
Daily BMC Bioinformatics (2016) 17:81
DOI 10.1186/s12859-016-0930-z

SOFTWARE Open Access

Parasail: SIMD C library for global,
semi-global, and local pairwise sequence
alignments
Jeff Daily

Abstract

Background: Sequence alignment algorithms are a key component of many bioinformatics applications.
Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs,
most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch
global sequence alignment and its semi-global variants are not as widespread. This article presents the first software
library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of
previous intra-sequence implementations.

Results: A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including
new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per
second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an
implementation based on Farrar’s ‘striped’ approach. Rognes’s SWIPE optimal database search application is still
generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino
acids. However, Parasail was faster for longer sequences. For global alignments, Parasail’s prefix scan implementation is
generally the fastest, faster even than Farrar’s ‘striped’ approach, however the opal library is faster for single-threaded
applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or
AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license.

Conclusions: Applications that require optimal alignment scores could benefit from the improved performance. For
the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

Keywords: Smith-Waterman, Needleman-Wunsch, Semi-global alignment, Sequence alignment, SIMD, Database
search

Background
Sequence alignment is an order-preserving way to map
characters between two DNA or amino-acid (protein)
sequences. It is a pervasive operation in bioinformat-
ics workflows used to identify regions of high similarity
between sequences. Similarity is generally measured by
assigning a positive score to matches and a negative score
tomismatches. For proteins, a substitutionmatrix, such as
BLOSUM [1] or PAM [2], is used to score amino acid simi-
larity for each possible residue pair. In addition to negative
scores, alignments may be penalized by the insertion of

Correspondence: jeff.daily@pnnl.gov
Pacific Northwest National Laboratory, High Performance Computing Group,
902 Battelle Boulevard, P.O. Box 999, MSIN J4-30, 99352 Richland, WA, USA

gaps or deletion of characters. Gap penalties are often lin-
ear (a fixed negative value per gap) or affine [3], where
the gap opening penalty is typically larger than the gap
extension penalty.
There are three primary classes of sequence alignment,

namely global, semi-global, and local. A global alignment
causes the alignment to span the entire length of each
sequence and is used when the two sequences are similar
in length and presumed to be related. A local align-
ment identifies highly conserved regions or subsequences
though the rest of the sequence may be divergent. A semi-
global alignment does not penalize beginning or end gaps
in a global alignment such that the resulting alignment will
tend to overlap one end of a sequence with an end of the
other sequence.

© 2016 Daily. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0930-z-x&domain=pdf
https://github.com/jeffdaily/parasail
mailto: jeff.daily@pnnl.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Daily BMC Bioinformatics (2016) 17:81 Page 2 of 11

Sequence alignments are computed using dynamic pro-
gramming because it is guaranteed to find an optimal
alignment given a particular scoring function. Regard-
less of the class of alignment being computed, a dynamic
programming recurrence of the following form is com-
puted. Given two sequences s1[1 . . .m] and s2[1 . . . n],
three recurrences are defined as follows: Let Si,j denote
the optimal score for aligning the prefixes s1[1 . . . i] and
s2[1 . . . j] such that the alignment ends by substituting
s1[i] with s2[j]. Di,j denotes the optimal score for align-
ing the same two prefixes such that the alignment ends
in a deletion, i.e., aligning s1[i] with a gap character. Simi-
larly, Ii,j denotes the optimal score for aligning the prefixes
such that the alignment ends in an insertion, i.e., aligning
s2[j] with a gap character. Given the above three ways to
end an alignment, the optimal score for aligning the pre-
fixes corresponding to the subproblem {i, j} is given by:
Ti,j = max(Si,j,Di,j, Ii,j). The dependencies for the individ-
ual dynamic programming recurrences are as follows: Si,j
derives its value from the solution computed for the sub-
problem {i− 1, j − 1}, while Di,j and Ii,j derive their values
from the solutions computed for subproblems {i−1, j} and
{i, j − 1}, respectively.
A typical implementation of this dynamic programming

algorithm builds a table of sizeO(m× n) with the charac-
ters of each sequence laid out along one of the two dimen-
sions. Each cell (i, j) in the table stores three values Si,j,
Di,j, and Ii,j, corresponding to the subproblem {i, j}. Given
the dependencies of the entries at a cell, the dynamic pro-
gramming algorithms for all three sequence alignment
classes can be represented using the pseudocode outlined
in Algorithm 1. The algorithm has a time complexity of
O(mn).

Algorithm 1 Dynamic Programming Algorithm
Align(s1[1 . . .m] , s2[1 . . . n])
1: Initialize the first row of the dynamic programming

table
2: Initialize the first column of the dynamic program-

ming table
3: for i: 1 tom do
4: for j: 1 to n do
5: Si,j ← Ti−1,j−1 + W (i, j).
6: Di,j ← max(Di−1,j,Ti−1,j + Gopen) + Gext.
7: Ii,j ← max(Ii,j−1,Ti,j−1 + Gopen) + Gext.
8: Ti,j ← max(Si,j,Di,j, Ii,j).

The three classes of sequence alignment initialize the
first row and column differently (lines 1 and 2 in
Algorithm 1). SW and SG alignments initialize the first

row and column of the table to zero, while NW alignments
initialize the first row and column based on the gap func-
tion. The table values for SW alignments are not allowed
to become negative, while NW and SG allow for negative
scores.
Hereafter, for convenience according to common prac-

tice, we call the sequence with characters along the rows
of the table the “query” sequence and the sequence with
characters along the columns of the table the “database”
sequence.
Aligning two sequences of lengths m and n requires

O(mn) time. This computation time becomes much more
significant when computing many alignments as done
in many bioinformatics applications, such as database
search, multiple sequence alignment, genome assem-
bly, and short read mapping. There have been many
approaches to making this operation faster includ-
ing heuristic methods such as BLAST [4], how-
ever such heuristic methods may generate sub-optimal
alignments.
There have been numerous efforts to parallelize

optimal sequence alignments using vector instructions
[5–12]. However, not all of these approaches neces-
sarily address the same bioinformatics application. For
example, database search may group database sequences
to improve performance [8], while protein homology
graph applications may prohibit such optimizations [13].
That said, parallel sequence alignments generally fall
into two categories: inter-sequence and intra-sequence.
Inter-sequence parallelization is the alignment of a sin-
gle (query) sequence against a set of (database) sequences
[8], while intra-sequence parallelization is focused on par-
allelizing a single pairwise alignment of two sequences.
Zhao’s implementation of Farrar’s “striped” method
[7, 9] was previously the fastest intra-sequence implemen-
tation of Smith-Waterman while Rognes’s SWIPE soft-
ware is the fastest known inter-sequence implementation.
No known implementations of vectorized Needleman-
Wunsch or semi-global pairwise alignments existed for
intra-sequence parallelism prior to the Parasail library.
Two additional software libraries implement Rognes’s
inter-sequence approach, opal (formally SWIMD) [14]
and libssa [15]. Opal implements all classes of sequence
alignments while libssa implements only local and global
alignments. Both libraries support the SSE4.1 as well as
the AVX2 instruction sets.

Implementation
Parasail is a SIMDC (C99) library containing implementa-
tions of the Smith-Waterman (local), Needleman-Wunsch
(global), and semi-global pairwise sequence alignment
algorithms. Here, semi-global means insertions before
the start or after the end of either the query or tar-
get sequence are not penalized. Parasail implements

Daily BMC Bioinformatics (2016) 17:81 Page 3 of 11

most known algorithms for vectorized pairwise sequence
alignment, including diagonal [5], blocked [6], striped
[7], and prefix scan [13]. In addition, the Parasail library
implements each of these methods for the SSE2, SSE4.1,
AVX2, and KNC (Xeon Phi accelerator) instruction sets.
Parasail uses a technique called CPU dispatching to cor-
rectly select the appropriate implementation, at runtime,
for the highest level of CPU instruction set supported.
Therefore, Parasail is a reference implementation for these
algorithms in addition to providing an implementation
of the best-performing algorithm(s) to date on the most
advanced CPUs. Source code is available at https://github.
com/jeffdaily/parasail under the Battelle BSD License.
The same files are included in a gzipped tar archive as
Additional file 1.

C library interface
There are over one thousand functions within the Parasail
library. To make it easier to select a particular function,
the function names follow a naming convention. The fol-
lowing will use parentheses “()” to indicate a selection
from a set must be made. If a portion of the function name
is optional, the description will indicate as such. Under-
scores “_” separate each function name component. The
components of the function names are listed in the order
they should appear in the constructed function names.
parasail Required. The function prefix to avoid clashing

with other libraries. All functions begin with this
prefix.

(nw, sg, sw) Required. The class of alignment; global,
semi-global, or local, respectively,

statsOptional. Return alignment statistics.
(table, rowcol)Optional. Return the entire dynamic pro-

gramming table or return the last row and column
of the dynamic programming table, respectively.

(striped, scan, diag)Optional. The vectorized approach.
Striped is almost always the best choice.

profile Vector approaches only, specifically only prefix
scan and striped, but optional in that case. The pre-
fix scan and striped vector implementations must
first compute a query profile. That step can option-
ally be performed ahead of time and the query
profile reused to avoid costly recomputation of the
query profile.

(sse2_128, sse41_128, avx2_256, knc_512) Vector
approaches only, but optional in that case. The
instruction set and vector width. If not given, the
default will use CPU dispatching to select the best
available instruction set on the host system.

(8, 16, 32, 64, sat) Vector approaches only, but required
in that case. The integer width of the solution. This
also affects performance; a smaller integer width
will increase the number of lanes used by the vec-
tors and thus improve performance. If “sat” is used,

the function defaults to the 8-bit implementation
and, if overflow of the score is detected, it will retry
using the 16-bit implementation.

The two examples to follow should help illustrate how
function names should be constructed.

parasail_sw As simple as possible, this is the non-
vectorized reference implementation of Smith-
Waterman local alignment. It will return the align-
ment score as well as the ending locations of the
alignment along the query and database sequences.

parasail_sg_stats_scan_avx2_256_sat The prefix scan
vector implementation of semi-global alignment.
It will use 8-bit integers during the computation
and recompute using 16-bit integers if overflow is
detected (‘sat’ is for ‘saturation’). AVX2 is selected
for the CPU instruction set. Additional alignment
statistics are also computed and returned.

Instruction sets and CPU dispatching
Parasail supports the SSE2, SSE4.1, AVX2, and KNC
(Xeon Phi) instruction sets. In many cases, a compiler
can compile source code for an instruction set that is not
supported by the host CPU. The code is still compiled,
however, Parasail uses a technique called CPU dispatch-
ing to avoid running code that uses instructions that the
host CPU does not support. CPU dispatching tests for
features of the CPU at runtime which is different than
testing whether a compiler can compile certain instruc-
tions at compile-time. The results of the runtime CPU
tests are used to correctly select the appropriate Para-
sail implementation for the highest level of instruction set
supported on the host platform. This allows Parasail to
be compiled and distributed by a maintainer for the best
available system while still allowing the same distribution
to run with a lesser CPU.
Parasail is optimized for the SSE4.1 level of instruction

set. Some SSE4.1 instructions are missing for SSE2 and
were emulated using other available SSE2 instructions.
Some AVX2 instructions, e.g. bit packing, lane shifting,
also needed to be emulated using other AVX2 instructions
because AVX2 is effectively two SSE 128-bit lanes operat-
ing independently and some operations do not cross the
lane boundaries.

Improvements to striped vectorization
Farrar’s striped method [7] remains the fastest Smith-
Waterman inter-task algorithm to date. However, its
implementation has seen two improvements. First, the
SWPS3 [16] implementation improved the lazy F evalua-
tion loop. This improvement was duplicated in the SSW
[9] implementation.
More recently, the striped method was evaluated with

respect to the number of vector lanes utilized within the

https://github.com/jeffdaily/parasail
https://github.com/jeffdaily/parasail

Daily BMC Bioinformatics (2016) 17:81 Page 4 of 11

calculation. For example, SSE uses a 128-bit vector that
can be divided into 64-, 32-, 16-, or 8-bit integers which
corresponds to two, four, eight, or sixteen vector lanes,
respectively. A feature of the striped method is the recal-
culation of a column within the dynamic programming
table until the column converges. Evaluating SSW showed
that the number of corrective passes increased as the
number of vector lanes was increased [13].
This problem is improved within Parasail using a tech-

nique of shifting the origin of the calculation towards
the smallest representable integer. This takes advantage
of the fact Smith-Waterman does not allow for negative
values. For example, for 8-bit integers −127 is treated
as 0, allowing the entire range of 0 through 255 to be
utilized. Further, using saturation arithmetic keeps the
calculation from underflowing. This is not unlike pre-
vious SSE2 implementations that mitigated the lack of
a signed 8-bit vector maximum instruction and instead
used unsigned integers [7]. However, there is not a cor-
responding unsigned 16-bit vector maximum instruction
for SSE2 while there are sufficient signed saturation arith-
metic operations available to perform the calculation. The
combination of shifting the values and using saturation
arithmetic significantly reduces the number of corrective
passes needed for each column in the dynamic program-
ming table.
Unfortunately, similar improvements were not pos-

sible for Needleman-Wunsch or semi-global alignment
because the table values are allowed to be negative. As
a result, in some cases the prefix scan implementation
of those algorithms will perform better than the striped
implementation [13].
One last improvement was made to the implementation

of Zhao et al. [9]. In their implementation of local align-
ment, a copy of the entire column is made for the column
containing the highest score. Parasail’s implementation
avoids the costly memory copy by swapping pointer ref-
erences to an auxiliary column. This only applies to local
alignments; the global and semi-global implementations
do not require the additional column.

Code generation
The Parasail library uses a code generation step in addi-
tion to some compiler preprocessor directives to cre-
ate the thousands of functions implemented within the
library. This takes advantage of the observation that the
basic algorithms for the three classes of alignments remain
the same no matter which instruction set and integer
width is used. End users do not need to worry about
this code generation step, though for code development
this has a number of benefits including faster time to
solution when modifying the code as well as enforc-
ing consistency between the myriad implementations
possible.

Verification
The Parasail library is rigorously tested using cross-
verification to verify correct implementations of the
various library functions. Given a test dataset in FASTA
format, the result of the reference implementation for a
given class of alignment is compared against all other
implementations for the same class of alignment. This is
done both for the resulting alignment scores as well as for
the byte by byte comparisons of the entire dynamic pro-
gramming tables involved. The software is not released
until all tests pass for reasonably sized test datasets.

Parasail aligner application
In addition to the Parasail library, the software also pro-
vides the parasail_aligner application. The aligner appli-
cation will take a FASTA- or FASTQ-formatted query
file as input and align all of the query sequences against
a set of database sequences found in a second FASTA-
FASTQ-formatted database file. Alternatively, if only one
file is supplied, all of the sequences in the file will be
compared against themselves. Since the Parasail library
implements many different alignment routines, the name
of the function to use must be specified to the aligner.
Optionally, a filter can be applied to skip the alignment of
any two sequences that don’t contain an exact-matching
seed of the given length. This filter uses an enhanced suf-
fix array data structure [17, 18] that allows for arbitrarily
long exact-matching seeds.

Results
The following benchmarks repeat those performed by
Rognes [8]. The reader is encouraged to refer to Rognes’s
original manuscript. The database sequences, accession
numbers, score matrices and gap penalties are identical
to those used previously, however they are repeated in
later sections for convenience. Further, the figures and
tables are intentionally similar in color, layout, and styling
in order to more easily compare to the previous evalu-
ation. However, the tests performed here do differ with
respect to the software selected for evaluation. BLAST [4],
BLAST+ [19], and SWIPE [8] were previously evaluated;
the latest available versions were selected for the current
evaluation. SWPS3 [16] is not evaluated. The latest imple-
mentation of Farrar’s striped method [7] is evaluated in
the context of the SSW library [9]. The new implementa-
tion of the striped method within Parasail’s library is eval-
uated as “Parasail”. No previous evaluation of global and
semi-global alignment performance has been performed.
Since opal [14] and libssa [15] support global alignments,
their performance is compared against Parasail’s imple-
mentations. When comparing the performance of various
approaches and implementations, speed is reported in bil-
lion (giga) cell updates per second (GCUPS), where a cell
is a value in the dynamic programming table.

Daily BMC Bioinformatics (2016) 17:81 Page 5 of 11

Great care was taken to compare the various soft-
ware libraries and applications fairly. All tests were run
three times and the average GCUPS performance was
recorded. The loading times for the database sequences
were excluded from this study in order to focus on
the algorithmic performance of the alignment routines.
The following software reported the GCUPS performance
directly for the alignments performed: Parasail, opal,
SWIPE, and SSW. For the remaining software includ-
ing BLAST, BLAST+, and libssa, a wall clock timer was
patched into the code that reported on the alignment
times only, and the wall clock time was used to calculate
the GCUPS result based on the known amount of work
for each test case performed.

Software
Table 1 lists the software packages that were evalu-
ated, including their version numbers and command line
options used. The SSW library provides its own test pro-
gram for performing alignments, but it was intentionally
not used for benchmarking due to its additional overhead.
Instead, the parasail_aligner was duplicated and modified
to use the routines within the SSW library. Though opal
and libssa are both software libraries and not stand-alone
tools, they both provide an example application in addi-
tion to the library. The example applications are evaluated
here, namely ‘opal_aligner’ and ‘libssa_example’. Opal’s
aligner was only available as a single-threaded application.
The parasail_aligner can be run using any one of

the many alignment routines the Parasail library pro-
vides. The initial benchmarks compare other local align-
ment implementations against Parasail’s local alignment
implementation. The latter benchmarks compare Para-
sail’s local alignment performance against its global and
semi-global performance for the striped and scan vector-
ized approaches. The following Parasail functions were
evaluated.

• parasail_sw_striped_profile_sse41_128_sat,
• parasail_sw_striped_profile_avx2_256_sat,
• parasail_nw_striped_profile_sse41_128_16,

• parasail_nw_striped_profile_avx2_256_16,
• parasail_nw_scan_profile_sse41_128_16,
• parasail_nw_scan_profile_avx2_256_16,
• parasail_sg_striped_profile_sse41_128_16,
• parasail_sg_striped_profile_avx2_256_16,
• parasail_sg_scan_profile_sse41_128_16,

and
• parasail_sg_scan_profile_avx2_256_16.

Hardware
Results were taken on compute nodes of the Constance
cluster, part of Pacific Northwest National Laboratory’s
Institutional Computing. Each Constance node contains
dual Intel Haswell E5-2670 CPUs (2.3 Ghz) giving 24
cores and 64 GB 2133Mhz DDR4 memory per node.
Intel’s Haswell CPUs support the AVX2 instruction set.
Although these processors are capable of hyper-threading,
which would have given each node 48 logical cores, it was
not used for these experiments. Hyper-threading is inten-
tionally disabled as a matter of policy because Constance
is a general use cluster and hyper-threading benefits are
strongly application dependent [20]. Because it was not
enabled, only up to 24 cores were utilized.

Database and query sequences
The UniProt Knowledgebase Release 11.0 [21] (consisting
of both Swiss-Prot release 53.0 and TrEMBL release 36.0)
was chosen because it duplicates the benchmark evalua-
tion performed by Rognes in [8]. The dataset was origi-
nally chosen for being a realistic dataset less than 2GB in
size because some of the software originally tested would
fail for larger file sizes. The current software tested does
not have the same input size limits, however the same
dataset is used for consistency with the previous evalua-
tion. This validates Rognes’s original intent of selecting a
dataset that should be available for download in the fore-
seeable future, since the new evaluation presented here
occurs over eight years later.

Table 1 Software included in performance testing

Software Version Command Line

BLAST 2.2.26 blastall -p blastp -F F -C 0 -b 0 -v 10 -a $T -M $M -G $O -E $E -i $Q -d $D

BLAST+ 2.2.31+ blastp -seg no -comp_based_stats F -num_alignments 0 -num_descriptions 10 -num_threads $T -matrix $M
-gapopen $O -gapextend $E -query $Q -db $D

SWIPE 2.0.11 swipe -v 10 -a $T -M $M -G $O -E $E -i $Q -d $D

libssa 29 October 2015 libssa_example -c 10 -N $T -M $M -O $O -E $E -t SW -b 16 -s AVX2 -i $Q -d $D

opal 16 November 2015 opal_aligner -x 1 -a SW -o $O -e $E -m $M -s $Q $D

SSW 30 July 2015 test_ssw -x -t $T -o $O -e $E -m $M -f $D -q $Q

Parasail 12 August 2015 parasail_aligner -x -a $A -t $T -o $O -e $E -m $M -f $D -q $Q

Command line variables: threads ($T), score matrix file name ($M), gap open ($O) and extension ($E) penalties (positive values), query file name ($Q), database file basename
($D), Parasail alignment function name ($A)

Daily BMC Bioinformatics (2016) 17:81 Page 6 of 11

The query sequences used here are identical to the
ones used by Rognes. The 32 accession numbers are
[Swiss-Prot:P56980, Swiss-Prot:O29181, Swiss-Prot:
P03630, Swiss-Prot:P02232, Swiss-Prot:P01111, Swiss-
Prot: P05013, Swiss-Prot:P14942, Swiss-Prot:P00762,
Swiss-Prot:P53765, Swiss-Prot:Q8ZGB4, Swiss-Prot:
P03989, Swiss-Prot:P07327, Swiss-Prot:P01008, Swiss-
Prot:P10635, Swiss-Prot:P58229, Swiss-Prot:P25705,
Swiss-Prot:P03435, Swiss-Prot:P42357, Swiss-Prot:
P21177, Swiss-Prot:Q8LLD0, Swiss-Prot:O60341, Swiss-
Prot:P27895, Swiss-Prot:P07756, Swiss-Prot:P04775,
Swiss-Prot:P19096, Swiss-Prot:P28167, Swiss-Prot:
P0C6B8, Swiss-Prot:P20930, Swiss-Prot:P08519, Swiss-
Prot:Q7TMA5, Swiss-Prot:P33450 and Swiss-Prot:
Q9UKN1]. Note that [Swiss-Prot:Q8LLD0] replaces
[Swiss-Prot:Q38941]. The queries range in length from 24
to 5478 residues. As done previously by Rognes, some of
the tests were only performed with the 375 residues long
P07327 query, representing a protein of roughly average
length [8].

Score matrices and gap penalties
The score matrices and gap penalties selected for this
evaluation duplicate those used by Rognes [8] so that a
direct comparison can be made between the two evalua-
tions. Previously, 82 different combinations of amino acid
substitution score matrices and gap penalties accepted by
BLAST were tested, including BLOSUM45, BLOSUM50,
BLOSUM62, BLOSUM80, and BLOSUM90 from the
BLOSUM series [1] as well as PAM30, PAM70, and
PAM250 from the PAM series [2]. These matrices pre-
viously represented the ones supported by earlier BLAST
versions, though there are currently 84 combinations of
amino acid substitution score matrices and gap penal-
ties accepted by the ‘blastp’ website [22]. Matrices were
obtained from the NCBI FTP site. Again, duplicating the
same evaluation criteria as Rognes, some of the tests were
only performed with the BLOSUM62 matrix and gap
open and extension penalties of 11 and 1, respectively,
which is the BLAST default [8].

Threading evaluation
Figure 1a shows the performance characteristics of all
software as the number of threads increase from 1 to 24.
The query sequence was fixed at the 375 residue [Swiss-
Prot:P07327]. Additionally, the BLOSUM62 matrix and
gap open and extension penalties of 11 and 1 were used.
Compared to the previous evaluation in [8], the per-

formance of all striped implementations perform signif-
icantly better than previously reported. At best, striped
(SSW) had a performance range of 3.7 to 15.0 GCUPS and
now runs from 4.1 to 96.6 GCUPS. This large difference is
attributed to both improved sequence database process-
ing as well as the use of better workload scheduling. The

Fig. 1 Performance dependency on number of threads and query
length. The speed in billion cell updates per second (GCUPS) of BLAST
(red), BLAST+ (orange), SWIPE (black), SSW (green), Parasail’s striped SW
implementation using SSE4.1 (light blue) and AVX2 (dark blue)
instruction sets, as well as libssa using SSE4.1 (purple) and AVX2 (gray),
using a variable number of threads and queries of varying length.
Opal is only evaluated in c since the application was single-threaded
(SSE4.1 as pink, AVX2 as brown). a Number of threads ranging from 1
to 24 and the 375 residue long P07327 query sequence. b Query
sequences ranging from 24 to 5478 residues in length and 24 threads.
c Query sequences of varying length and 1 thread. All scales are
logarithmic. The BLOSUM62 matrix and gap open and extension
penalties of 11 and 1, respectively, were used in all cases. This figure
corresponds to Figure 6 in Rognes [8]

performance of Parasail’s SSE4.1 implementation ranges
from 5.0 to 107.5 GCUPS while the AVX2 implementa-
tion ranges from 6.6 to 137.7 GCUPS. SWIPE previously

Daily BMC Bioinformatics (2016) 17:81 Page 7 of 11

ran from 9.1 to 106.2 GCUPS and now runs from 7.2 to
163.6 GCUPS, indicating a relatively small drop in per-
formance for a single thread while significantly improving
on multithreaded performance. libssa’s SSE4.1 implemen-
tation ranges from 3.4 to 79.4 GCUPS while the AVX2
implementation ranges from 5.8 to 135.1 GCUPS. BLAST
reaches an early peak of 116.5 GCUPS at 13 threads
while BLAST+ continues to scale to upwards of 261.8
GCUPS. Overall, BLAST+ performs the best while the
striped implementations are narrowly below SWIPE in
performance.

Query length evaluation
Figure 1b and c show the performance characteristics
of all software as the query lengths vary, while keep-
ing the number of threads fixed to 24 threads (B) or
one thread (C). Additionally, the BLOSUM62 matrix and
gap open and extension penalties of 11 and 1 were used.
The query lengths ranged from 24 to 5,478 amino acid
residues.
Using 24 threads, similar to the threading evaluation

above, the performance of all striped implementations
perform significantly better than previously reported.
SSW ranged from 21.7 to 156.9 GCUPS while previously
ranging from 1.2 to 46.6 GCUPS. The Parasail implemen-
tations start off somewhat slower at 9.5 and 9.1, and peak
at 164.1 and 291.5 for SSE4.1 and AVX2, respectively.
Generally, longer queries performed better for all soft-
ware evaluated. SWIPE was an exception, having a rather
flat performance curve but quickly maxing out at 184.0
GCUPS. libssa was the other exception, having peaked
at 82.0 and 148.4 GCUPS for SSE4.1 and AVX2, respec-
tively, but performance quickly dropped off for sequences
longer than 1,000 amino acids. Parasail’s AVX2 implemen-
tation begins to outperform SWIPE for query sequences
longer than approximately 500 amino acids. BLAST+
again was the strongest performer, topping out at 5654.9
GCUPS.
Using a single thread compared to all 24 threads, sim-

ilar performance characteristics are noted. Performance
peaks of 7.9, 6.6, 6.9, 12.3, 4.3, and 7.4 GCUPS are noted
for SWIPE, SSW, Parasail SSE4.1, Parasail AVX2, lib-
ssa SSE4.1, and libssa AVX2, respectively. BLAST and
BLAST+ perform similarly and peak near 27 GCUPS.
Opal is evaluated using a single thread, peaking at 3.8
and 4.9 GCUPS for its SSE4.1 and AVX2 implemen-
tations, respectively, the slowest of any implementation
evaluated.

Scoring system evaluation
Figure 2 shows the performance characteristics of all
software as the scoring conditions are varied. All 82
combinations of matrices and gap penalties previously
evaluated by Rognes [8] are repeated here. The 375

residue long P07327 query sequence and 24 threads were
used.
The striped implementations again perform better than

previously reported. Previously striped was running at
an almost constant 14 GCUPS while SSW now shows
a dependence on the scoring criteria with an average
of 96.5 ± 9.0 GCUPS. Both Parasail implementations
show a similar dependence on the scoring criteria of
109.5 ± 10.0 GCUPS and 130.4 ± 12.4 GCUPS for
SSE4.1 and AVX2, respectively. SWIPE runs better at
166.9 ± 2.3 GCUPS compared to the previous 104 ± 2
GCUPS. libssa performs better than its SWIPE counter-
part when using AVX2 instructions, running at 125.7 ±
15.5 GCUPS, while performing only at 85.5 ± 6.7 GCUPS
using SSE4.1 instructions. The performance of BLAST
and BLAST+ was highly dependent on the scoring matrix
used, with GCUPS of 146.8 ± 137.5 and 247.1 ± 134.9,
respectively.

Evaluation of global and semi-global implementations
The threading and query length evaluations were addi-
tionally performed using global and semi-global align-
ment routines.
libssa’s global alignment capabilities were evaluated.

Due to the lack of an available multithreaded applica-
tion, opal’s global alignment evaluation was limited to the
lone single-threaded evaluation. In addition to Parasail’s
striped vector approach, the prefix scan approach is also
evaluated. Unlike in the evaluation of local alignments
where the 8-bit saturation-checking routines were used,
the 16-bit element versions of the global and semi-global
alignment routines were used because the 8-bit versions
almost always saturated, resulting in poor performance
with wasted computation. This was true both for Parasail
as well as libssa.
Figure 3 evaluates the threading performance while

Fig. 4 evaluates the scoring system of global alignment
routines. Parasail’s prefix scan implementation outper-
forms the implementation of Farrar’s striped approach.
Though not shown in Figs. 1 and 2, the prefix scan
implementation only outperforms the striped implemen-
tation for global alignments; striped is faster for local
as well as semi-global alignments. This is attributed
to the higher number of corrective passes that must
be made during the striped computation for global
alignments [13].
Unfortunately, libssa is not performing as expected for

global alignments. libssa was previously reported to be
nearly two times faster than opal [15], though here opal
is outperforming all other implementations by a wide
margin for single-threaded global alignments. Parasail
is also outperforming libssa for all alignments evalu-
ated. Examining the output of these runs showed that
libssa was detecting overflow of the 16-bit calculations

Daily BMC Bioinformatics (2016) 17:81 Page 8 of 11

Fig. 2 Performance with different scoring systems. The speed in billion cell updates per second (GCUPS) (logarithmic scale) is shown for BLAST (red),
BLAST+ (orange), SWIPE (black), and SSW (green), Parasail’s striped SW implementation using SSE4.1 (light blue) and AVX2 (dark blue) instruction sets,
as well as libssa using SSE4.1 (purple) and AVX2 (gray), using different scoring systems. All combinations of scoring matrices and gap penalties
accepted by BLAST were tested. The matrix name is indicated above each graph, while the open and extension gap penalties are indicated on the
x-axis. The query sequence was P07327 and 24 threads were running. This figure corresponds to Figure 7 in Rognes [8]

for all query and database sequence combinations, forc-
ing libssa to perform a 64-bit evaluation instead. This is
clearly an error, since Parasail is not detecting overflow
during its 16-bit calculations. This unfortunate result is
attributed to libssa being research code; the results pre-
sented in [15] validate the approach even though the
current evaluation was unable to reproduce favorable
results.
Semi-global results are similar to global results for

opal. libssa does not implement semi-global alignment
and as such is not evaluated. For Parasail’s striped

implementation, the semi-global routines are slightly
faster than the global routines but significantly slower
than local alignments. Parasail’s scan implementation is
slower than the striped implementation for semi-global
alignments.
For Parasail’s prefix scan implementations, each col-

umn of the dynamic programming table is iterated
over twice. This leads to stable, predictable perfor-
mance of the prefix scan vector approach. The prefix
scan routines have stable performance for the global
classes of alignments. This stable performance of

Daily BMC Bioinformatics (2016) 17:81 Page 9 of 11

Fig. 3 Performance dependency on number of threads and query
length for global alignments. The speed in billion cell updates per
second (GCUPS) of striped SSE4.1 vectors (red), prefix scan SSE4.1
vectors (orange), striped AVX2 vectors (black), and prefix scan AVX2
vectors (green), as well as libssa using SSE4.1 (purple) and AVX2 (gray)
instruction sets, using a variable number of threads and queries of
varying length. a Number of threads ranging from 1 to 24 and the
375 residue long P07327 query sequence. b Query sequences
ranging from 24 to 5478 residues in length and 24 threads. c Query
sequences of varying length and 1 thread. All scales are logarithmic.
The BLOSUM62 matrix and gap open and extension penalties of 11
and 1, respectively, were used in all cases

the prefix scan vector routines is especially evident
in Fig. 4. Even considering the stable performance
of the prefix scan routines, the striped approach is

always faster for local alignments and semi-global
alignments.

Discussion
The Parasail library is an improvement over earlier
SIMD intra-sequence implementations. The performance
reported here is also better than what was previously
reported for intra-sequence alignments [8].
The intent of the Parasail library is to be integrated into

other software packages, not necessarily to replace the
already highly performing database search tools such as
BLAST [4], SWIPE [8], or libssa [15]; database search on
its own is an important problem with satisfactory solu-
tions. As a software library that focuses on individual pair-
wise alignments, Parasail can bemore readily adapted into
other software packages needing such a capability, such as
those described by [9] or as part of other programming
language packages such as scikit-bio [23].
The Parasail library represents the first time global,

semi-global, and local alignment routines are available
as a high performance software library. The routines
have been written to utilize the latest x86 CPU instruc-
tion sets while remaining compatible with any platform.
The modular implementation and code generation pro-
cess will easily allow Parasail to be adapted to future
instruction sets with wider vector units as they become
available.
Future versions of Parasail will add the capability of

returning alignment tracebacks. Though Parasail already
has the option of returning additional alignment statis-
tics, the full traceback is important in some cases. As open
source software, the intent is to welcome feature requests,
enhancements, and fixes from the growing Parasail com-
munity.

Conclusions
The Parasail library is an improvement over earlier
SIMD intra-sequence implementations. Applications that
require optimal alignment scores could benefit from the
improved performance. For the first time, SIMD global,
semi-global, and local alignments are available in a stand-
alone high-performance C library.

Availability and requirements
Project name: Parasail - Pairwise Sequence Alignment
Library
Project home page: https://github.com/jeffdaily/parasail
Operating system(s): Platform independent
Programming language: C, with Python language
bindings
Other requirements: SSE2, SSE4.1, and/or AVX2
compiler intrinsics preferred
License: Battelle BSD-style
Any restrictions to use by non-academics: N/A

https://github.com/jeffdaily/parasail

Daily BMC Bioinformatics (2016) 17:81 Page 10 of 11

Fig. 4 Performance with different scoring systems for global alignments. The speed in billion cell updates per second (GCUPS) (logarithmic scale) is
shown for striped SSE4.1 vectors (red), prefix scan SSE4.1 vectors (orange), striped AVX2 vectors (black), and prefix scan AVX2 vectors (green), as well
as libssa using SSE4.1 (purple) and AVX2 (gray), using different scoring systems. Note that the libssa results completely overlap. All combinations of
scoring matrices and gap penalties accepted by BLAST were tested. The matrix name is indicated above each graph, while the open and extension
gap penalties are indicated on the x-axis. The query sequence was P07327 and 24 threads were running

Additional file

Additional file 1: Parasail v1.0.0 source code. The source code of
Parasail version 1.0.0 as a gzipped tar archive file. (GZ 1180 kb)

Abbreviations
GCUPS: giga cell updates per second; SIMD: single instruction multiple data;
SSE,SSE2,SSE4.1: streaming SIMD extensions, version 2, or version 4.1;
AVX,AVX2: advanced vector extensions, version 2; SW: Smith-Waterman local
alignment; NW: Needleman-Wunsch global alignment; SG: semi-global
alignment.

Competing interests
The author declares that he has no competing interests.

Acknowledgments
This work was supported by Pacific Northwest National Laboratory (PNNL)
Institutional Overhead funds. PNNL is operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830. I thank Dr. Ananth
Kalyanaraman for discussions and comments relating to the paper’s research.

Received: 18 November 2015 Accepted: 3 February 2016

References
1. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein

blocks. Proc Nat Acad Sci. 1992;89(22):10915–9.
2. States DJ, Gish W, Altschul SF. Improved sensitivity of nucleic acid

database searches using application-specific scoring matrices. Methods.
1991;3(1):66–70. doi:10.1016/S1046-2023(05)80165-3.

http://dx.doi.org/10.1186/s12859-016-0930-z
http://dx.doi.org/10.1016/S1046-2023(05)80165-3

Daily BMC Bioinformatics (2016) 17:81 Page 11 of 11

3. Gotoh O. An improved algorithm for matching biological sequences.
J Mol Biol. 1982;162(3):705–8. doi:10.1016/0022-2836(82)90398-9.

4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10. doi:10.1016/
S0022-2836(05)80360-2.

5. Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Comput Appl Biosci CABIOS. 1997;13(2):145–50.
doi:10.1093/bioinformatics/13.2.145.

6. Rognes T, Seeberg E. Six-fold speed-up of smith–waterman sequence
database searches using parallel processing on commonmicroprocessors.
Bioinformatics. 2000;16(8):699–706. doi:10.1093/bioinformatics/16.8.699.

7. Farrar M. Striped smith–waterman speeds database searches six times
over other simd implementations. Bioinformatics. 2007;23(2):156–61.
doi:10.1093/bioinformatics/btl582.

8. Rognes T. Faster smith-waterman database searches with inter-sequence
simd parallelisation. BMC Bioinformatics. 2011;12(1):221.

9. Zhao M, Lee WP, Garrison EP, Marth GT. Ssw library: An simd
smith-waterman c/c++ library for use in genomic applications. PLoS ONE.
2013;8(12):82138. doi:10.1371/journal.pone.0082138.

10. Liu Y, Schmidt B. Swaphi: Smith-waterman protein database search on
xeon phi coprocessors. In: Application-specific Systems, Architectures and
Processors (ASAP), 2014 IEEE 25th International Conference On; 2014.
p. 184–5. doi:10.1109/ASAP.2014.6868657.

11. Wang L, Chan Y, Duan X, Lan H, Meng X, Liu W. Xsw: Accelerating
biological database search on xeon phi. In: Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International;
2014. p. 950–7. doi:10.1109/IPDPSW.2014.108.

12. Daily J. Scalable parallel methods for analyzing metagenomics data at
extreme scale: Thesis, Washington State University; 2015. https://research.
wsulibs.wsu.edu/xmlui/handle/2376/5503. Accessed 9 Oct 2015.

13. Daily J, Kalyanaraman A, Krishnamoorthy S, Vishnu A. A work stealing
based approach for enabling scalable optimal sequence homology
detection. J Parallel Distributed Comput. 2015;79–80(0):132–42.
doi:10.1016/j.jpdc.2014.08.009.

14. Šošic M. An simd dynamic programming c/c++ library: Thesis, University
of Zagreb; 2015. https://bib.irb.hr/datoteka/758607.diplomski_Martin_
Sosic.pdf.

15. Frielingsdorf JT. Improving optimal sequence alignments through a
simd-accelerated library: Thesis, University of Oslo; 2015. http://urn.nb.no/
URN:NBN:no-49935. Accessed 10 Dec 2015.

16. Szalkowski A, Ledergerber C, Krahenbuhl P, Dessimoz C. Swps3 - fast
multi-threaded vectorized smith-waterman for ibm cell/b.e. and x86/sse2.
BMC Res Notes. 2008;1(1):107.

17. Abouelhoda MI, Kurtz S, Ohlebusch E. 7. In: Aluru S, editor. Enhanced
Suffix Arrays and Applications. Boca Raton, FL: Chapman & Hall/CRC; 2005.
p. 27.

18. Fischer J. Inducing the LCP-array In: Dehne F, Iacono J, Sack J-R, editors.
Proceedings of the 12th international conference on Algorithms and
data structures (WADS’11). Berlin, Heidelberg: Springer-Verlag; 2011.
p. 374–85.

19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. Blast+: architecture and applications. BMC Bioinformatics.
2009;10:421–1. doi:10.1186/1471-2105-10-421.

20. Hyper-Threading. Website. https://www.nersc.gov/users/computational-
systems/edison/performance-and-optimization/hyper-threading/.
Accessed: 2015-11-17.

21. The UniProt Consortium. Uniprot: A hub for protein information. Nucleic
Acids Res. 2015;43(D1):204–12. doi:10.1093/nar/gku989.

22. Protein BLAST: search protein databases using a protein query. Website.
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, Accessed:
2015-11-17.

23. scikit-bio. Website. http://scikit-bio.org/, Accessed: 2015-11-06.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/bioinformatics/13.2.145
http://dx.doi.org/10.1093/bioinformatics/16.8.699
http://dx.doi.org/10.1093/bioinformatics/btl582
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1109/ASAP.2014.6868657
http://dx.doi.org/10.1109/IPDPSW.2014.108
https://research.wsulibs.wsu.edu/xmlui/handle/2376/5503
https://research.wsulibs.wsu.edu/xmlui/handle/2376/5503
http://dx.doi.org/10.1016/j.jpdc.2014.08.009
https://bib.irb.hr/datoteka/758607.diplomski_Martin_Sosic.pdf
https://bib.irb.hr/datoteka/758607.diplomski_Martin_Sosic.pdf
http://urn.nb.no/URN:NBN:no-49935
http://urn.nb.no/URN:NBN:no-49935
http://dx.doi.org/10.1186/1471-2105-10-421
https://www.nersc.gov/users/computational-systems/edison/performance-and-optimization/hyper-threading/
https://www.nersc.gov/users/computational-systems/edison/performance-and-optimization/hyper-threading/
http://dx.doi.org/10.1093/nar/gku989
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://scikit-bio.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	C library interface
	Instruction sets and CPU dispatching
	Improvements to striped vectorization
	Code generation
	Verification
	Parasail aligner application

	Results
	Software
	Hardware
	Database and query sequences
	Score matrices and gap penalties
	Threading evaluation
	Query length evaluation
	Scoring system evaluation
	Evaluation of global and semi-global implementations
	Discussion

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Competing interests
	Acknowledgments
	References

