
Delmans and Hemberg BMC Bioinformatics  (2016) 17:110 
DOI 10.1186/s12859-016-0944-6

SOFTWARE Open Access

Discrete distributional differential
expression (D3E) - a tool for gene expression
analysis of single-cell RNA-seq data
Mihails Delmans1 and Martin Hemberg2*

Abstract

Background: The advent of high throughput RNA-seq at the single-cell level has opened up new opportunities to
elucidate the heterogeneity of gene expression. One of the most widespread applications of RNA-seq is to identify
genes which are differentially expressed between two experimental conditions.

Results: We present a discrete, distributional method for differential gene expression (D3E), a novel algorithm
specifically designed for single-cell RNA-seq data. We use synthetic data to evaluate D3E, demonstrating that it can
detect changes in expression, even when the mean level remains unchanged. Since D3E is based on an analytically
tractable stochastic model, it provides additional biological insights by quantifying biologically meaningful properties,
such as the average burst size and frequency. We use D3E to investigate experimental data, and with the help of the
underlying model, we directly test hypotheses about the driving mechanism behind changes in gene expression.

Conclusion: Evaluation using synthetic data shows that D3E performs better than other methods for identifying
differentially expressed genes since it is designed to take full advantage of the information available from single-cell
RNA-seq experiments. Moreover, the analytical model underlying D3E makes it possible to gain additional biological
insights.

Keywords: Single-cell RNA-seq, Differential gene expression, Stochastic gene expression, Software, Transcriptional
bursting model

Background
Over the last two decades, several methods for global
quantitative profiling of gene expression have been devel-
oped [21, 27, 36]. One of the most common uses of gene
expression data is to identify differentially-expressed (DE)
genes between two groups of replicates collected from dis-
tinct experimental conditions, e.g. stimulated vs unstimu-
lated, mutant vs wild-type, or at separate time-points. The
goal of DE analysis is to identify genes that underlie the
phenotypical differences between the conditions.
The first method for genome-wide expression profiling

was microarrays, but as sequencing costs have decreased,
profiling by direct sequencing of the transcriptome
(RNA-seq) has become more popular. Initially, RNA-seq
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experiments were carried out in bulk on samples of up to
105 cells. Consequently, only information about the mean
expression of each gene in a sample could be extracted.
However, it has been known since the 1950s [20] that gene
expression varies from cell to cell, and more recently it has
been shown that stochastic variation may play an impor-
tant role in development, signaling and stress response
[25, 26, 38]. Thus, recently developed single-cell RNA-
seq protocols [15, 34], could potentially provide a greater
understanding of how the transcriptome varies between
cells with the same genotype and cell-type. The main
advantage of single-cell RNA-seq over bulk RNA-seq is
the fact that one obtains the full distribution of expres-
sion levels, rather than the population mean. To take full
advantage of single-cell data, for DE analysis as well as
for other types of investigation, e.g. inference of gene
regulatory networks, novel analysis methods are required.
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Single-cell DE analysis is complicated by the fact that
comparison of two probability distributions is an ambigu-
ous task. With the exception of SCDE [16], most common
tools for preforming single-cell DE analysis - DESeq2 [18],
Cuffdiff [35], limma [29] and EdgeR [30] - are all adap-
tations of bulk RNA-sequencing methods. They mainly
focus on filtration and normalisation of the raw data, and
DE genes are identified based on changes in mean expres-
sion levels. The main drawback of using only the mean is
that one ignores the gene expression heterogeneity, and
will thus fail to detect situations where, for example, there
is only a change in the variance of gene expression. Alter-
native methods for comparing probability distributions
are the Kolmogorov-Smirnov test, the likelihood ratio test
and the Cramér-vonMises test. What these methods have
in common is that they summarize the difference between
two distributions as a single value, which can be used to
test for significance.
Gene expression at the single-cell level has been stud-

ied theoretically for almost three decades [5], and the
most widely used model is referred to as the transcrip-
tional bursting model. The transcriptional bursting model
[22, 24] provides a mechanistic description of the stochas-
tic switching of the promoter as well as the the pro-
duction and degradation of transcripts at the single cell
level (Fig. 1a,b). The model makes it easy to generate
synthetic data which closely resembles the experimental
data. Since the model is analytically tractable it allows us
to derive several other biologically relevant properties of
gene expression (Fig. 1c) [17], which makes it easier to
interpret results biologically. Despite its simplicity, the

transcriptional bursting model enjoys strong experimen-
tal support [8, 17, 33, 39, 40].
In this paper, we present D3E, a method based on the

comparison of two probability distributions for perform-
ing differential gene expression analysis. D3E consists of
two separate modules: a module for comparing expres-
sion profiles using the Cramér-von Mises, the likelihood-
ratio test, or the Kolmogorov-Smirnov test, and a module
for fitting the transcriptional bursting model. Thus, D3E
allows the user to go beyond merely identifying DE
genes and provides biological insight into the mechanisms
underlying the change in expression. We demonstrate the
power of D3E to detect changes in gene expression using
synthetic data. Finally, we apply D3E to experimental data
to demonstrate its ability to detect significant changes
which are not reflected by the mean.

Results and discussion
Algorithm and implementation
D3E takes a read-count table as an input, with rows and
columns corresponding to transcripts and cells, respec-
tively. The user should split the columns into two or more
groups by providing cell labels in the input file. If there
are more than two groups of cells, they must be compared
one pair at a time. D3E uses four steps to process the data.
First, input data is normalised using the same algorithm
as DESeq2 (see Methods) and filtered by removing the
genes that are not expressed in any of the cells. Second, the
Cramér-von Mises test, the Kolmogorov-Smirnov (KS)
test, or the likelihood ratio test [11] is used to identify the
genes with a significant change in expression between the

Fig. 1 Overview of D3E. a Graphical representation of the transcriptional bursting model. b Example of a realization of the transcriptional bursting
model with parameters α = 1,β = 10, γ = 100, and λ = 1 [12]. In this regime, the gene exhibits a bursty behavior with a bimodal stationary
distribution. c Derivation of the biologically-relevant parameters from the parameters of the transcriptional bursting model. d Flowchart of the D3E
algorithm
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two samples of interest. Third, the transcriptional burst-
ing model is fitted to the expression data for each gene
in both samples using either the method of moments or
a Bayesian method [17]. Fourth, the change in parame-
ters between the two samples is calculated for each gene
(Fig. 1d).
A command-line version of D3E written in Python

can be downloaded from GitHub (https://hemberg-
lab.github.io/D3E), and the source code is avail-
able under the GPL licence. Furthermore, there is also
a web-version available at http://www.sanger.ac.
uk/sanger/GeneRegulation_D3E. Due to the time
required to run D3E, the web version limits the number of
genes and cells that may be analyzed, and it can only use
the method of moments for estimating parameters.

DE analysis module
To compare distributions obtained from two different sets
of cells, D3E uses either the Cramér-von Mises test, the
KS test or the likelihood ratio test to quantify the differ-
ence in gene expression (see Methods). The first two tests
are non-parametric which is advantageous since it allows
us to apply D3E to any single-cell dataset, not just the ones
collected using RNA-seq. The null hypothesis for all three
tests is that the two samples are drawn from the same
distribution. The premise of D3E is that when two sam-
ples are drawn from the same population of cells, the test
should result in a high p-value. On the other hand, if the
cells are drawn from two populations with different tran-
script distributions, then the resulting p-value should be
low.
We first evaluated D3E using synthetic data. Fortunately,

there is a widely used, experimentally validated stochas-
tic model available for single-cell gene expression [22]. We
refer to this model as the transcriptional bursting model
(Fig. 1a), and it is characterized by three parameters: α,
the rate of promoter activation; β , the rate of promoter
inactivation; γ , the rate of transcription when the pro-
moter is in the active state; and a transcript degradation
rate λ. The stationary distribution of the transcriptional
bursting model takes the form of a Poisson-Beta mixture
distribution [17, 22]
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where n is the number of transcripts of a particular
gene, x is an auxiliary variable, � is the Euler Gamma

function, and �(a, b; c) is the confluent hypergeometric
function.
An important feature of the Poisson-Beta distribution

is that the three parameters α,β and γ are normalised
by the rate of mRNA degradation λ. Consequently, when
fitting the parameters for the Poisson-Beta distribution
from a stationary sample, only three parameters can be
estimated, and they are unique up to a common multi-
plicative factor, λ. Since a single-cell RNA-seq experiment
corresponds to a snapshot of individual cells, it is often
reasonable to assume that the samples are drawn from
the stationary distribution. The inability to uniquely iden-
tify all four parameters from single-cell RNA-seq data
means that it is only approprite to apply the transcrip-
tional bursting model to DE analysis when λs are constant
between the compared samples, or when the degradation
rates are known for both samples. Without knowledge of
λ it is impossible to unambiguously determine how the
parameters have changed.
To evaluate the sensitivity of the Cramér-von Mises, the

KS and the likelihood ratio test to changes in the param-
eters, we selected triplets of parameters (α,β , γ ) from a
range that is characteristic for single-cell RNA-seq data
[15]. For each parameter triplet one of the parameters was
varied, while fixing the remaining two, and a series of tests
was carried out on the corresponding Poisson-Beta sam-
ples. For each combination of parameters, we assumed
that there were 50 cells from each condition when gener-
ating the data. The results can be summarized by a set of
matrices, where rows and columns correspond to values
of the varied parameter, and the elements in thematrix are
p-values from the tests (Fig. 2c). Ideally we would like to
find high p-values on the diagonal and low p-values away
from the diagonal. We used a heuristic for characterizing
the pattern of p-values, and for each matrix we obtained a
single score, S (see Methods). When S = 0, high p-values
are only found on the diagonal, suggesting that D3E has
successfully identified genes where there was a change in
one of the parameters.
The results suggest that all three tests are capable of

accurately detecting changes in the parameters in certain
regions of the parameter space (Fig. 2a, Additional file
1). For all three tests, changes in β are the most difficult
to detect while changes in γ are the easiest to identify.
The methods perform poorly when γ is small and either
β is large or α is small. In this regime, the Poisson-Beta
distribution is similar to the Poisson distribution with a
mean close to zero, and it is challenging to identify which
parameter has changed, and by how much. From a bio-
logical perspective, when a transcription rate is small and
a gene has a small duty cycle (small α or big β) there
are almost no transcripts produced since the promoter
spends most of its time in the inactive state. Therefore,
changes in either of the three parameters will be difficult
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Fig. 2 DE analysis for synthetic data. a Sensitivity to changes in parameters of the Poisson-Beta distribution for the Cramér-von Mises, KS and
likelihood ratio tests. A lighter color denotes a low sensitivity to changes of a particular parameter. b Average sensititivity scores for the panels in a as
well as the run-times. c An example of a matrix which was used to assign the colors in a. Here, parameters α = .22 and β = .28, while γ is varied
from 1 to 100 on a log-scale. Each element in the matrix reflects a p-value of a KS test between two Poisson-Beta distributions with the
corresponding parameters. We expect to find high values along the diagonal, where the changes are smaller. d DE analysis for the scenario where
the mean is fixed but the variance is changed. D3E is able to reliably identify differentially expressed genes based on the change in the shape of
distribution alone. Here, the color represents the p-value for the Cramér-von Mises test with dark colors indicating a low value
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to distinguish. The performance of each method can be
summarized by the average score across all combina-
tion of parameters and we find that the likelihood ratio
test is the most accurate, followed by the Cramér-von
Mises test and the KS test (Fig. 2b, S1). The accuracy,
however, is also mirrored by the computational costs; ana-
lyzing the data in Fig. 2a takes about 18 s for the KS-test,
30 min for the Cramér-von Mises test and 8.3 h for the
likelihood ratio test using aMacBook Pro laptop with a 3.2
GHz Intel i5 processor and 16 Gb of RAM.
We also considered the scenario when the two distri-

butions are different, but the mean is identical. This is a
situation where it is all but impossible for methods which
only use the mean to reliably detect that there has been a
change in the expression profile. In contrast, D3E is able to
reliably identify a change in expression. Our results show
that a change of α and β by a factor of 2, which is roughly
equivalent to changing the variance by the same factor, is
sufficient for the p-value to drop below .05 for a sample of
50 cells (Fig. 2d).
A particular challenge for DE analysis is to determine

the p-value threshold for when a change can be con-
sidered significant. The traditional approach is to use a
fixed value, e.g. .05, and then adjust for multiple hypoth-
esis testing. For D3E two different methods are offered
for selecting the critical p-value. On the one hand, the
user can specify a false discovery rate, and the tool will
use the Benjamini-Hochberg procedure [4] to identify the
critical p-value. Alternatively, one may take an empirical
approach whereby one of the two samples is first split
into two parts. By definition, the two parts should have
identical distributions for all genes, which means that it
can be used as a negative control. D3E applies one of the
three tests to the negative control, and records the lowest
p-value identified, p∗. When comparing the two origi-
nal distributions, only genes with a p-value below a × p∗
are considered significant, where the default value for the
parameter a is .1. We advice the user that the reduced
sample size of the negative control set is likely to result
in a less stringent cut-off than what would be expected if
the negative control had the same sample size as the orig-
inal data. To evaluate the heuristic strategy, we generated
1,000 pair of samples with the same number of reads and
cells, using identical parameter values for the samples in
each pair. Using the Cramér-von Mises test we recorded
the lowest observed p-value, p∗, and we used .1 × p∗ as
a threshold for when to call a test significant. For both
the method of moments and the Bayesian method, we
found that 97 % of the genes were detected as not DE. The
control experiment demonstrates that D3E is capable of
accurately distinguishing situations where the parameters
are unchanged.
To further evaluate the performance of D3E relative to

other DEmethods, we generated additional synthetic data

sets where one of the three parameters was varied while
the other two were fixed as before. For each data set we
designated genes as DE where the parameter had changed
by at least a factor of 1.5, 2 or 4. The arbitrary decision of
what constitutes a significant change allows us to define
the calls of the DE algorithms as either true positive, false
positive, true negative or false negative. The results can
be summarized as a ROC curve, and again we find that
changes in β are more difficult to detect compared to the
other two parameters (Fig. 3). Importantly, we find that for
larger parameter changes, D3E is always amongst the best
performing methods (Fig. 3).

Parameter estimation module
The likelihood ratio test is a parametric test, and thus it
requires estimates of the parameters α, β and γ . D3E has
two approaches; the method of moments which is rel-
atively fast and a more computationally costly Bayesian
inference method (see Methods) [17]. We evaluated the
accuracy of the parameter estimates, both assuming per-
fect sampling as well as in the scenario when some tran-
scripts are lost due to low starting levels of mRNA [16].
In our simulations, we first generated parameters for the
Poisson-Beta model by drawing from a distribution simi-
lar to the one for the data reported by Islam et al. [15]. We
then assumed that the dropout probability scaled with the
mean expression level as pdropout = 1− e−μ2/b [23], where
the parameter b controls the rate of dropouts. In our sim-
ulations we used b = 10, 100 and 200. Our simulations
show that the relative error for the estimates of the param-
eters α, β and γ are relatively robust to dropout events
(Fig. 4a).
An important advantage of using the transcriptional

bursting model (Fig. 1) is that it is possible to derive
other quantities - the average burst size, the burst fre-
quency, the mean expression level, and the proportion of
time in the active state (duty cycle) - which are easier
to measure and interpret biologically than the parame-
ters α, β and γ . Importantly, the transcriptional bursting
model allows us to learn more about how the expres-
sion level has changed between the two conditions. In
the transcriptional bursting model, there are three dif-
ferent ways to increase the mean expression level; by
decreasing the degradation rate, by increasing the burst
frequency, or by increasing the burst size. By comparing
the correlations between the change in mean expression
levels and the change in burst size or burst frequency, it
is possible to gain additional biological insights relating
to what aspect has led to the change in gene expres-
sion. In contrast to the estimates of the rate parameters
the correlation estimates are sensitive to dropout events
(Fig. 4b), and one must thus be careful when interpreting
the results.



Delmans and Hemberg BMC Bioinformatics  (2016) 17:110 Page 6 of 13

Fig. 3 Comparison of DE methods for synthetic data. Each panel shows the receiver operator characteristics (ROC) calculated for synthetic data
using five different DE algorithms. The numbers below each panel indicate the area under the curve. The rows correspond to different thresholds for
when a gene is considered significantly changed. DESeq2 reports NA for many genes. Since the NA cannot be interpreted as either DE or not DE, we
treat these calls as false, which explains the unusual shape of the ROC curve and the fact that the AUC value is below .5

Application to experimental data
The tests on synthetic data suggest that D3E can reli-
ably identify differentially expressed genes. A more use-
ful test of the algorithm, however, involves experimental
data which has been reliably validated. Unlike bulk data
[27], unfortunately there are no gold-standard datasets
available. Nonetheless, to further evaluate D3E, we consid-
ered the single-cell RNA-seq data from two and four-cell
mouse embryos where qPCR data from the same cell-
types was collected for 90 genes [6]. Unfortunately, the
correlation of changes in gene expression between the
qPCR and RNA-seq data (ρ	 = .46) (Additional file 2:
Figure S2) is even worse than the correlation of the indi-
vidual samples (ρ2 = .6, ρ4 = .5). Thus, it does not come
as a surprise that the overlap between the genes which are
considered DE in the qPCR experiment has little overlap
with genes which are considred DE from RNA-seq by any
of the five algorithms that we compared (Additional file 3:

Table S1). Even so, we find large differences in the num-
ber of genes identified as DE, ranging from 1 (edgeR) to 35
(DESeq2).
To further evaluate D3E, we applied it to the two

datasets collected by Islam et al. [15] from 48 mouse
embryonic stem cells and 44 mouse embryonic fibrob-
lasts. To establish the p-value threshold, we first separated
the stem cells into two groups, and compared the expres-
sion (see Methods). We used this approach for determin-
ing the threshold for D3E, SCDE, edgeR and limma, while
for DESeq2, we used the adjusted p-value reported by the
software. When comparing the two cell-types, D3E iden-
tified 4716 genes as DE, DESeq2 identified 6360 genes,
limma-voom identified 7245 genes, edgeR identified 1140
genes, and SCDE identified 1092 genes (Fig. 5d). Surpris-
ingly, the agreement between the five methods is quite
low with only a core set of 380 genes identified by all
three methods. If we require a gene to be identified of
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Fig. 4 Sensitivity to transcript dropout errors. a Errors for the estimates of the parameters for the synthetic data in Fig. 2a using the Bayesian
inference method. Each bar represents the geometric mean squared relative error for the parameter estimates b Errors for the estimates of the
correlations between the estimated changes in parameters for the synthetic data in Fig. 2a. Each bar represents the estimated Pearson correlation
coefficient between the log-changes of the quantities

4 out of 5 methods, then an additional 495 genes are
idenitified as DE, suggesting that there is a set of around
900 genes which can confidently considered DE. To fur-
ther evaluate the set of genes identified as DE by each
method, we investigated the distiribution of fold-change
values (Fig. 5a). The distributions gives an indication of
how large fold changes are required for detection, and we
note most of the genes have a higher expression in fibrob-
lasts compared to stem cells. Compared to DESeq2, SCDE
and edgeR, we also notice that D3E is able to identify
genes with a lower fold change. Indeed, there were several
examples of genes where the change in mean expres-
sion was modest, but they were still identified by D3E as
differentially expressed (Fig. 5c).
Next, we took advantage of the transcriptional bursting

model underlying D3E, and we fitted the parameters α, β ,
and γ for all genes. We found that for 85 % of the genes, at
least one of the parameters changed by at least 2-fold, sug-
gesting that there are substantial differences between the
two cell-types. The results show that all three parameters
follow log-normal distributions, spanning approximately
one or two orders of magnitude in both cell-types (Fig. 5b,
Additional files 4 and 5). With the exception of the duty

cycle which is constrained to be in the interval [0, 1], the
derived quantities showed a similar distribution.
We calculated the three derived quantities for each con-

dition for the 2105 genes where we were able to obtain
degradation rates for both cell-types [31, 32]. Next, we
compared the changes in degradation rate, burst fre-
quency and burst size to the change in mean expression
level (Fig. 5e). The results clearly demonstrate that it is the
change in burst size which underlies the change in mean
expression levels (ρ = .91), suggesting that altering the
burst size is the driving mechanism behind differences in
mean expression between conditions. However, consider-
ing our simulation experiments (Fig. 4b), it is likely that
the true correlation is lower.
Another property of interest is the coefficient of vari-

ation (CV), defined as the standard deviation divided by
the mean, which is used to quantify the gene expression
noise. The CV is inversely correlated with the mean, and
the transcriptional bursting model reveals that the change
in CV is mainly correlated with the change in the duty
cycle (ρ = .47), while the effect of a change in burst size
is considerably smaller (ρ = .24, Additional file 6: Figure
S3). To further demonstrate the use of the transcriptional
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Fig. 5 Analysis of experimental data. a Histogram showing the fold-changes for the genes which were considered significantly changed (blue) and
not changed (gray) for D3E, DESeq2, limma, edgeR and SCDE. b Histograms showing the distribution of parameter values for all cells from [15]. From
top to bottom, the panels represent the frequency, the burst size, the inferred rates for the transcriptional bursting model, and the duty cycle. c
Examples of two genes, Cdc42bpb in the top panel and Hist1h2bb in the bottom panel, which were identified as DE by D3E. In both cases, the
change in mean expression is less than 70 % whereas the variance increases by> 10-fold. d Karnaugh table showing the number of genes identified
as differentially expressed by D3E, SCDE, limma, edgeR, and DESeq2 for the two datasets collected by Islam et al. [15]. e Scatterplots showing the
mean in mESCs, and the fold-change, as well as the fold-change of the mean compared to the change in degradation rate, burst frequency and
burst size. In all panels, black dots represent genes which did not change, red dots represent genes which were deemed significant by D3E
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bursting module, we also investigated changes in the auto-
correlation times of each gene. The auto-correlation pro-
vides information about the time-scale of the noise, i.e.
how quickly the gene expression level varies. The expected
value of the autocorrelation, τc, is given by (Methods)

τc = σ 2

μ
λ

+ 1
α+β

. (1)

Comparison of τc and the change in the mean for the
Islam et al. data reveals that the two quantities are strongly
correlated (ρ = .87, Additional file 7: Figure S4). How-
ever, when investigating all the quantities on the right
hand side of Eq. (1) the comparison shows that it is the
change in variance which is most strongly correlated with
the change in autocorrelation times (ρ = .90, Additional
file 7: Figure S4).
We also applied the methodology to cells from the early

and late blastocyst frommouse embryos [10]. Since we do
not have access to degradation rates for these cell-types,
not all of the correlations can be explored. Neverthe-
less, the correlations that can be calculated are largely
similar to the ones observed for the Islam et al. data
(Additional file 8: Figure S5–Additional file 9: Figure S6).
Taken together, these results demonstrate that it is possi-
ble to generate testable hypotheses about how changes in
the property of a gene has come about.

Discussion
DE analysis is one of the most common uses of bulk
RNA-seq, and we expect that it will become an impor-
tant application for single-cell RNA-seq as well. Here, we
have presentedD3E, a tool for analyszing DE for single-cell
data. The main difference between D3E and other meth-
ods is that D3E compares the full distribution of each gene
rather than just the first moment. Therefore, it becomes
possible to identify genes where the higher moments have
changed, with the mean remaining constant. To the best
of our knowledge, D3E is the first method for DE analysis
which considers properties other than the first and sec-
ond moment of the distribution. Using synthetic data, we
demonstrate that D3E can reliably detect when only the
shape, but not the mean is changed.
One of the main challenges in developing a DE anal-

ysis method for single-cell RNA-seq data is that, unlike
for bulk data, there are no gold-standards available [27].
Comparison of qPCR and RNA-seq data revealed only
a modest correlation between the two methods, imply-
ing that the two methods are inconsistent. Thus, one
must resort to synthetic data for evaluation. Fortunately,
for single-cell gene expression, there is an analytically
tractable transcriptional bursting model available which
has been experimentally validated. Even with synthetic

data, however, it is not obvious how one should define a
change in expression. Consider the situation where one
of the parameters changes by a small amount which is
just sufficient to be detected given the limits of the tech-
nical noise, the read depth and the sample size. Then
the question is whether or not the change is sufficient to
be biologically meaningful. Another challenge stems from
the difficulty of disentangling the technical and the bio-
logical noise. The transcriptional bursting model does not
account for the technical noise in single-cell experiments
which can be considerable [3, 7, 13, 28]. Since each cell
can only be sequenced once, one cannot carry out tech-
nical replicates in the same way that can be done for bulk
experiments.
Given the lack of ground truth and the difficulties

involved in rigorously defining change in gene expression
at the single-cell level, we recommend that more than one
algorithm is used to identify DE genes. If the aim is to
identify the genes which are most likely to have changed
significantly, we believe that a consensus approach is the
best one to use. Such a strategy will minimize the num-
ber of false positives with the drawback of increasing the
number of false negatives.
D3E implements two different non-parametric meth-

ods and one parametric method for comparing probability
distributions. Themethods emphasize different aspects of
the distributions, and they are also associated with dif-
ferent computational costs. An important future research
question is to determine what method is the most appro-
priate for single-cell DE analysis. Since the results are
sensitive to technical noise, such developments should
ideally be carried out taking the specific details of the
protocol into consideration.
We have shown that the transcriptional bursting model

makes it possible to extract additional, biologically rele-
vant results from the DE analysis. However, to be able to
fully utilize the transcriptional bursting model, the mRNA
degradation rates must be known, or assumed to be
constant. Determining degradation rates directly remains
experimentally challenging, and today they are only avail-
able for a handful of cell-types. However, alternative
strategies have been proposed, whereby degradation rates
are estimated from RNA-seq data using distribution of
reads along the length of a gene [14, 37]. The RNA-seq
based methods make it possible to estimate degrada-
tion rates without further experiments, and they could
thus significantly expand the range of samples where the
transcriptional bursting model can be applied. Another
restriction of our method is that the groups of cells must
be known in advance. In many cases, e.g. when comparing
samples from a mutant and wild-type or when comparing
different stages of development [6], it is straightforward
to assign labels to cells. However, there are also situations,
e.g. when analyzing a tissue-sample, when the cell-labels
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are unknown and in these scenarios D3E is no longer
applicable.

Conclusions
Our work combines three important aspects of genomics
- high-throughput sequencing technologies, computa-
tional data analysis, and systems biology modelling. In
the present study, we have combined single cell RNA-seq,
non-parametric comparison of distributions and an ana-
lytical model of stochastic gene expression which allows
us to extract biologically meaningful quantities, providing
insights not just about which genes have changed between
two conditions, but also how the change has come about.

Implementation
Cramér-von Mises criterion
To compare two empirical distributions of read counts
from different cell samples, the Cramér-von Mises test
was used. Let x1, x2, . . . xN and y1, y2, . . . yM be the
observed read counts for the two samples. Given ranks
qi and si of the read-counts from the first and the sec-
ond samples, in the ordered pooled sample, the Cramér-
von Mises criterion is given by [1]:

T = U
NM(N + M)

− 4NM + 1
6(N + M)

, (2)

where

U = N
N∑
i=1

(qi − i)2 + M
M∑
j=1

(
si − j

)2 . (3)

The p-value associated with a null-hypothesis that two
samples are drawn from the same distribution was calcu-
lated as [2]:

p(T) = 1 − 1
π

√
T

∞∑
j=0

(−1)j
( −0.5

j

)
(4j + 1)0.5

exp
−(4j + 1)2

16T
K0.25

(4j + 1)2

16T
, (4)

where( −0.5
j

)
= (−1)j�(j + 0.5)

�(0.5)j!
, (5)

�(z) is Euler’s Gamma function, and Kν(z) is a modified
Bessel function of the second kind.
The infinite sum in (4) converges fast after the first few

terms. In practice, the p-value was calculated using first
100 terms of the sum for values ofT less or equal to 12. For
values of T greater than, 12 the p-value was set to zero.

Parameter estimation
A fast but inaccurate method for estimating parameters
of a Poisson-Beta distribution is a moments matching

technique. The parameters can be expressed through the
sample exponential moments [22]:

α = 2r1(r3 − r2)
r1r2 − 2r1r3 + r2r3

(6)

β = 2(r2 − r1)(r1 − r3)(r3 − r2)
(r1r2 − 2r1r3 + r2r3)(r1 − 2r2 + r3)

(7)

γ = −r1r2 + 2r1r3 − r2r3
r1 − 2r2 + r3

, (8)

where ri is a successive ratio of exponential moments ei:

ri = ei
ei−1

, e0 = 1, (9)

for an i’th exponential moment: ei = E[X(X − 1) . . . (X −
i + 1)], where X is a sample of read counts.
The parameters of a Poisson-Beta distribution can also

be estimated by a Bayesian inference method [17]. The
Bayesian method is more accurate, but it requires more
computational power. A Gamma distribution was used as
a prior for the parameters α, β and γ :

α ∼ Gamma(kα , θα) (10)
β ∼ Gamma(kβ , θβ) (11)
γ ∼ Gamma(kγ , θγ ), (12)

where

kα = kβ = kγ = 1 (13)
θα = θβ = 100 (14)
θγ = max{x : x ∈ X}, (15)

The number of read counts, x, was drawn from a
Poisson-Beta distribution:

x ∼ Pois(x | γ c)
∧
c
Beta(c | α,β) (16)

Parameter estimation was performed by a collapsed
Gibbs sampler, using Slice sampling [19]. Conditional dis-
tributions for parameters during sampling were given
by:

P(ci) ∼ Beta(ci|α,β)Poisson(xi|ciγ ) (17)

P(α) ∼ Gamma(α|kα , θα)

n∏
i=1

Beta(ci|α,β) (18)

P(β) ∼ Gamma(β|kβ , θβ)

n∏
i=1

Beta(ci|α,β) (19)

P(γ ) ∼ Gamma(γ |kγ , θγ )

n∏
i=1

Pois(xi|ciγ ) (20)

Likelihood ratio test
The likelihood ratio test provides a parametric test for
differential expression. One of the two conditions is des-
ignated as the control and the other is designated as the
test conditions. For each gene, the log-likelihood of the
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data from the test condition is calculated using the param-
eters estimated for both the control and the test. We then
test the null hypothesis that the ratio of the likelihoods
calculated using the two parameters is not significantly
different from 1.
Calculating the likelihood using the Poisson-Beta dis-

tribution numerically is very challenging due to the pres-
ence of the confluent hypergeometric function [17]. The
methods available in Python become unreliable for large
values of the third argument. To be able to evaluate
the Poisson-Beta distribution we employ a Monte Carlo
method whereby the PDF is estimated using N randomly
generated samples. N can be set by the user as a flag and
the default value is 1,000.

Synthetic data
Synthetic data was produced by sampling from a Poisson-
Beta distribution, i.e. first drawing an auxiliary variable
c from Beta distribution with parameters α and β : c ∼
Beta(α,β) and then drawing from a Poisson distribution
with parameter λ = cγ : x ∼ Poisson(cγ ).

Analyis of the sensitivity
To evaluate how well D3E is capable of detecting changes
in different regimes of the parameter space, we system-
atically varied the three parameters of the Poisson-Beta
model across the range of values representative of the bio-
logical data, α ∈[ .01, .1] ,β ∈[ .1, 1], and γ ∈[ 1, 100]. We
fixed a pair of parameters and varied the third in 10 steps
over its range, recording the p-value for one of the tests.
For each of the 100 different combinations, it was assumed
that the sample consisted of 50 cells from each condi-
tion was generated. Close to the diagonal, the changes in
the parameters are small, and we expect a high p-value in
these positions. To summarize the matrix of p-values, we
calculate a composite score as

S = 1 − 1
100

∣∣∣ 10∑
i=1

I(pii > .05) − 10
∣∣∣ + 1

100

10∑
i=1

10∑
j=1,j �=i

I(pij > .05),

(21)

where I is the indicator function. The score S ranges
between 0 and 1, and 1 is obtained when all of the p-values
on the diagonal are greater than .05 while the off-diagonal
elements are smaller than .05. The score is mapped to a
color and reported in Fig. 2.

Dropout analysis
To evaluate the effect of experimental noise, we consid-
ered the possibility of transcript dropout events. Dropouts

are likely to occur either as a consequence of failure to iso-
late the transcript when lyzing the cell, failure of the RT
reaction, or failure of the amplification. The probability
of failure is poorly understood, but it has been suggested
that the dropout probability can be modeled as pdropout =
1 − e−μ2/b, where μ is the mean expression and b is a
parameter [23].
For our dropout experiments, we randomly generated

1,000 parameter triplets based on the fitted data from
Islam et al. [15]. For each triplet, we changed one parame-
ter at a time and the change was allowed to be up to 4-fold.
Next, we generated realizations from both distributions
for 50 cells in each condition. We used the parameter esti-
mation module to evaluate the accuracy of the estimates
for perfect samples as well as for three different values of
the dropout parameter b = 10, 100, 200.

Normalization
The normalization of the raw read counts was performed
by the samemethod used by DESeq2 [18]. Let xij represent
the raw number of reads for i = 1, 2..N and j = 1, 2..M,
whereN is the number of genes, andM is the total number
of cells in the experiment. Then, the size factor sj is found
as

sj = mediani
xij(

M∏
k=1

xik

)1/M . (22)

The corrected read counts are then calculated as x∗
ij =

xij
sj . The size factors are calculated based on spike-ins data
only if it is available.

Determining p-value threshold
To determine the p-value threshold for D3E, we first take
the sample which will be used as the control group (i.e. in
the denominator when calculating the fold-change), and
split it into two non-overlapping subsets. Next, one of the
tests is applied to the split sample, and the lowest p-value
observed, p∗, is recorded. When comparing the case and
the control sets, 0.1 ∗ p∗ is used as a threshold, and only
genes with a p-value lower than 0.1 ∗ p∗ are considered
significant.
SCDE reports a z-score which we transform to a p-

value using the formula p = 2�(−|z|), where �(x) is the
cumulative density of the standard normal distribution.
When choosing the threshold for SCDE, we used the same
strategy as for D3E.
For DESeq2 we used the adjusted p-value reported

by the algorithm, and we required it to be < .1 to
be significant.
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Calculating auto-correlation times
The power spectral density, S(ω), of the mRNAs for the
transcriptional bursting model is given by [9]

S(ω) = 2
λ2 + ω2

(
dγ + dαγ 2

(α + β)2 − λ2

)

− 2
(α + β)2 + ω2

dαγ 2

(α + β)2 − λ2

(23)

where d = α/(α + β). By definition, the auto-correlation,
R(t), is given by the inverse Fourier transform of S(ω),

R(t) =e−λ|t|
(
dγ

λ
+ (α + β)(dγ )2

λ(α + β)2 − λ2)

)

− e−(α+β)|t| (dγ )2

(α + β)2 − λ2
.

(24)

The characteristic time of the auto-correlation is
defined as τc = S(0)/2R(0).

Additional files

Additional file 1: Figure S1. Sensitivity to changes in parameters of the
Poisson-Beta distribution for the Cramér-von Mises, KS and likelihood ratio
tests similar to Fig. 4. The range over which the parameters are varied is
larger here. The increased presence of lighter colors shows that for themost
part it is easier to identify DE genes for this set of parameters. (JPEG 246 kb)

Additional file 2: Figure S2. Change in expression levels for 90 genes
from the 2-cell and 4-cell mouse embryos as quantified using either qPCR
or RNA-seq [6]. (JPEG 113 kb)

Additional file 3: Table S1. Expression levels for the 90 genes from the
2-cell and 4-cell mouse embryos as quantified using either qPCR or
RNA-seq [6]. The last six columns indicate the genes that were identified as
differentially expressed by different DE algorithms as well as a t-test for the
qPCR data. (TSV 11.7 kb)

Additional file 4: Parameters for the Islam et al. data without
degradation rates. Parameters for the 12,135 genes that were expressed
in both cell types. (TSV 2631 kb)

Additional file 5: Parameters for the Islam et al. data with
degradation rates. Parameters for the 2,105 genes that were expressed in
both cell types, and where degradation rates were available. (TSV 369 kb)

Additional file 6: Figure S3. Scatterplots showing the mean fold-change,
as well as the fold-change of the CV compared to the change in
degradation rate, burst frequency, duty cycle, burst size. In all panels, black
dots represent genes which did not change, red dots represent genes
which were deemed significant by D3E. (JPEG 355 kb)

Additional file 7: Figure S4. Scatterplots showing the mean fold-change
and the fold-change of the characteristic time, as well as the fold-change
of the characteristic time compared to the change in degradation rate,
variance and characteristic promoter time. In all panels, black dots
represent genes which did not change, red dots represent genes which
were deemed significant by D3E. (JPEG 301 kb)

Additional file 8: Figure S5. Scatterplots showing the mean fold-change,
as well as the fold-change of the mean compared to the change in burst
frequency, duty cycle, burst size for early vs late blastocysts from Deng et
al. [10]. In all panels, black dots represent genes which did not change, red
dots represent genes which were deemed significant by D3E. (JPEG 189 kb)

Additional file 9: Figure S6. Scatterplots showing the mean fold-change,
as well as the fold-change of the CV compared to the change in burst
frequency, duty cycle, burst size for early vs late blastocysts from Deng et
al. [10]. In all panels, black dots represent genes which did not change, red
dots represent genes which were deemed significant by D3E. (JPEG 345 kb)
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