNðθi; μk ; τ2i Þ∝N θi;

yi
σ2k
þ μk

τ2i
1
σ2k
þ 1

τ2i

;
1

1
σ2k
þ 1

τ2i

!0@

3) Update cluster indicators ci : The conditional
posterior probabilities for ci were:

P ci ¼ kjelseð Þ∝Nðyi; θi; σ2kÞNðθi; μk ; τ2i Þp cijc−i; αð Þ

¼ n−i;k

2π
ffiffiffiffiffiffiffiffiffi
σ2kτ

2
i

q exp −
yi−θið Þ2
2σ2k

−
θi−μk
� �2

2τ2i

0@ 1A;

P ci ¼ K þ 1jelseð Þ∝α∬Nðyi; θi; σ2
Kþ1ÞNðθi; μKþ1; τ

2
i Þ

NðμKþ1; μ0; σ
2
0ÞIGðσ2Kþ1; r1; r2ÞdμKþ1dσ

2
Kþ1

∝α
Z

Nðyi; θi; σ2Kþ1ÞIGðσ2Kþ1; r1; r2Þdσ2Kþ1Z
Nðθi; μKþ1; τ

2
i ÞNðμKþ1; μ0; σ

2
0ÞdμKþ1

¼ α

2π
r2r1

Γ r1ð Þ
Γ r1 þ 1

2

� �
1
2

yi−θið Þ2 þ r2

� �r1þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ2i þ σ20
� �s

exp −
θi−μ0ð Þ2

2 τ2i þ σ2
0

� � !

where Γ(.) is the gamma function. Note that constant
1

n−1þα was omitted in both probabilities and (μK + 1, σK + 1
2 )

were unknown and needed to be integrated out to leave
ci as the only variable to be estimated from the Markov
Chain. The Dirichlet Process was represented via the
CRP [15]. Effects were assigned to either currently hold-
ing cluster(s) or a new cluster based on the above prob-
abilities. If a new cluster was chosen, then the cluster
size was increased, i.e. K + 1→ K. In case of n− i,k = 0, the
kth cluster was eliminated and the cluster indicators were
decreased by one, i.e. K→ K − 1.
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4) Resample and update (μk, σk
2) suggested by Formulae

2 as per Neal [12] as follows:

P μk jθi∈kthcluster; else
� �

∝
Ynk
i¼1

Nðθi; μk ; τ2i ÞNðμk ; μ0; σ20Þ

eN μk ;

Xnk
i¼1

θi
τ2i

þ μ0
σ2
0Xnk

i¼1

1
τ2i

þ 1
σ2
0

;
1Xnk

i¼1

1
τ2i

þ 1
σ2
0

0BBBB@
1CCCCA

P σ2
k jyi∈kthcluster; else

� �
∝
Ynk
i¼1

Nðyi; θi; σ2
kÞIGðσ2

k ; r1; r2Þ

eIG σ2
k ; r1 þ

nk
2
;
1
2

Xnk
i¼1

yi−θið Þ2 þ r2

0@ 1A;

where nk is the number of effects associated with the kth

mixture component. The derivations of the fully condi-
tional posterior distributions are detailed in the Appendix.

5) Repeat Steps 2 to 4.

Gibbs sampler was implemented with 100,000 itera-
tions of the MCMC to update conditional posterior
distributions. The first 80,000 samples were discarded as
burn-in and the rest of the 20,000 samples were used to
construct joint posterior distribution. The hyper-
parameters in Algorithm 5 were set to be α = 0.05, r1 =
1, r2 = 0.01, μ0 = 0, σ0

2 = 0.01. Among hyperparameters,
alpha was empirically set to 0.05 based on the simulation
results. (Note: The larger the magnitude of alpha, the
higher the probability of a large number of clusters.)
Convergence was checked by inspection of negative log-
likelihood plots. After the burn-in period, when the
MCMC converges to the stationary distribution, sampled
parameters were collected to form the posterior distribu-
tion. We employed posterior means for estimating the
mean and variance μ̂k ; σ̂

2
k

� �
and posterior modes for es-

timating ĉi, which was further used to infer π̂k . The
Bayesian confidence interval (BCI), which is the counter-
part of the confidence interval in frequentist statistics,
was defined as posterior probability that the parameter
lies within the interval:

ZA
−∞

p ΛjYð ÞdΛ ¼
Z∞
B

p ΛjYð ÞdΛ ¼ α=2;

where α is the significance level. Instead of analytically
estimating the confidence interval, the confidence inter-
val for μ̂k ; σ̂

2
k

� �
was numerically estimated from quartiles

of posterior distribution.

Demonstration of method performance with simulated
data
To demonstrate the performance of the proposed method,
two simulated data sets were processed. Simulation I facil-
itated evaluation of model performance given complete
data. It was generated from three GMMs with respective
means -1, 0 and 1 and variances of 0.360, 0.640 and 0.040,
respectively. A total of 150 simulated QTL effects were
uniformly distributed (mixing proportion was 1/3) to the
three components. This data set represents the case
wherein all true QTL are known.
Simulation II facilitated evaluation of model performance

on a truncated distribution. Truncation points were arbi-
trarily set to ± 0.1. The incomplete data set was intended to
represent the common situation with QTL mapping data
wherein all genetic effects are not detected, especially those
with effects of near-zero magnitude. A truncated Gaussian
mixture with two mixture components was simulated. Zero
mean was assigned to both components. The first mixture
component had mixing proportion π1 and variance σ1

2 of
0.8 and 0.023, respectively; the second mixture component
had π2 and σ2

2 of 0.2 and 0.360, respectively. In both simula-
tions, the standard error (SE) τi was generated from a uni-
form distribution [0, 0.01].

Implementation with real data
The model was also applied using real data to derive
the distributions of additive effects and dominance
coefficients. Additive QTL effects were assembled
from previous QTL mapping studies performed in
corn [16–18] (see Table 1 for a list of traits and asso-
ciated QTL for each data set, referred to as Data I,
Data II, and Data III respectively). Messmer et al.
[17] had evaluated recombinant inbred lines derived
from a cross between two subtropical white dent
maize lines to map genes controlling yield compo-
nents and other traits [15], identifying 57 QTL in
total which are included in Data I. Briggs et al. [16]
had utilized a maize-teosinte backcross (BC1) popula-
tion to explore genes controlling domestication and
morphological traits such as plant architecture, pri-
mary tassel and lateral inflorescence, identifying 59
QTL in total which are included in Data II. Data III
is derived from five maize QTL mapping studies in-
volving segregating populations, all of which share a
common parent B73, comprising a total of 101 quan-
titative trait loci including a) 11 QTL for kernel oil
concentration mapped in an F2 population [19]; b) 15
QTL for root angle and plant height mapped in an F2
population [20]; c) 31 QTL for stalk digestibility and
kernel composition mapped in a F3 population [21]; d) 6
QTL for stripe disease resistance mapped in an F2 popula-
tion [22]; and e) 38 QTL for grain yield and yield compo-
nents mapped in an F3 population under water-limited
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conditions [23]. All QTL mapping studies employed either
composite interval mapping or multiple interval mapping
to detect QTL. [18]. Furthermore, these QTL studies all
reflect estimates of gene effects in bi-parental populations,
which fit with the backcross breeding scenario we
intended to simulate. The histograms of observed additive
effects, with values represented in units of phenotypic
standard deviations, are shown in Fig. 2 for all three data
sets.
To explore application with multi-allelic, large-scale

data sets as an alternative to bi-parental QTL data
sets, additive QTL effects were assembled from high-
resolution genome-wide association studies (GWAS)
with the maize NAM (Nested Association Mapping)
population [18], data provided courtesy of Jason G.
Wallace (Department of Crop and Soil Sciences, Uni-
versity of Georgia; email: jason.wallace@uga.edu).
From the 41 traits in the data set, 2 were chosen to
generate Data IV: ‘20-kernel weight’ (weight in grams
of 20 seeds; yield component trait) and ‘days to an-
thesis’ (developmental trait) (Table 1). Only those sig-
nificant single nucleotide polymorphisms (SNPs)
featured in at least three resample inclusions were
utilized to fit the distribution (i.e. 202 significant
QTL for 20-kernel weight and 403 significant QTL
for days to anthesis). The QTL had been detected
through composite interval mapping or multiple inter-
val mapping and the association mapping had been
performed using the forward-regression genome-wide
association method in TASSEL 4.1.32 [18]. Results
were compared to those obtained with QTL mapping
data sets from bi-parental populations to contrast
multi-allelic vs. bi-allelic, number of QTL, power in
detection of the QTL, and single-trait distributions vs.
distributions representing multiple traits.
In addition, the distribution of dominance effects was

explored. Dominance coefficients, which are defined as
the ratio between the observed QTL dominance devi-
ation and absolute value of QTL additive effects, were
assembled from Data III. The absolute value of additive
QTL effects was used because the sign of QTL effect
only signifies which parent had contributed the favorable

Table 1 QTL associated with various traits across four data sets.
Data I, II, III, and IV were included in the analysis of QTL additive
effects and Data III was used in the analysis of QTL dominance
coefficients

Data sets Traits Number of QTL detected

Data I Days to anthesis 12

Anthesis-to-silking interval 8

Grain yield 5

Kernel number 7

100-kernel weight 11

Plant height 14

Data II Branch number 2

Cob diameter (teosinte) 4

Culm diameter 1

Cupules per rank 2

Days to pollen 4

Glume score 5

Inflorescence length 2

Lateral branch internode 3

Lateral branch 2

Lateral inflorescence branch 1

Length of central spike 2

Male spikelet length 3

Mean lateral branch internode 2

Number of barren nodes 1

Number of tassel branches 5

Percent staminate spikelets 3

Plant height (teosinte) 6

Prolificacy 2

Ranks of cupules 3

Tassel branching space length 5

Tillering 1

Data III Kernel oil concentration 11

Root angle 10

Plant height 5

Dry matter digestibility (in vitro) 4

Cell wall digestibility (in vitro) 3

Neutral detergent fiber 4

Acid detergent fiber 5

Water-soluble carbohydrate 2

Kernel oil content 4

Kernel protein content 4

Kernel starch content 5

Stripe virus resistance 6

Grain yield 3

100-kernel weight 9

Kernel number per ear 6

Table 1 QTL associated with various traits across four data sets.
Data I, II, III, and IV were included in the analysis of QTL additive
effects and Data III was used in the analysis of QTL dominance
coefficients (Continued)

Cob weight per ear 7

Kernel weight per ear 3

Ear weight 5

Ear number per plant 5

Data IV 20-kernel weight 202

Days to anthesis 403
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allele, not the true direction of specific additive effect.
The SE for additive QTL effects and dominance coeffi-
cients was measured to take into account the experi-
mental error. If logarithm (base 10) of the odds (LOD)
scores for QTL were absent, standard errors were gener-
ated by taking sample standard deviation of effects from
multiple experiments. The SE of Data II and of data
from Dintinger et al. [22] incorporated in Data III were
produced in this way, where only those QTL detected
in at least two environments were included in the final
dataset. For the rest of the studies, SEs were derived
from LOD scores as suggested by Hayes and Goddard
[24] or, in the case of the GWAS data sets, the SEs
were determined from the sample errors of the discov-
ered SNP effects [18]. Standard errors of dominance
coefficients were estimated by the delta method sug-
gested by Bennewitz and Meuwissen [1], assuming no
covariance between additive and dominance effects.

Specifically, SEd=a ¼ d=að Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEa
a

� �2 þ SEd
d

� �2q
, where

SEa and SEd were standard errors for additive effects a and
dominance effects d, respectively.
Additive QTL effects from QTL mapping studies were

scaled by their corresponding phenotypic standard devi-
ations in order to combine data across traits. The
phenotypic standard deviations were computed using
raw data if available from the QTL study. Otherwise, the
error variance and heritability of the trait were used to
calculate the phenotypic standard deviation or, absent this,
the range of phenotype values were used. Phenotypic
range was assumed to be 8 standard deviations, which
covers almost 100 % of the values, considering that most
traits follow a normal distribution. We did not apply
phenotypic standardization to the GWAS data since an
abundance of data points were available. Since for the data
sets from which dominance effects were generated, none
of the above three conditions was fulfilled to obtain the
phenotypic standard deviations for additive QTL effects,
the additive effects from those five corn studies were not
utilized in analyzing the distribution of additive QTL ef-
fects. Note that the scaling process was not necessary for
dominance coefficients, because the phenotypic standard
deviation canceled out in the d/a ratio.
Due to limited statistical power of QTL mapping

studies [25], many QTL with near-zero effects were
likely not detected in the published studies used in
this analysis, which is effectively analogous to a trun-
cation of the additive QTL effect distribution near
zero. Faced with this issue, Bennewitz and Meuwissen
[1] suggested a “doubling” process, given the assump-
tion that the true QTL effects occur at the highest
frequency around zero. To compensate for the ‘miss-
ing’ QTL effects, a doubling of the data was done to
ensure that the mean of each mixture component is

estimated at zero, preserving the characteristic great-
est density at zero for each cluster. With doubling,
both signs for the same QTL additive effect were cre-
ated. For example, for ith effect yi with SE τi, − yi was
added to the data with the same SE. The above pro-
cedure leverages the fact that absolute values of alter-
native homozygous genotypes at a QTL are the same
by definition e.g. in bi-parental populations [26]. The
“doubling” process was not applied to dominance co-
efficients, because most loci have observed effects
around zero.

Results and discussion
In this study, we employed a new method, namely
DPGMM, to describe the distribution of QTL additive
effects and dominance coefficients in the form of mix-
tures of normals. Although similar to the fitting of a
mixture of normals using a modified expectation-
maximization (EM) algorithm, this approach differs pri-
marily in the way of dealing with cluster size (K). With
DPGMM, the number of mixture components does not
need to be specified (it is assumed to be infinite). In con-
trast, with use of a finite mixture model, the number of
components needs to be preset and later decided under
certain circumstances, or determined by some measure,
e.g. Akaike information criterion or Bayesian informa-
tion criterion. The optimum cluster size (K) will strike a
balance between maximum data compression (assigning
all data to one component) and maximum accuracy
(allowing the number of clusters equal sample size).
In DPGMM, the Dirichlet process is represented by

the CRP, wherein a data point is assigned either to a cur-
rently occupied mixture component with probability
proportional to the number of data already held in that
cluster or to a new cluster with probability proportional
to the concentration parameter, G0. By the same token,
with each iteration of Gibbs sampling, the cluster indica-
tors are also updated along with parameters like the
mean and variance. As such, DPGMM fits the data dis-
tribution and explores the potential number of mixture
components simultaneously.
To demonstrate the performance of DPGMM in fitting

the distribution of QTL effects and to verify accuracy in
estimating associated parameters of this distribution,
two simulated data sets were processed. Simulation I
was structured to represent the case wherein all true
QTL are known i.e. complete data. Simulation I, which
featured three components, resulted in a histogram of
genetic effects from which it is difficult to infer the
number of mixture components visually (Fig. 1a). In
Simulation I, DPGMM clearly fitted the data to three
clusters with estimated values close to true values for pa-
rameters involving the proportion of mixing among clus-
ters, the mean and the variance of each mixture
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component (Table 2). DPGMM predicted accurately the
mean and variance of Clusters 1 and 3, although missed
assignments of cluster membership were observed. In
contrast, the mixing proportion of Cluster 2 was esti-
mated precisely; however, certain deviations from the
true mean and variance were observed.
Simulation II data, based on a truncated mixture of

normals featuring two mixture components with zero
mean, resemble a scenario common to QTL mapping
wherein near-zero genetic effects were not detected.
Simulation II produced a histogram with a pronounced
gap around zero as expected in keeping with the data
truncation (Fig. 1b). In Simulation II, parameters were
estimated with accuracy, except for the variance of Clus-
ter 1, which was estimated at 0.251 versus the true value
of 0.023 (Table 3).

Given a complete set of data, DPGMM could clearly
assign membership to respective clusters with small pre-
diction errors (Fig. 1a, Table 2). In the case of truncated
data, DPGMM was still effective in predicting the cor-
rect number of mixture components and estimating the
variance of components with greater variability; however,
DPGMM was less effective in estimating variance of
components with small differences among cluster mem-
bers. As shown in Table 3, the deviation of estimated
variance (0.251) from true value (0.023) was somewhat
large and might be attributed to the loss of small-value
data in the sample. This result is in accord with the con-
clusion of Bennewitz and Meuwissen that small effects
could be missed easily with a mixture model [1].
Proceeding to real data, DPGMM was used as a

method to fit a mixture of normals for which the
number of components is not known, fitting additive
effects and dominance coefficients based on previously

Table 2 True versus estimated (hat) parameters in Simulation I.
πk is the mixing proportion in the kth cluster, and μk and σk2 are
the mean and variance of kth mixture component, respectively.
Values expressed in units of phenotypic standard deviation

Cluster1 Cluster2 Cluster3

πk 0.333 0.333 0.333

π̂k 0.487 0.367 0.147

μk 1.000 0.000 -1.000

μ̂k 0.841 -0.673 -1.041

σk2 0.360 0.640 0.040

σ̂2
k 0.312 0.303 0.012

Table 3 True versus estimated (hat) parameters in Simulation II.
πk is the mixing proportion in the kth cluster, and μk and σk2 are
the mean and variance of kth mixture component, respectively.
Values expressed in units of phenotypic standard deviation

Cluster1 Cluster2

πk 0.800 0.200

π̂k 0.912 0.089

σk2 0.023 0.360

σ̂2
k 0.251 0.382

Simulated effects Simulated effects

(b) Simulation II based on truncated data(a) Simulation I based on complete data

Fig. 1 Histograms of simulated effects from Gaussian mixtures: a (n = 150) three components having mean of -1, 0 and 1, and variance of 0.36,
0.64 and 0.04, respectively, and equal mixing proportions for all three components; and (b) (n = 300) two components having zero means and
variance of 0.023 and 0.36, respectively, and mixing proportions of 0.8 and 0.2, respectively. Distribution in (b) is truncated at points -0.1 and 0.1
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published QTL mapping data for a number of quanti-
tative traits in maize. In addition, DPGMM was used
to fit additive effects estimated from high-resolution
GWAS of the maize NAM population to compare dis-
tributions produced with large-scale, multi-allelic data
sets involving a single trait with those obtained with
meta-analysis of bi-parental, lower-resolution studies
involving multiple traits. The fitted distributions are
the outcome of applying the DPGMM method and
these distributions could then become the basis for
modelling the genetic architecture of quantitative traits
in maize for computer-simulated explorations to iden-
tify optimal breeding strategies.

Distributions of QTL additive effects
Histograms of observed QTL additive effects expressed in
units of phenotypic standard deviation were generated
from the QTL mapping studies (Fig. 2). We noted that the
histogram of Data II (Fig. 2b) resembled that observed
with Simulation II (Fig. 1b), wherein near-zero effects
were not included. With Data I, II, and III, it is difficult to
infer the number of mixture components for additive
effects visually from the histograms. However, the number
of mixture components was inferred by the mode of
posterior distribution with regard to cluster indicator ci.
Frequency tables of cluster membership clearly suggested
fitting all data to one cluster for Data I and Data II (Fig. 3);

(a)  Data I (b) Data II

(c) Data III

Fig. 2 Histograms of observed QTL additive effects (expressed in units of phenotypic standard deviation): a Data I; b Data II; and c Data III
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however, for Data III, two components are suggested to fit
additive effects. This likely reflects the types of traits in-
cluded in each meta-analysis. Data I contains primarily
grain yield and yield component traits as well as some de-
velopmental traits. Data II is comprised of mainly domes-
tication and morphological traits. Data III includes yield
and yield component traits under drought stress as well as
grain quality traits. Results suggest more similarity among
the traits within Data I and within Data II, in contrast to
Data III that was fitted with two clusters.
For each of the three QTL mapping data sets, the fitted

distribution was overlaid on the histogram of “doubled”
data (Fig. 4a, b, c). The fitted distributions of additive ef-
fects all have zero mean; variances differed (Table 4). The
range of the observed QTL effects was tight around the
mean for Data I, whereas Data II showed some larger
effects with absolute value nearing 1. With Data III, the
range of observed effects was greater still, with the largest
effects nearing 1.5 in absolute value; nonetheless, the vari-
ance of Data III additive effects was similar to that of the

distribution of Data II. The variance was smallest for Data
I comprised of mainly yield and yield component traits.
Comparing the results obtained with the Data IV

GWAS single-trait data sets, the data were fitted to
one cluster for both 20-kernel weight and days to an-
thesis. Each fitted distribution was overlaid on the
histogram of “doubled” data (as was done with the
meta-data sets). Each distribution had an estimated
mean of zero. The variance associated with 20-kernel
weight was estimated as 0.013, with a narrow confi-
dence interval, 0.011 to 0.015; the variance for days
to anthesis was estimated as 0.131, with a narrow
confidence interval, 0.118 to 0.146 (Table 4). The fit-
ted distribution of 20-kernel weight based on 202
QTL shows a high degree of similarity to that for
Data I which is comprised of 57 QTL for yield and
yield component traits, maturity, and abiotic stress
(Fig. 4). The fitted distribution of days to anthesis
based on 403 QTL shows a high degree of similarity
to that for Data II which is comprised of 59 QTL for

(a) Data I (b) Data II

(c) Data III 

Fig. 3 Histograms of the cluster number: a Data I; b Data II; and c Data III
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domestication and morphological traits (Fig. 4). Com-
pared to distributions from meta-analyses, the GWAS
data sets resulted in greater precision as displayed in
the relatively smaller BCI’s for the estimates of vari-
ance; the ratio of the size of the BCI’s for Data IV
20-kernel weight and Data I is 0.16, and for Data IV
days to anthesis and Data II is 0.33. Thus, the accur-
acy using meta-analysis of multiple-trait QTL and
QTL identified through GWAS appears to be similar
when the type of traits measured are similar. How-
ever, precision is better with the latter, which likely
reflects the significantly larger number of QTL in the
Data IV sets.

Despite the significantly greater resolution of the
GWAS data sets, both distributions produced from Data
IV displayed a gap around zero: within ±0.06 for 20-
kernel weight and within ±0.16 for days to anthesis. Ben-
newitz and Meuwissen [1] discussed the potential draw-
backs of using meta-analyses of QTL effects detected in
bi-parental populations to characterize distributions of
gene effects. A primary concern was for failure to iden-
tify all true QTL within the identified QTL sets either
because certain alleles were excluded from the data set
or because of a lack of statistical power to detect
smaller-effect QTL [27, 28]. Even in cases where marker
density and genome resolution is high, all QTL for a

(a) (b)Data I Data II

(c) Data III (d) Data IV

Fig. 4 Fitted normal distributions to QTL additive effects (expressed in units of phenotypic standard deviation): a Data I; b Data II; c Data III;
d Data IV featuring traits of 20-kernel weight and days to anthesis
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trait of interest may not be identified if mapping methods
are utilized that screen detected effects against a signifi-
cance threshold which basically excludes most of the small
effect QTL. Furthermore, in genomic selection, the par-
ticular statistical method used to ‘train’ the model can in-
fluence the distribution of effects. Despite the higher
resolution and multi-allelic nature of the Data IV data
sets, the inability to detect QTL of near-zero effect was
apparent, yet not problematic in fitting a distribution.
Clearly, the distributions are centered at zero with highest
frequencies observed in the zero vicinity and recognized
as single-component. Thus, the results obtained with the
GWAS data sets demonstrate the robustness of the
DPGMM method with use of either meta-analysis of QTL
identified across traits or large-scale data sets comprised
of QTL for a single trait. If enough data are available, e.g.
GWAS dataset, distributions of QTL effects based on a
single trait rather than across traits might be more appro-
priate and useful. And with the advent of genotype-by-
sequence (GBS) and other genotyping technologies that
facilitate high-resolution marker sets, very dense marker
sets are more available and more widely utilized in QTL
identification [29]. For our purpose in exploring the im-
pact of backcrossing strategies on recovery of perform-
ance of the hybrid targeted for conversion [8], the meta-
analysis involving the Data I set based on a bi-parental
population met our objectives well in that it focused on
yield and yield component traits and additionally included
other key traits essential to performance recovery i.e. ma-
turity and abiotic stress tolerance.

Distribution of QTL dominance coefficients
Observed dominance coefficients obtained from meta-
analysis of five mapping studies varied in magnitude

from less than -2.0 to more than 2.0 (Fig. 5), suggesting
that all classes of dominance were represented among
the traits measured. Around 50 % of the QTL (50 out of
101) displayed an d/a ratio in the range of -0.5 to 0.5,
indicating partial recessivity, additivity, and partial dom-
inance gene action. Approximately 25 % of the QTL ex-
hibited either partially dominant or dominant gene
action (0.5 < d/a < 1.25) or partially recessive or recessive
gene action (-1.25 < d/a < -0.5). Furthermore, 25 % of the
QTL exhibited apparent overdominance (>1.25) or
underdominance (< -1.25) gene action.
Dominance coefficients were fitted with the normal

distribution using DPGMM. The mode of posterior dis-
tribution with regard to K is 1, suggesting that all data
could be fitted to a single component (Fig. 6); estimates
of the distribution mean and variance were provided by
MCMC as well. Figure 7 displays the estimated distribu-
tion overlaid on the density plot of observed data. The
estimated mean of the distribution was 0.152 with 95 %
BCI of 0.055 to 0.237, and variance of 0.329 with 95 %
BCI of 0.193 to 0.542 (Table 4). The result that the dis-
tribution of dominance coefficients was fitted to a nor-
mal distribution with a positive mean conformed to
previous studies [1].

Conclusions
The DPGMM method offers an alternative to the over-
simplified infinitesimal model in computer simulation as a
means to better represent the genetic architecture of
quantitative traits, which likely involve some large effects
in addition to many small effects. Furthermore, it confers
an advantage over other methods in that the number of
mixture model components need not be known a priori.
The DPGMM method takes advantage of prevalent QTL

Table 4 Estimates (hat) of the mixing proportion in the kth cluster (πk), the cluster mean and variance (μk and σk2 ) and Bayesian
confidence interval (BCI) for parameters in the distribution of additive effects and dominance coefficients. Values expressed in units
of phenotypic standard deviation

Data sets Effect type Estimated
parameters

Posterior
estimate

BCI

2.50 % 97.50 %

Data I Additive σ̂2
1 0.044 0.034 0.059

Data II Additive σ̂2
1 0.147 0.110 0.194

Data III Additive π̂1 0.880 0.451 0.973

π̂2 0.120 0.006 0.572

σ̂2
1 0.179 0.068 0.227

σ̂2
2 0.107 0.008 0.200

Dominance coefficient μ̂1 0.152 0.055 0.237

σ̂2
1 0.329 0.193 0.542

Data IV Additive

20-kernel weight σ̂2
1 0.013 0.011 0.015

Days to anthesis σ̂2
1 0.131 0.118 0.146
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Fig. 6 Estimation of cluster number, mean, and variance of the fitted distribution of dominance coefficients through MCMC

Fig. 5 Histogram of observed dominance coefficients from meta-analysis based on five mapping populations
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data to approximate the distributions of additive and
dominance gene effects. The DPGMM method is ro-
bust with use of either meta-analysis of smaller-scale
QTL analyses involving a number of traits or large-
scale, single-trait QTL data sets. Furthermore, QTL
data sets from bi-allelic or multi-allelic populations can
be utilized. Although the data sets may be missing
some near-zero QTL effects that were not resolved in
the fundamental analyses, the methodology is able to
accommodate this drawback. R code to facilitate use of
the DPGMM method is included in a Additional file 1
to this paper (see section below).
The distributions of QTL additive and dominance ef-

fects highlighted through this study were used in model-
ling the genetic architecture of grain yield and other key
performance traits for computer-simulated explorations
to identify optimal breeding strategies to facilitate intro-
gression of multiple value-added traits into an elite
maize hybrid. Maize grain yield is a complex trait
involving dominant and over-dominant gene action.
Other traits important to recovery of the essential per-
formance attributes of the hybrid targeted for conversion
include maturity, resistance to lodging, and abiotic stress
tolerance and these have a bearing on yield performance
as well. Readers are directed to the recent work of Sun
and Mumm [8] for an example of how the DPGMM-
estimated genetic distribution parameters were deployed
in computer simulations to evaluate breeding strategies.

Appendix
Derivations of the fully conditional posterior distribu-
tions are given as follows:
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Fig. 7 Normal distribution fitted to the dominance coefficients, with estimated mean at 0.152 with 95 % Bayesian confidence interval to be 0.055
and 0.237 and estimated variance at 0.329 with 95 % Bayesian confidence interval to be 0.193 and 0.542
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Additional file 1: R code for DPGMM. (DOCX 16 kb)

Abbreviations
BCI: Bayesian confidence interval; CRP: Chinese Restaurant Process;
DPGMM: Dirichlet Process Gaussian Mixture Model; EM: expectation-maximization;
GMM: Gaussian Mixture Model; GWAS: genome-wide association studies; K: cluster
number; MCMC: Markov Chain Monte Carlo; NAM: Nested Association Mapping;
QTL: quantitative trait locus/loci; SE: standard error; SNP: single nucleotide
polymorphism.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XS and RM conceived and designed the study; XS conducted the meta-analyses
of the published marker data, analysis of GWAS data sets, and wrote the computer
code to embody the method; XS and RM authored the manuscript. All authors
read and approved the final manuscript.

Acknowledgments
This research was supported in part by a grant from Monsanto Company, St.
Louis, MO, USA; X. Sun was also supported in his graduate studies as a
Monsanto Fellow in Plant Breeding through a generous gift of Monsanto
Company to the University of Illinois. Furthermore, we thank Jianfeng Xu
(Department of Statistics, University of Illinois at Urbana-Champaign) for his
helpful suggestions regarding the DPGMM and anonymous reviewers for
their constructive feedback which served to improve the manuscript.

Author details
1Department of Crop Sciences and the Illinois Plant Breeding Center,
University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, IL
61801, USA. 2Present address: Dow AgroSciences, Indianapolis, IN, USA.
3GeneMax Services, Urbana, IL 61802, USA.

Received: 25 May 2015 Accepted: 22 January 2016

References
1. Peng T, Sun X, Mumm RH. Optimized breeding strategies for multiple trait

integration: I. Minimizing linkage drag in single event introgression. Mol
Breed. 2014;33:89–104.

2. Peng T, Sun X, Mumm RH. Optimized breeding strategies for multiple trait
integration: II. Process efficiency in event pyramiding and trait fixation. Mol
Breed. 2014;33:105–115.

Sun and Mumm BMC Bioinformatics  (2016) 17:73 Page 14 of 15

dx.doi.org/10.1186/s12859-016-0906-z


3. Sun X, Peng T, Mumm RH. The role and basics of computer simulation in
support of critical decisions in plant breeding. Mol Breed. 2011;28(4):421–36.

4. Bennewitz J, Meuwissen THE. The distribution of QTL additive and
dominance effects in porcine F2 crosses. J Anim Breed Genet. 2010;127(3):
171–9.

5. Gao H, Williamson S, Bustamante CD. A Markov Chain Monte Carlo
Approach for Joint Inference of Population Structure and Inbreeding Rates
From Multilocus Genotype Data. Genetics. 2007;176(3):1635–51.

6. Huelsenbeck JP, Andolfatto P. Inference of Population Structure Under a
Dirichlet Process Model. Genetics. 2007;175(4):1787–802.

7. Görür D, Rasmussen CE. Dirichlet process Gaussian mixture models: choice
of the base distribution. J Comput Sci Technol. 2010;25(4):653–64.

8. Sun X, Mumm RH. Optimized breeding strategies for multiple trait
integration: III. Parameters for success in version testing. Mol Breed. 2015;
35(10):1–9.

9. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

10. Zeng ZB. Correcting the bias of WRIGHT’s estimates of the number of genes
affecting a quantitative character: a further improved method. Genetics.
1992;131(4):987–1001.

11. Rasmussen CE. The Infinite Gaussian Mixture Model. In: In Advances in
Neural Information Processing Systems 12. Cambridge, MA, USA: MIT Press;
2000. p. 554-560.

12. Neal RM. Markov Chain Sampling Methods for Dirichlet Process Mixture
Models. J Comput Graph Stat. 2000;9(2):249–65.

13. Ferguson TS. A Bayesian Analysis of Some Nonparametric Problems. Ann
Statistics. 1973;1(2):209–30.

14. Robert CP, Casella G. Monte Carlo Statistical Methods (second edition). New
York: Springer-Verlag; 2004.

15. Aldous D. Exchangeability and Related Topics in l’École d’été de probabilités
de Saint-Flour, XIII-1983. Berlin: Springer; 1985. p. 1–198.

16. Briggs WH, McMullen MD, Gaut BS, Doebley J. Linkage Mapping of
Domestication Loci in a Large Maize–Teosinte Backcross Resource. Genetics.
2007;177(3):1915–28.

17. Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M.
Drought stress and tropical maize: QTL-by-environment interactions and
stability of QTLs across environments for yield components and secondary
traits. Theor Appl Genet. 2009;119(5):913–30.

18. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. Association
Mapping across Numerous Traits Reveals Patterns of Functional Variation in
Maize. PLoS Genet. 2014;10(12):e1004845.

19. Song XF, Song TM, Dai JR, Rocheford TR, Li JS. QTL mapping of kernel oil
concentration with high-oil maize by SSR markers. Maydica. 2004;49:41–8.

20. Omori F, Mano Y. QTL mapping of root angle in F2 populations from maize
‘B73’ x teosinte ‘Zea luxurians’. Plant Root. 2007;1:57–65.

21. Wang HW, Han J, Sun WT, Chen SJ. Genetic analysis and QTL mapping of
stalk digestibility and kernel composition in a high-oil maize mutant
(Zea mays L.). Plant Breed. 2010;129(3):318–26.

22. Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F, et al.
Genetic mapping of maize stripe disease resistance from the Mascarene
source. Theor Appl Genet. 2005;111(2):347–59.

23. Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL. Quantitative trait
locus analysis of drought tolerance and yield in Maize in China. Plant Mol
Biol Reporter. 2005;23:155–65.

24. Hayes BJ, Goddard ME. The distribution of the effects of genes affecting
quantitative traits in livestock. Genet Sel Evol. 2001;33(3):209–29.

25. Churchill GA, Doerge RW. Empirical Threshold Values for Quantitative Trait
Mapping. Genetics. 1994;138(3):963–71.

26. Falconer DS, Mackay TFC. Introduction to quantitative genetics. Essex:
Longman and Company; 1996.

27. Beavis WD. QTL analyses: power, precision, and accuracy. In: Paterson AH,
editor. Molecular Dissection of Complex Traits. New York: CRC Press; 1998.
p. 145–62.

28. Xu S. Theoretical Basis of the Beavis Effect. Genetics. 2003;165(4):2259–68.
29. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A

unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat Genet. 2006;38(2):203–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Sun and Mumm BMC Bioinformatics  (2016) 17:73 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Description of DPGMM and priors
	Gibbs Sampling
	Demonstration of method performance with simulated data
	Implementation with real data

	Results and discussion
	Distributions of QTL additive effects
	Distribution of QTL dominance coefficients

	Conclusions
	Appendix
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

