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Abstract

Background: The massive accumulation of protein sequences arising from the rapid development of high-throughput
sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe
an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL
lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial
applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular,
the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel
GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic
residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in
selected proteomes across the plant kingdom.

Results: Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD
protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant
number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein
sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL.
Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and
phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL
sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study.
In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte,
Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through the
graphical user interface (http://compbio.math.hr/).

Conclusions: Our results show that scanning with a carefully parameterized motif-HMM is an effective approach for
annotation of protein families with low sequence similarity and conserved motifs. The results of this study expand
current knowledge and provide new insights into the evolution of the large GDSL-lipase family in land plants.
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Background
The rapid development of enzyme technology has
enabled the wide application of hydrolytic enzymes in
industry and environmental management [1, 2]. The
search for novel enzymes with beneficial functions has
great potential in the GDSL lipolytic family. These en-
zymes have five consensus sequence Blocks (I-V), among
which Blocks I, III and V show higher conservation. In
addition, they possess four invariant catalytic residues,
Ser, Gly, Asn, and His, found in Blocks I, II, III and V,
respectively [3, 4]. A distinctive feature of the GDSL es-
terases/lipases is a flexible catalytic site that changes its
conformation in the presence of different substrates [5–8].
This might explain their catalytic multifunctionality,
which makes them an attractive research topic. GDSL hy-
drolases are found throughout all kingdoms of life and re-
cent analyses revealed their abundance in some land
plants [9, 10]. Although they participate in many cellular
processes, such as plant development [11, 12], morphogen-
esis [13], and defense from pathogens and stress [14, 15],
they are still poorly studied. The reported multifunctional-
ity of GDSL enzymes indicates that plants could be a good
source of highly promising enzymes for use in the hydroly-
sis and synthesis of important ester compounds of biotech-
nological interest [5, 16]. Therefore searching for new
GDSL enzymes across the plant kingdom is of general
interest. Since these enzymes exhibit low overall sequence
similarity [5], motif scanning [17] is an appropriate method
for in silico annotation of GDSL proteins. Considering that
protein motifs accumulate mutations over time the task of
motif scanning differs substantially from the simple prob-
lem of exact string matching and requires application of
more sophisticated methods. The standard method for
motif scanning is scanning by Position Specific Scoring
Matrix (PSSM). This method is simply a “window sliding
algorithm” where a “PSSM window” slides along the target
sequence and scores each residue position according to the
corresponding PSSM column scores. These scores repre-
sents the relative frequency of residues in one position in
the given motif alignment [18, 19]. Another possible ap-
proach is motif-HMM scanning, which is rarely used. As
the name suggests, it is based on the HMM probabilistic
framework which has been widely and successfully applied
in many areas of bioinformatics, such as protein structure
modelling, gene finding, phylogenetic analysis, modelling
coding and noncoding regions of DNA, and protein family
and subfamily modelling [20]. Unlike the standard profile-
HMM, which models a set of sequences (e.g. a protein
family), motif-HMM models only motif(s), while protein
regions between the motifs are modelled by a single self-
looping insert state (Additional file 1). Thus the composi-
tions of regions between the motifs are not important for
the decoding algorithm [17]. The major difference between
PSSM and motif-HMM, is that the latter explicitly models
insertions and deletions as well as distances between differ-
ent motifs (if multiple motifs are present) in a natural and
straightforward way. A potential drawback of this is the
introduction of additional parameters, which increases
model complexity. This probably explains why motif-
HMMs are so rarely used. However, in the multiple motif
scanning setting, and in particular when additional param-
eters can be estimated based either on training examples
(i.e. seed dataset) or on expert knowledge, motif-HMM
should be a model of choice. The standard decoding algo-
rithm within the HMM framework is Viterbi decoding
(VD) which finds the most probable path through the
model (i.e. HMM) assuming that the given HMM has gen-
erated the analyzed sequence. Another possible approach
within the HMM framework is posterior decoding (PD)
which maximizes the posterior probability of assigning an
HMM state to the given residue, over all possible states.
Although VD and PD will in most cases yield similar re-
sults, when different paths through the HMM have a simi-
lar probability as the most probable path, PD and VD
might give different results. Moreover, in such cases PD
might be preferable to Viterbi decoding since in posterior
decoding all paths that contribute to a given assignment
are taken into account [21–23].
In this study we introduce a simple modification of

the PD algorithm which enables its application to the
motif-HMM framework. Next, we applied and com-
pared the performance of VD, PD and PSSM in iden-
tifying GDSL enzymes in proteomes selected from
across the plant kingdom. Our results show that
motif-HMM in the multiple motif scanning setting
can outperform motif scanning algorithms based on
matrix models. Since we started from a very small
sample of experimentally confirmed enzymes, this re-
quired a careful computation of model parameters.
Here we show, as an example, how well adjusted
motif-HMM parameterization, in particular emission
probabilities, can provide a good discrimination be-
tween positives and negatives, taking a Viterbi score
of zero as a natural threshold. Based on this, we de-
veloped a PD/VD protocol which was useful for the
elimination of false positives. Our protocol could be
successfully applied for the automatic annotation of
GDSL enzymes in a large dataset (e.g. metagenomic
data sets). In summary, we scanned 12 proteomes
across the plant kingdom for GDSL enzymes and
obtained GDSL sequences distributed either in the
previously reported [9] or in the three distinct and
here discovered GDSL subfamilies. We also provide a
list of so far undescribed variations in the GDSL mo-
tifs. Finally, a remarkable expansion of this protein
family was found in a lycophyte, indicating an import-
ant role for GDSL enzymes in the early evolution of
vascular plants.
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Methods
Datasets collection
Protein sequences of euphyllophytes: Arabidopsis
thaliana - At; Oryza sativa - Os; Populus trichocarpa
- Pt; Sorghum bicolor - Sb and Vitis vinifera – Vv;
moss, Physcomitrella patens – Pp; algae: Chlamydo-
monas reinhardtii - Cr; Coccomyxa subellipsoidea C-
169 - Cs; Micromonas pusilla RCC299 - Mp; Ostreo-
coccus lucimarinus - Ol; Volvox carteri - Vc, and
bryophyte, Selaginella moellendorffi - Sm, were re-
trieved from NCBI RefSeq Genome Projects. Pro-
teomes of algae and bryophyte were retrieved from
Phytozome v9.1 [24].

Annotation criteria
Motifs characteristic for GDSL enzymes and positions of
catalytic residues were reported previously [4, 5]. In ac-
cordance with that, our criteria for GDSL annotation
were: (i) presence and correct order of specific motifs
(Blocks I, III and V) (ii) presence of catalytically import-
ant Ser (Block I) and His (Block V) (Additional file 2:
Figure S2), and (iii) minimal distances between pre-
dicted blocks of at least 20 residues.

Seed dataset
Seed dataset used for model parameterization con-
sisted of 23 protein sequences of biochemically char-
acterized and evolutionary divergent GDSL enzymes
(Additional file 2: Table S1) that shared on average
11 % identity, ranging from 4 to 75 %. Multiple se-
quence alignment (MSA) generated by PROMALS
[25] and MAFFT [26] predicted the same motifs.
MSA displayed three conserved motifs and long gaps
between them. (Additional file 2: Figure S1). We se-
lected Blocks I, III and V consisting of 10, 9, 9 resi-
dues, respectively (Additional file 2: Figure S2). The
corresponding motif columns were used to
parameterize HMM and PSSM.

Emission probabilities
Probability of emitting a residue from the HMM-
match state was computed as follows. Let P be a
mutation probability matrix, constructed from the
BLOSUM 50 substitution matrix [27, 28]. We denote
the l-th row of this matrix with Pl = [pls], where pls
is the probability of amino acid l mutating into
amino acid s after a certain amount of evolutionary
time. Given a motif of length n, let FR

j = [fl
j] be a vec-

tor of amino acid relative frequencies in the j − th
column of the motif alignment, where j ∈ {1…… n}
and l ∈ {1,…… 20}.
Considering a very small size of the seed dataset,

we added a small amount of flat pseudo-counts –
10-2 for each amino acid l – to each relative fre-

quency vector, getting vectors F̂j
R ¼ f̂ jl

h i
where

f̂ jl ¼
f jl þ 0:01

1:2

We then define emission probability of amino acid k
in the j − th column as

ej kð Þ ¼
X20
l¼1

plk⋅ f̂
j
l l; k∈ 1;……20f g

Since j − th column of the motif alignment is mod-
elled by the HMM match state Mj this is also the
emission probability of amino acid k in the match
state j, ej(k). Note that we made a slight change of
notation here in order to distinguish between the
PSSM and HMM emission probabilities. Emission
probabilities constructed in this way combine the
vector of relative frequencies with mutation probabil-
ity vectors, as well as background distribution. Emis-
sion probabilities defined in this way are “loose” in
the sense that even residues that are completely con-
served in the seed sequences are assigned relatively
low emission probabilities (e. g. completely conserved
Ser in Block I and His in Block V were assigned
emission probabilities of 0.64 and 0.93 respectively.
While using a model of evolution of amino acids is
a standard practice when computing emission prob-
abilities, the details of our implementation are
specific.
Insert states were assigned a flat emission probability

vector, i.e. eIj kð Þ ¼ 0:05 where j ∈ {1…… n} and k ∈ {1,
…… 20}.
Same emission probabilities for all amino acids were

used for all three algorithms.

Transition probabilities
Since the seed alignment contains no insertions or
deletions, transition probabilities to and from delete
and insert states could not be estimated from the
sample and needed to be inferred. These values have
to be small (i.e. match-to-match transitions should
clearly dominate) because insertions and deletions in
GDSL motifs are not expected. On the other hand,
although unlikely, we wanted to accommodate for
the possibility of insertion or deletion within the
GDSL blocks. Therefore, we tested transition prob-
abilities of 0.90, 0.95, and 0.99 and used transition
probabilities of 0.99 between neighboring match
states as the best choice. Transition probabilities to
and from delete/insert states were assigned accord-
ingly to 0.005:



tMiMiþ1 ¼ 0:99 tMi Ii ¼ 0:005 tMiDiþ1 ¼ 0:005

tIiMiþ1 ¼ 0:99 tIi Ii ¼ 0:01 tIiDiþ1 ¼ 0

tDiMiþ1 ¼ 0:99 tDi Ii ¼ 0 tDiDiþ1 ¼ 0:01
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Here M, I and D denote the match, insert and delete
HMM states, respectively. For example, tMiMiþ1 denotes
the probability of transition from match state Mi to
match state Mi + 1. Schematic representation of the
model is shown in Additional file 1. Same transition
probabilities were used for VD and PD.
Scanning by Position-specific scoring matrix (PSSM)
Algorithm inputs are target sequence and PSSM which
represents motif alignment. Namely, given a motif align-
ment of width n, PSSM is a 20 × n matrix, where each
matrix column j ∈ {1,.. n} is a vector of logarithms of
emission probabilities ln[ej(k)] where k ∈ {1,…… 20} is
an amino-acid index.
The PSSM score of the predicted motif starting at pos-

ition i in the target sequence is defined as the sum of
scores of amino acids at sequence positions i to i + n − 1,
matched with the corresponding 1 to n columns of the
PSSM. Therefore in the target sequence of length m,
there are m − n + 1 possible motif starting positions (i.e.
possible motif predictions). For a given sequence, PSSM
scanning algorithm returns a motif prediction, in terms
of residue positions, with the highest PSSM score [18].
Since we aimed to identify sequences containing

three GDSL motifs (Blocks I, III and V), each se-
quence was scanned with three different PSSMs. The
scans were performed independently, meaning that
each PSSM returned the best motif prediction irre-
spective of the other two. PSSM column vector emis-
sions were set to logarithms of emission probabilities
of the corresponding HMM match state. As in the
case of PD, we defined the total score as the sum of
the three motif scores. All scanned sequences were
subsequently ranked according to their respective se-
quence score.
Viterbi decoding (VD)
Although Viterbi decoding is standard and widely used
HMM algorithm we describe it here in detail, for the
sake of clarity and completeness.
Given the observed sequence X, and the state path Π,

the most probable path through the model is defined by,
ΠV ¼ arg max Π P X; Π j Mð Þ
Let vk(i) denote the probability of the most probable

path Π which ends in state k after emitting x1…… xi.
Given the following recursions [21],
vk ið Þ ¼

1 for i ¼ 0 and k ¼ BEGIN

0 for i ¼ 0 and k≠BEGIN
ek xið Þ⋅ maxk−1 vk−1 i−1ð Þ⋅tk−1; k

� �
pointeri kð Þ ¼ argmaxk−1 vk−1 i−1ð Þ⋅tk−1;k

� �

8>>><
>>>:

probability of the most probable path though the model
is [21]

P x;πV
� � ¼ max

k
vk Lð Þ⋅tk; END

� �

The path itself can be found by backtracking [21]

πV
L ¼ argmaxk vk Lð Þ⋅tk;END

� �

πV
i−1 ¼ pointeri π

V
i

� �
f or i ¼ L;…::1

Note that Viterbi decoding amounts to registering
symbols generated by Viterbi path. These are residues or
- possibly - gaps. As already mentioned, in this work we
have used a motif-HMM instead of the standardly used
profile-HMM (Additional file 1). Viterbi assignments
were scored with the (log -) probability of their path,
normalized for the length (hence, log – odds score).

Posterior decoding (PD) for motif-HMM
In this subsection we describe the standard posterior de-
coding and the introduced modification. Given a se-
quence and HMM model, probability that the sequence
was generated by this particular HMM can be found ei-
ther by forward or by backward recursion. More for-
mally, let X = (x1,…… xL) be a sequence of amino acid
symbols (i.e. residues) of length L and Π = (π1…. πL) a
sequence of HMM emitting states (i.e. match and insert
states) that generate X. Hence, πi represents the HMM
state which generates xi. Note that Π is not necessarily a
path through the HMM since it doesn’t contain delete
states. However, any path (i.e. valid path) has a unique
representation in terms of Π and vice-versa each Π de-
fines a unique HMM path. Therefore we use Π as a
symbol for the respective HMM path as well. Forward
and backward probabilities [21] are defined as:

f k ið Þ ¼ P x1;…:xi; πi ¼ k
� �

;

bk ið Þ ¼ P xiþ1xL j πi ¼ kð Þ;

where k denotes an emitting HMM state i.e. k ∈ {Mk, Ik}.
Forward and backward probabilities can be found by the
following recursions [21]:
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f kþ1 ið Þ ¼ f 1 for i ¼ 0 and k þ 1 ¼ BEGIN

0 for i ¼ 0 and k þ 1≠BEGIN

ekþ1 xið Þ
X
k

f k i−1ð Þ⋅tk;kþ1 otherwise; i ¼ 1…Lð Þ

bk ið Þ ¼
bk Lð Þ ¼ tk;END i ¼ L; for all states kX

kþ1

tk;kþ1⋅ekþ1 xiþ1ð Þ⋅bkþ1 iþ 1ð Þ i ¼ L−1…:1ð Þ

8<
:

where ek(xi) is probability of emitting residue xi when in
state k, and tk,k + 1 is probability of transition from state k
to state k + 1. Probability of observing the sequence X,
given the model M is defined by,

P XjMð Þ ¼
X
Π

P X;Π jMð Þ

and can be found either by forward or backward re-
cursion [21]:

P XjMð Þ ¼
X
k

f k Lð Þ⋅tk;END
P XjMð Þ ¼

X
k

bk 1ð Þ⋅ek x1ð Þ⋅tBEGIN ;k

Conditional probability that symbol xi was emitted from
the state k, given sequence X is defined by

P πi ¼ kjX;Mð Þ ¼
X

Πjπi¼kð ÞP X;ΠjMð Þ
X

Π
P X;ΠjMð Þ k∈ Mk; ; Ikf g

Thus, P(πi = k|X,M) is the sum of probabilities of all
paths through the model which emit xi from the state k,
divided by the sum of probabilities of all paths through
the model (regardless of whether they emit xi in the
state k or not). Furthermore, the posterior probability
can easily be found by [21]

P πi ¼ kjX;Mð Þ ¼ f k ið Þ⋅ bk ið Þ
P XjMð Þ

Conventional posterior decoding maximizes posterior
probability of assigning the HMM state k to the residue
xi over all states k. However, in the case of motif-HMM,
match states representing the motif are known. Thus, in
this case it is more meaningful to find the assignment of
residues to the given state Mk. Therefore, for a given
match state Mk, we maximized posterior probability over
all possible emissions xi. Namely, let sk be the maximum
posterior probability for the match state Mk over all pos-
sible emissions xi, i.e.

sk ¼ max
i

P πi ¼ Mk jX;Mð Þ i ∈ 1……Lf g

Let the residue that maximizes posterior probability at
Mk be xj(k) where
j kð Þ ¼ argmax
i

P πi ¼ Mk jX;Mð Þ

After finding sk and xj(k) for all Mk in the motif, we de-
fined the score of the motif as

S ¼ s1⋅… ⋅ sn

where n is the length of the motif. Such scoring where
posterior probabilities are multiplied is intuitively ap-
pealing, because one is looking for a joint probability of
events (namely, that xi was emitted by Mk AND xi + 1 by
Mk + 1 AND etc.). Taking the product of posterior prob-
abilities is an approximation of the probability of the
joint event since sk do not correspond to independent
events. However, when posterior probabilities are large
enough, taking the product becomes a good approxima-
tion of the total probability (i.e. total motif score). On
the other hand, low values of posterior probabilities will
correspond to assignments that will be discarded in any
case.
If there is more than one motif present one can score

the sequence either by summing or by multiplying indi-
vidual motif scores. We have observed that summing in-
dividual motif scores produced slightly better ranking of
GDSL sequences in the test-proteome (A. thaliana).
This is due to the fact that summing individual motif
scores compensates for lower scoring motifs. Namely, if
the target sequence is composed of one low and two
high scoring motifs, this sequence might be a positive
with unusual mutations in one motif. Summing the
scores of individual motifs instead of multiplying them
penalizes such sequences less. Therefore, we defined the
total score ST as,

ST ¼
X3
m¼1

Sm ¼
X3
m¼1

sm1 ⋅…⋅smn mð Þ
� �

where m ∈ {1, 2, 3} is index of the motif and n(m) is the
corresponding length of the motif m and sk

m is the max-
imal posterior probability at state Mk in the motif m. In
our case these were n(1) = 10, n(2) = 9, n(3) = 9 for
Blocks I, III and V respectively (Additional file 1 and
Additional file 2: Figure S2). Algorithm ranks sequences
by the highest total score ST, and returns posterior prob-
abilities sk

m along with the corresponding residue
positions jm(k).

PD/VD protocol
PD/VD protocol was developed to decrease the false dis-
covery proportion of GDSL sequences. This protocol
discards all sequences which do not have “approximately
the same” (see criteria below) predicted motif positions
by PD and VD, for all three motifs.
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Unlike VD, PD does not necessarily return a
sequence of consecutive motif-residue positions. To
illustrate, motif-residue positions returned by PD,
might be consecutive such as 40-41-42-43-44-45, “al-
most consecutive” as in 40-41-41-43-44-45, or sepa-
rated by long intervals such as 40-41-42-70-71-72. If
the motif-residue positions, returned by PD were con-
secutive or almost consecutive and were also the
same as those returned by VD, for all three motifs,
this was considered as match (PD/VD match). Other-
wise, sequence was discarded from the further
analyses (Fig. 1). More precisely, if for the two corre-
sponding motifs predicted by VD and PD criteria
stated below were satisfied this was considered to be
a PD/VD match:
Fig. 1 Flowchart of the PD/VD protocol
(i) Absolute value of the difference of arithmetic means
of motif-residue positions returned by PD and those
returned by VD had to be < 3, for all three motifs.
For example, if motif-residue positions returned by
VD and PD were 40-41-42-43-44-45 and 40-41-42-
70-71-72 respectively, this would not be considered
as a match, since the absolute value of the difference
between arithmetic means is > 3. Namely, the arith-
metic mean of the first sequence is 42.5, the second
56 and |56-42.5| > 3.

(ii) Distance between two neighbouring motif residue
positions predicted by PD is not greater than two.
For example 44-45-47-48-49-50 would be allowed
but 44-47-48-49-50-51 would not. This was intro-
duced since deletions of more than two residues in
the GDSL blocks are highly unlikely. Note that this
condition also discards unlikely but theoretically
possible cases where the difference between the
two means is < 3 but is nevertheless biologically
meaningless. For example, if PD returned
20-21-22-61-62-64 (arithmetic mean 42) and
VD returned 40-41-42-43-44-45 (arithmetic
mean 43) this would not be considered as a
PD/VD match.
All sequences which passed the filter were
subsequently ranked by VD score.

CLANS and phylogenetic analyses
Cluster Analysis of Sequences (CLANS) is Java software
that runs BLAST on given sequences, all-against-all, and
clusters them in 2D or 3D according to their similarity
[29]. In this study CLANS was used to visualize similar-
ities of GDSL sequences identified by our motif scan
from 12 plant proteomes (533 protein sequences).
CLANS analysis was performed using a P-value cut-off
of 10−15.
Protein sequences for phylogenetic analysis were ran-

domly chosen from GDSL subgroups identified by
CLANS (Fig. 7): A (56), B (35), C (6), D (12), E (3) and F
(3). In total 115 GDSL sequences are listed in Additional
file 6. These sequences represented all taxa found in
each group and their number was proportional to the
group size. MSA of GDSL protein sequences was ob-
tained using E-INS-i alignment strategy, as suggested by
the MAFFT server documentation for cases < 200
sequences with multiple conserved domains and long
gaps [26]. GBlocks [30] was used to select the con-
served regions in MSA by applying the following pa-
rameters: (i) minimum number of sequences for a
conserved position = 58; (ii) minimum number of se-
quences for a flank position = 58; (iii) maximum num-
ber of contiguous non conserved positions = 100; (iv)
minimum length of a block = 4; (v) allowed gap posi-
tions = with half. Finally, 106 aligned columns were
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selected for further phylogenetic analysis. LG + I + G
was selected as the optimal model of protein evolu-
tion using PROTTEST 2.4 [31]. Maximum likelihood
(ML) phylogenetic tree was constructed by PhyML
3.0 [32]. Nodal supports were tested by approximate
likelihood-ratio test, aLRT [33].

Results and discussion
Over the past ten years we have been studying GDSL
lipolytic enzymes of bacterial origin [34–37]. Here we
aimed to scan for the presence of GDSL motifs in pro-
teomes selected across the plant kingdom. While analyz-
ing previously reported protein sequences annotated as
GDSL enzymes we noticed that numerous sequences
were lacking specific block(s) and/or catalytic residues
known to be essential for GDSL enzyme activities.
Therefore, we have developed and applied a motif scan-
ning approach to identify all sequences possessing the
most conserved GDSL Blocks (I, III and V). To examine
the possible benefits of motif scanning for the identifica-
tion of GDSL sequences, we firstly applied PSSM, VD
and PD on the well-curated A. thaliana proteome [9].
Fig. 2 Top 300 A. thaliana protein sequences ranked by different algorithms. a
d PD/VD protocol. Positives (GDSL sequences) - red bars; negatives – blue bars. N
by PD/VD protocol are marked with the black arrows and sequence At1g54030,
Note that VD and PSSM are widely used, whereas PD is
not a standard motif scanning method [21–23].

Evaluation of different scanning methods on A. thaliana
proteome
Since the A. thaliana proteome has been extensively an-
alyzed, we used it to test the relative performance of PD,
PSSM and VD. The results are shown in Fig. 2. Visual
inspection confirmed that all three methods ranked
GDSL enzymes (red bars - Fig. 2) at the top of 35,176
protein sequences present in the A. thaliana proteome
(top ranked 300 sequences are shown in Fig. 2). VD
displayed the best ranking, followed by PD and PSSM.
Note that in the VD output list all sequences with GDSL
motifs (116) obtained positive scores while sequences
without the required GDSL blocks obtained scores lower
than GDSL sequences, with three exceptions (blue bars -
Fig. 2c). The reasons for the high ranking of these
sequences lies in the fact that the sequence ranked as
66th [TAIR: At1g54030] possesses well conserved re-
quired motifs with only one but essential mutation in
catalytic site in Block I (Ser/Gly) (Fig. 2c, At1g54030 is
Posterior decoding; b Position-specific scoring matrix; c Viterbi decoding;
egative sequences (not GDSL) with positive VD scores which were removed
in detail described in the text is marked with the blue triangle
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marked with the blue triangle). The other two sequences
ranked as 88th and 117th [TAIR: At3g4355 and
At4g16230 respectively] (Fig. 2c) although lacking Block
V possess two highly conserved motifs, Block I and III
that contributed significantly to their scores. Note-
worthy, At1g54030 was shown to lack lipase activity
[38–40]. Its retention in the genome should be ascribed
to the fact that although preserving high overall similar-
ity with the GDSL family this enzyme acquired a novel
cellular function [41] and became a very good example
of a pseudoenzyme. In any case one would not expect a
high number of such sequences in the proteome. As
shown in A. thaliana only 3 out of 116 GDSL sequences
represent a group of dead enzymes. Therefore sequences
with similar properties should not constrain the overall
performance of our method.
Next, we compared our VD output list (116 A. thali-

ana sequences with GDSL motifs, Additional file 3, A.
thaliana sheet, Table A) with Volokita et al [9]. By apply-
ing iterative PsiBlast this group recently reported only
100 GDSL sequences in A. thaliana. Out of these, 97 se-
quences were present in our list while the remaining
three were omitted from our list since these sequences
were lacking Block I or V (Additional file 3, A. thaliana
sheet, Table B). This first test indicated that our motif
scanning method could be a very good option for anno-
tation of GDSL sequences in a given data set.

Additional scanning for GDSL lipases in selected plant
proteomes
We scanned five additional land plant proteomes (S. bi-
color, O. sativa, P. patens, P. trichocarpa and V. vinifera)
with our GDSL motif–HMM. According to previous
analysis, approximately 100 GDSL sequences should be
expected in each analyzed proteome [9, 10]. We decided
to inspect visually 300 of the best ranked sequences to
classify all sequences with conserved GDSL blocks (posi-
tives) and without GDSL blocks (negatives). We used
VD as a motif scanning method, since it showed the best
results on the A. thaliana proteome. The results of these
analyses are shown graphically in Fig. 3a. As in the case
of A. thaliana the same trend of ranking GDSL se-
quences at the top of the output list was noticed.
Namely, all identified GDSL sequences in all five ana-
lyzed proteomes were ranked at the top (within 0.2 %-
0.6 %) of the proteome output list. Moreover, almost all
GDSL sequences obtained a positive score (Fig. 3a) and
therefore zero was used as a threshold score to separate
positives from negatives in further analyses. Next, we
compared our results with a previously reported GDSL
list [9]. As can be seen, in each proteome we identified
novel sequences (138 in total, Additional file 3, Tables A
– rows labelled grey). It should be pointed out that dur-
ing this analysis we noticed discrepancies in the data sets
used in these two independent studies. Therefore we
have built a novel and comprehensive list of GDSL se-
quences with all important details. Description of GDSL
revised list is provided in the next paragraph.
Taken together, the presented results show that our

parameterization although not standard was very effect-
ive. Namely, starting from a very small number of seed
sequences (23) that were experimentally confirmed to
possess lipolytic activities (Additional file 2: Table S1)
and using a combination of flat and evolutionary pseudo
counts, we have built a model that effectively scanned
for GDSL motifs in six plant proteomes.
As in the case of A. thaliana we inspected all pro-

tein sequences in the VD output lists that, although
lacking required GDSL motifs, obtained positive
scores and vice versa all sequences that although pos-
sessing GDSL motifs obtained negative scores, i.e.
false positives (FP) and false negatives (FN) respect-
ively. In total, when taking zero as a threshold, 49 se-
quences from the six proteomes (208,298 sequences)
were classified as FP and seven as FN. It should be
emphasized that a zero-threshold is a very stringent
criterion. Moreover, taking into account an average
expected number of GDSL sequences (around 100 per
proteome), the fact that only seven FN were identified
shows a very high sensitivity (98.7 %) for this method.
Note also that all FN obtained negative scores close
to zero. Therefore, sequences around zero should be
carefully examined. Analyses of FPs (49) showed that
the majority of these proteins (46/49) possess GDSL motifs
with mutated residue(s). Out of these 46 sequences, five
were mutated in catalytic sites (3 carrying 1, and 2 carrying
2 mutations), whereas 41 were missing one of the Blocks
(25 - Block V, 15 - Block I, 1 - Block III) but the other two
were highly conserved thus contributing to the high score.
These sequences most likely represent pseudoenzymes as
described previously in A. thaliana and as such could be of
interest for further studies. Note that only 3/49 FPs found
in a total of 208,298 sequences did not display any global
similarity to GDSL members, but the HMM-based motif
scan found short stretches of amino acids which resemble
GDSL motifs.

Revised list of GDSL sequences
As stated above, the results of the motif scanning ana-
lyses of selected proteomes and their comparison with
previously reported GDSL sequences [9] led us to create
a revised list of GDSL sequences (Additional file 3, Tables
A, B and C). We discriminate three categories:

(A) In this study identified GDSL sequences from the
RefSeq proteomes. As depicted in Additional file 3,
Table A, GDSL sequences not reported previously
are shown in grey.



Fig. 3 Top 300 sequences from the selected proteomes ranked by different algorithms. a Viterbi decoding; b PD/VD protocol. Positives (GDSL
sequences) - red bars; negatives (not GDSL sequences) – blue bars
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(B) Previously reported GDSL sequences not identified
in our study but traced in RefSeq via provided gene
loci [9] were analyzed and are listed in Additional
file 3, Table B. As shown, all of these sequences
were lacking one or two required motifs and were
therefore omitted from our list. On the other hand,
all sequences provided in [9] were also analyzed and
divided into two subgroups: those which are GDSL
or those lacking the required motif(s).

(C)Previously reported GDSL enzymes [9] that could
not be traced since standard gene identifier was not
provided were also categorized based on the
presence or absence of GDSL motifs (Additional file
3, Table C).

As a general conclusion it should be pointed out that
comparison with previously reported GDSL lists [9] was
rather difficult in some cases since proteome databases
have undergone many changes and many protein se-
quences have been revised. Inconsistencies in protein
databases as well as differences between protein identi-
fiers observed in this study are a well known problem in
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proteomics [42]. The rationale for using RefSeq as a data
source for proteomes analyzed in this study was based
on a recent publication [43], its widespread use and the
fact that it is manually curated. The best match with
previous results [9] was obtained for A. thaliana, thus
indicating a carefully curated proteome (Additional file
3, sheet A. thaliana). On the contrary, for other analyzed
proteomes we used gene loci to track all sequences
which were not 100 % identical with those reported pre-
viously. For example, in the S. bicolor proteome we have
identified 105 GDSL sequences; 102/105 matched previ-
ously reported sequences [9], whereas three were novel.
An additional 28 sequences were found by Volokita et al
[9] (Additional file 3, sheet S. bicolor, Tables B, C). How-
ever 10/28 sequences were not present in RefSeq and
therefore could not be identified here while 18/28 of
these reported sequences [9] were lacking at least one of
the conserved motifs (Additional file 3, sheet S. bicolor,
Table B) and therefore were not identified as GDSL en-
zymes in this study. A similar analysis was performed
for O. sativa (Additional file 3, sheet O. sativa). For the
additional three proteomes, P. patens, V. vinifera and P.
trichocarpa comparison using protein identifiers was not
possible since the majority of those provided in [9] could
not be matched with the NCBI accession numbers.
Altogether, in these three proteomes 101 GDSL se-
quences were not reported previously, whereas 120 se-
quences matched (100 % identity) the previous GDSL
list (Additional file 3, sheets P. patens, V. vinifera and P.
trichocarpa).
Regardless of the differences in proteome data sources

our results demonstrate the benefit of the motif scan ap-
proach since in well defined data sets we identified novel
sequences and found many previously reported GDSL se-
quences which lack GDSL conserved block(s) (Additional
file 3, Tables B, C) and therefore should not be annotated
as GDSL enzymes. All protein sequences possessing the
required GDSL blocks, reported previously but not found
here (since not present in RefSeq) obtained high scores in
approximately the same range as GDSL sequences in
Additional file 3, Tables A. This clearly shows that these
sequences could have been identified if present in our data
set.
The fact that each proteome contained some proportion

of GDSL sequences displaying a family profile similarity
but lacking specific motif(s) prompted us to perform an
additional analysis. We used the GDSL sequences from
the Pfam database since Pfam collects the sequences re-
lated by overall sequence similarity, i.e. sequence family
profile [44]. We selected the Pfam database Lipase_GDSL
(PF00657) family to retrieve all GDSL sequences from the
species analyzed in this study. An additional two Pfam
families were also checked (PF13472, Lipase_GDSL_2 and
PF14606, Lipase_GDSL_3), but they did not contain any
sequences from the here selected plant proteomes and
therefore were not analyzed. In total 820 protein
sequences were analyzed by motif scan. Out of 820 se-
quences, 171 (21 %) were lacking one or more required
blocks. This number was unexpectedly high, especially
considering that PfamA is a high quality and manually cu-
rated database. In addition, note that Pfam used 65 se-
quences as a seed for their model, whereas our model was
parameterized with 23 seed sequences. As shown graphic-
ally in Fig. 4 this additional analysis underlined the good
performance of our model since the majority of these se-
quences obtained negative VD scores. PF00657 sequences
annotated as GDSL by Pfam are divided into two groups,
according to the presence or absence of required blocks
(Additional file 4). These results show that the combin-
ation of motif scan and profile search provides an excel-
lent tool for eliminating protein sequences that preserve
protein family profile but lack specific motif(s). Addition-
ally, our results indicate that the motif-based HMM
parameterization used here could be successfully applied
for the automatic annotation of GDSL enzymes in differ-
ent plant proteomes or possibly in other large sequence
datasets (e.g. metaproteomic datasets). Taking into ac-
count the economic importance of lipolytic enzymes in
general and the need for fast identification over very large
datasets we think that our model will be of general inter-
est to scientists working in this field. Moreover, we believe
that our motif scan approach could be successfully applied
to the identification of the members of other protein fam-
ilies which exhibit low sequence similarity but possess
conserved motifs. Therefore, we provide a web-based
motif HMM scan application which uses a graphical inter-
face and where users can choose between Viterbi decod-
ing and Posterior decoding (http://compbio.math.hr).

PD/VD combination for reduction of false positives
While analyzing predicted GDSL blocks we observed
that for the great majority of identified GDSL sequences
PD and VD predicted the same motifs (residue posi-
tions). In contrast, for the majority of negatives these
two methods differed in predicted motifs. This could be
ascribed to the fact that PD usually did not return a set
of consecutive residues if GDSL motifs were not present
(Methods). Starting with the assumption that PD and
VD in combination might decrease the number of false
positives, we developed the PD/VD protocol. As de-
scribed in Methods, sequences in which VD and PD did
not predict the same positions for all three motifs were
removed from the output (Fig. 1). For example, by ap-
plying PD/VD protocol to the A. thaliana proteome
some of the highly ranked sequences which did not pos-
sess all three required Blocks were removed, without los-
ing any positive sequences (Fig. 2c, sequences marked
with black arrows). Other combinations (VD/PSSM and

http://compbio.math.hr/


Fig. 4 VD scores of selected plant proteomes from Pfam database - Lipase_GDSL (PF00657). Out of 820 sequences, 649 possessed all three conserved
motifs (red bars) whereas 171 did not (blue bars)

Vujaklija et al. BMC Bioinformatics  (2016) 17:91 Page 11 of 17
PSSM/PD) did not perform as well and were not used in
further analyses.
Starting with this observation, we firstly evaluated PD/

VD performance using a simple test sample consisting
of 100 GDSL sequences identified in various land plant
proteomes and 100 protein sequences without GDSL
blocks randomly selected from the Swiss-Prot list of
manually annotated and reviewed proteins. The PD/VD
protocol achieved 100 % sensitivity and specificity taking
again the Viterbi score zero as a threshold (Fig. 5). As a
proof of concept, this result showed that the combin-
ation of PD and VD could potentially be used to de-
crease the number of false positives form VD output
lists of large data sets.
Secondly, to test our protocol in a more realistic set-

ting, PD/VD was applied to the previously analyzed pro-
teomes (A. thaliana, O. sativa, S. bicolor, P. patens, V.
vinifera and P. trichocarpa). Output lists were visually
validated and results are shown in Figs. 2d and 3b. In
order to compare relative performance of PD/VD against
VD alone we have defined two additional terms: true
positives (TP) and true negatives (TN), in addition to FP
and FN, taking the Viterbi zero score as a threshold.
Namely, all sequences with the three required motifs
(here labelled positives) which obtained positive Viterbi
scores were classified as TP; sequences lacking the
Fig. 5 PD/VD performance on the test sample. All 100 plant GDSL sequenc
100 randomly selected negatives (blue bars) obtained negative scores (100
required motifs (here labelled negatives) with negative
scores as TN; whereas positives with negative scores
as FN and vice versa negatives with positive scores as
FP. The results of these analyses are shown in Table 1.
We calculated, for VD and PD/VD, false discovery
proportion (FDP) - the proportion of false positives
among all sequences which obtained positive scores,
FDP = FP/(FP +TP); and sensitivity (S) - the proportion of
correctly identified positive sequences, S = TP/(TP + FN).
In this setting, where the overwhelming majority of
sequences are negative, specificity is not a suitable measure,
since the ratio TN/N is only marginally affected by the
number of FPs. In such cases FDP can be used as an appro-
priate measure instead of specificity. As shown in Table 1,
PD/VD decreased FDP in all cases and retained very high
sensitivity which remained equal in 4/6 cases and only
slightly decreased in two cases. Altogether, when PD/VD
was applied, 41 % of all FPs were eliminated (29/49), i.e.
FDP was decreased from 8.5 to 5.3 %. On the other hand,
sensitivity decreased slightly, from 98.7 to 97.9 % (Table 1).
The presented results show that in our setting the PD/VD
protocol was successful in the elimination of false positives
while slightly decreasing sensitivity. However, it has to be
taken into account that the benefit of the PD/VD will
strongly depend on the model parameterization and these
results should be viewed as a proof of concept.
es (red bars) obtained positive PD/VD scores (100 % sensitivity), while
% specificity)



Table 1 Comparison of VD and PD/VD performance based on
visual inspection of 300 of the top ranked sequences for each
proteome

Organism Method TP FP FN FDP (%) S (%)

A. thaliana VD 116 8 0 6.5 100.0

PD/VD 116 4 0 3.3 100.0

S. bicolor VD 105 6 0 5.4 100.0

PD/VD 104 2 1 1.9 99.0

O. sativa VD 90 11 1 10.9 98.9

PD/VD 90 6 1 6.3 98.9

P. patens VD 40 0 3 0.0 93.0

PD/VD 37 0 6 0.0 86.0

P. trichocarpa VD 95 14 3 12.8 96.9

PD/VD 95 11 3 10.4 96.9

V. vinifera VD 80 10 0 11.1 100.0

PD/VD 80 6 0 7.0 100.0

Σ208,298 sequences VD 526 49 7 8.5 98.7

PD/VD 522 29 11 5.3 97.9

The total number of entries in six proteomes and the numbers of GDSL identified
by VD and PD/VD as well as respective statistical measures are shown in bold. TP
true positive, FP false positive, FN false negative, S sensitivity [S = TP/(TP + FN)], FDP
false discovery proportion [FDP = FP/(FP + TP)]; TPs that were eliminated by PD/VD
protocol were added to the FN group
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Scanning for GDSL motifs in lower plants
We applied our motif-based HMM to analyze selected
proteomes of lower plants. As described in the Back-
ground section, members of the GDSL protein family
have been identified throughout the life kingdoms
[4, 5, 9, 10, 34]. A significantly higher number (~10 X) of
GDLS enzymes was observed in land plants in compari-
son to so far examined bacterial genomes (manuscript
in preparation). The only analyzed representative of
lower plants, P. patens, displayed approximately 50 %
reduction in GDSL enzymes although its proteome size
is comparable to those of euphyllophytes. Therefore we
Fig. 6 a Schematic representation of the evolution of plants. Green algae -
blue. b Percentage of identified GDSL enzymes in analyzed plant proteomes. Ol
subellipsoidea C-169; Vc - Volvox carteri; Cr - Chlamydomonas reinhardtii; Pp - Physc
bicolor; Vv - Vitis vinifera; Pt - Populus trichocarpa; At - Arabidopsis thaliana
extended the GDSL motif scan to the only available lyco-
phyte, S. moellendorffii. This organism represents an an-
cient lineage that diverged shortly after land plants
evolved vascular tissues [45] (Fig. 6a). In addition, we
analyzed five proteomes of green algae (C. reinhardtii, C.
subellipsoidea, M. pusilla, O. lucimarinus, V. carteri)
also known as “primitive plants” [46]. Due to the ob-
served discrepancies in databases we have carefully ex-
amined proteomes from RefSeq and also from
Phytozome. Since the latest versions of proteomes were
still not released to RefSeq (S. Prochnik, jgi-phytozome,
2014, personal communication) here we show results of
motif scanning performed on proteomes obtained from
Phytozome (Additional file 5). As presented, the absolute
number of GDSL enzymes is significantly lower in green
algae (11 or less per proteome) than in land plants.
However, in the lycophyte S. moellendorffii the number
of GDSL enzymes was comparable to that of land plants
(95). All output lists obtained in these analyses were ex-
amined carefully. Taking into account scores of positives
from the previous section (Figs. 2 and 3) we have exam-
ined visually all sequences with a score around zero. In
accordance with previous results all GDSL sequences
from the six newly analyzed proteomes were ranked at
the top of the output lists. Note that ten sequences from
S. moellendorffii, although highly ranked, had a wrong
prediction for one of the GDSL motifs positioned close
to the beginning or end of the protein sequence (Block I
or Block V). The reason that VD failed to identify the
correct motif lies in the fact that the active site Ser in
Block I (8/10) and His in Block V (2/10) were unexpect-
edly close to termini (3 residues from the N- or C-
terminus respectively), whereas in our HMM the active
site Ser in Block I is represented by the 6th match state
and His in block V is followed by five match states
(Additional file 2: Figure S2). Thus, it is not surprising
that VD has missed these truncated blocks. Such cases
orange, bryophyte - purple, lycophyte - green, euphyllophytes - dark
- Ostreococcus lucimarinus; Mp - Micromonas pusilla RCC299; Cs - Coccomyxa
omitrella patens; Sm - Selaginella moellendorffi; Os - Oryza sativa; Sb - Sorghum
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were not observed during analysis of the other land
plants and algae. Therefore, these sequences could be
ascribed to an incomplete cDNA.
The percentages of GDSL of GDSL proteins identified

by our motif scanning are shown in Fig. 6b. As shown,
the only presently available lycophyte proteome suggests
that the GDSL hydrolytic family expanded during the
transition from bryophytes to vascular plants. We
propose that this remarkable expansion of GDSL en-
zymes found in the lycophyte, S. moellendorffii with
proteome size comparable to algae might have been im-
portant in the early evolution of developmental and
metabolic processes unique to vascular plants [45].

Phylogenetic analysis of GDSL enzymes
To find evolutionary links between all GDSL sequences
identified in this study, we additionally performed a
phylogenetic analysis. Previous phylogenetic analysis of
GDSL lipases from land plants showed the existence of
two major subfamilies (A and B) and one minor subfam-
ily (C) [9]. In this study we used our expanded list of
GDSL enzymes from the land plants and from the lower
plants. GDSL sequences were firstly analyzed by the
Cluster Analysis of Sequences program (CLANS) [29].
As depicted in Fig. 7 all GDSL sequences from land
plants were clustered into four well defined groups A, B,
C, and a previously unreported group D. Two additional
groups, E and F which we report here arise only from
algal sequences. They are presently represented by a
small number of sequences but accumulation of new
algal genomes should eventually enrich these groups. As
shown in Fig. 7, group E is positioned closer to groups
A, B, and C that are formed only of GDSL sequences
Fig. 7 Cluster map of identified GDSL proteins. The CLANS analysis of all G
green algae are shown as orange dots, from bryophyte as purple dots, from
from land plants (moss, lycophytes and euphyllophytes).
The positions of groups F and D in the cluster map indi-
cate a distant relationship to other groups. Noteworthy,
only group D contains GDSL proteins from all 12 ana-
lyzed plants, thus possibly indicating that they contrib-
ute to essential and common cellular function(s).
Phylogenetic analysis was performed with the number

of sequences proportional to the CLANS group size
(Additional file 6), as described in Methods. In accord-
ance with the CLANS result the ML tree (Fig. 8) showed
a clear separation of groups A, B, C, D, E, and F and
provided a better insight into their evolutionary relation-
ships. Most of the GDSL sequences found in land plants
(~100 per proteome) fell into two main phylogenetic
groups (A or B). As depicted in Fig. 8 group A is poly-
phyletic whereas groups B - F are monophyletic. Groups
D, E and F identified in this study formed a well sup-
ported but divergent clades. GDSL sequences belonging
to the algal group F are most closely related to group D,
while algal sequences from the group E form a clade re-
lated to the A group.
As described, the highest proportion of GDSL enzymes

per proteome was observed for S. moellendorffii (Fig. 6b).
Its GDSL sequences were clustered within groups A, B,
and D. However, this lycophyte is lacking GDSL se-
quences belonging to group C. In plant evolution mosses
diverged earlier from the common ancestor of the lyco-
phytes and euphyllophytes. Since group C contains
GDSL sequences from the moss and euphyllophytes we
assume that these genes were lost from the lycophyte
lineage. Further conclusions on the early evolution of
subfamilies A – D can be drawn from the distribution of
GDSL sequences of the moss, P. patens. Their presence
DSL proteins displayed six distinct subfamilies, a-f. GDSL proteins from
lycophyte as green dots and from euphyllophytes as dark blue dots



Fig. 8 Unrooted ML tree of selected plant GDSL lipases
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in these subfamilies implies that the observed subfam-
ilies A - D already existed before the moss lineage di-
verged from the ancestor of vascular plants. Thus, the
subsequent increase in the number of GDSL proteins
occurred in the already existing subfamilies, as described
above, predominantly A and B. As proposed earlier, the
expansion of GDSL sequences in land plants could be
explained by gene duplication and their retention by
functional specialization [9].

Analysis of GDSL motifs
We have aligned all sequences belonging to particular
CLANS groups and have visualized group-specific motifs
by WebLogo (Fig. 9). When compared to the blocks of
seed sequences (Additional file 2: Figure S2) we found
previously undescribed variations in all three motifs.
As shown in Fig. 9, motif sequences exhibit specific

variations that correlate well with the depicted phylogen-
etic groups. For example, related subfamilies A, B, C and
E, possess in the Block I a highly conserved residue D at
position 9 whereas Block I from the more divergent sub-
families D and F most often contains the sequence
GDSITE. Additional variations between closely related
subfamilies were observed. An interesting deviation in
Block I, namely GSS instead of the GDS has often been
observed in group D (11/32 sequences). Some poorly rep-
resented variations of Block I (not visible on WebLogo)
were also found in groups A, B, C, and D (e.g. GNS, GAS,
ADS, etc.). GSS and GNS motifs were reported recently
in GDSL hydrolases from two closely related bacteria,
Leptospira borgpetersenii and L. interrogans [47]. We have
also found over 60 GDSL sequences possessing the GSS
motif in other plants (data not shown). A broad distribu-
tion of these particular motifs in bacteria and plants
possibly implies their biological importance and functional
specialization. Other blocks also exhibited group specific
variations. The most common sequence in Block III is
GxND, however each group displayed characteristic
amino acid residues at specific positions (Fig. 9). Similarly,
Block V contains a conserved DxxH sequence, whereas
other positions show much higher variations. Although
Asp (D) is highly conserved in plants, analyses of bacterial
GDSL family showed that this residue could often be
substituted with W, N or E [34, 35, 48]. In conclusion,
each phylogenetic group reported here shows some motif
preferences. So far, only a few structural studies of GDSL
hydrolases have been reported [8, 48–51]. In spite of low
sequence similarity the overall fold of GDSL enzymes
proved to be conserved. However, diversity of loop
conformations in the substrate binding domains are found



Fig. 9 Conserved Blocks from plant GDSL subfamilies a-f. Blocks were obtained from MSA of 374, 197, 27, 32, 11 and 10 GDSL sequences for
subfamilies (a), (b), (c), (d), (e) and (f), respectively, and visualized by WebLogo [53]. Polar amino acids G, S, T, Y and C are green, neutral Q and N
are purple, basic K, R and H are blue, acidic D and E are red, and hydrophobic A, V, L, I, P, W, F and M are black

Vujaklija et al. BMC Bioinformatics  (2016) 17:91 Page 15 of 17
to be important in defining geometry of the active site
pocket which consequently determines the substrate spec-
ificities of GDSL enzymes [8, 52]. We applied the Ali2D
program to analyze secondary structure topology of all
representatives used in the phylogenetic analyses. Globally
the results suggest that secondary structure content is pre-
served although variations in α helices and β strands
among the groups could be observed. The relative location
of the motifs possessing the key amino acid residues is ra-
ther conserved in all analyzed GDSL enzymes (Additional
file 7). However, occurrence of the insertions/gaps be-
tween predicted secondary structure elements suggests
that variations in the binding pockets could be expected
even for members of the same group. Therefore, the ex-
tent by which these motif variations influence the en-
zymes’ structural and biochemical properties remains a
major challenge for future studies.
Altogether, phylogenetic analyses, presented motif var-
iations and secondary structure predictions underscore
the correct identification of GDSL sequences, thus indi-
cating the high sensitivity and specificity (i.e. FDP) of
our motif-HMM model.

Conclusions
In this study we successfully applied an HMM-based
motif scanning approach as a solution for the improved
annotation of sequences belonging to the protein family
with members sharing low sequence similarity. Our re-
vised list of GDSL enzymes enabled new insight to the
phylogenetic relations of GDSL family members in the
plant kingdom. Novel subfamilies and corresponding
motif-variations were found. We expect that our
approach could also be applied to other families with
low overall sequence similarity and multiple conserved
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motifs, thereby reducing the number of wrongly anno-
tated sequences in the era of massive high-throughput
technologies.
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