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Abstract

Background: Elucidating the cooperative mechanism of interconnected residues is an important component
toward understanding the biological function of a protein. Coevolution analysis has been developed to model the
coevolutionary information reflecting structural and functional constraints. Recently, several methods have been
developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to
significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly
been assessed by focusing on the aspect of protein structure.

Results: In this study, we built an MRF model whose graphical topology is determined by the residue proximity in
the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF
model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site,
allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based
MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show
that the node weight can more accurately represent positional coevolution information compared to the edge
weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned
sequences in linear time.

Conclusions: The results show that adoption of a structure-based architecture could be an acceptable
approximation for coevolution modeling with efficient computation complexity.
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Background
Coevolution analysis is widely used to model the interde-
pendency between protein residues in amultiple sequence
alignment (MSA). Since it is generally believed that highly
correlated mutation patterns represent evolutionary con-
straints resulting from structural or functional aspects
[1], coevolutionary information has been widely used
to describe residue-residue contacts [2], sequence com-
parisons [3], deleterious substitutions [4], drug-resistant
positions [5], various types of functional sites [6, 7],
allosteric signaling pathways [8], protein-protein interac-
tions [9], and for protein design [10].
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Despite the usefulness of coevolution information, its
accurate estimation remains challenging because of var-
ious noise factors such as those derived from phyloge-
netic signals [11], indels [12] and indirect signals [13].
Recently, new coevolution analysis methods have been
developed that are based on a type of probabilistic graph-
ical model called the Markov random field (MRF), which
have shown remarkable improvements for estimation
[9, 14–19]. Unlike the earlier approaches based on local
estimates [12, 20–22], the MRF methods utilize a global
sequence context of multiple alignment, and thus can
effectively overcome interference from indirect signal
noise.
All of the MRF methods are broadly similar to each

other with respect to graphical modeling and coevolu-
tion estimations. They represent an MSA as a graphical
model—in which each node encodes a distribution of
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amino acids at a specific residue position, and each edge
encodes a joint distribution of amino acids between two
connected residues—and coevolution scores are calcu-
lated from the edge weights. However, because parame-
terization using a likelihood function is computationally
challenging, recent studies have suggested different meth-
ods for learning a MRF model. GMRC [14] uses a greedy
structure search that develops a graphical architecture
by iteratively updating the edge set. mpDCA [9] and
mfDCA [15] approximate the likelihood function by using
a message-passing algorithm and a mean-field equation,
respectively. PSICOV [17] uses a sparse inverse covariance
estimation technique with a graphical LASSO penalty
instead of directly computing the MRF model. Most
recently, somemethods have been proposed to replace the
likelihood function with an alternative objective function,
which is more tractable [16, 19]. In particular, GREM-
LIN has shown the most advanced performance, which
relies on a pseudo-likelihood objective and parameter reg-
ularization [18]. Nevertheless, the use of MRF methods
has not been comprehensively assessed with respect to
the functional aspect of the coevolutionary constraint;
instead, most of these assessments have thus far focused
on the ability for protein structure prediction. Moreover,
the accuracy of MRF methods considerably depends on
the number of sequences comprising the MSA [23, 24].
In this paper, we present a structure-basedMRF (SMRF)

model whose graphical architecture is determined by
using the protein structure information, and then derive
a novel positional coevolution estimate using the node
weight. We further apply the SMRF model to three data
sets with different types of functional annotations, and
demonstrate the association between coevolution infor-
mation and functional sites. In addition, we examine the
computational robustness and efficiency of the proposed
SMRF-based coevolution analysis.

Methods
Structure-based Markov random field
Overview of theMarkov random fieldmodel
To estimate the evolutionary constraints on functional
sites, we use the MRF approach as a class of proba-
bilistic graphical models represented as an undirected
graph. Similar to a Bayesian network, the nodes of an
MRF represent the variables, and the edges represent
direct dependency between the variables of the neigh-
boring nodes. However, an MRF is defined on the basis
of undirected graphs and may be cyclic. This distinctive
feature enables the MRF to model certain dependencies
such as the symmetric influence of neighboring variables,
whereas a Bayesian network forces a directionality for the
interactions. Recent studies [9, 14–19] have shown that
MRF methods are suitable for modeling coevolutionary
relationship between residues of a protein in an MSA.

Modeling of anmultiple sequence alignment
An MRF model describing evolutionary information can
be built from the MSA by representing the residues of a
target protein with nodes. Therefore, the individual distri-
bution of amino acids at a specific residue i is encoded to
the node weight φi defined as

φi =
[
evi(x1)evi(x2) · · · evi(xK )

]
,

where evi(xk) represents the distribution of amino acid
k at column i of the MSA. Likewise, the probabilistic
interaction between residues i and j is encoded to the
corresponding edge weight ψij defined as

ψij =

⎡
⎢⎢⎢⎣

ewij(x1,x1) ewij(x1,x2) · · · ewij(x1,xK )

ewij(x2,x1) ewij(x2,x2) · · · ewij(x2,xK )

...
...

. . .
...

ewij(xK ,x1) ewij(xK ,x2) · · · ewij(xK ,xK )

⎤
⎥⎥⎥⎦ ,

where ewij(xki ,xkj ) represents the joint distribution of amino
acid ki at column i and amino acid kj at column j of
the MSA. Because we consider a gap as an additional
amino acid, K is set to 21, and then the node and edge
weights consist of a 21 and 21-by-21 dimensional vector
and matrix, respectively.
Given a set of parameters for the node and edge weights,

the likelihood of an aligned sequence x can be written as

P(x) = 1
Z

∏
i

φi(xi)
∏
i,j

ψij(xi, xj),

where xi represents the matched amino acid at column
i of the MSA, and φi(xi) and ψij(xi, xj) denote evi(xi) and
ewij(xi,xj), respectively. Z denotes the partition function to
convert the following terms into probability. Thus, the
summation of P(x) over all possible x values becomes 1.

Determining theMarkov random field architecture from
intramolecular contact
To effectively describe the coevolutionary constraint for
biological functionality, we determine the MRF architec-
ture based on the three-dimensional protein structure. As
shown in Fig. 1, the edges of the SMRF model are defined
for the residue pairs in contact. Thus, the topology of the
graph for the SMRF model becomes sparse, in contrast
to the complete graph topology of a conventional MRF
model such as GREMLIN. Assuming that residues in con-
tact are more likely to interact with each other due to
their spatial proximity, the structure-based architecture
would be a computationally efficient and biochemically
relevant representation. More importantly, because the
edges of the SMRF have similar constraints in terms of
the protein structure, the coevolution signals encoded
on the edges would be differentiated according to other
types of constraints such as biological functionality. In the
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Fig. 1 Overview of the procedure for building a structure-based Markov random field (MRF) model and quantifying coevolutionary constraints. The
MRF architecture is determined from the three-dimensional structure of a target protein. Each residue of the target protein is represented as a node,
and each intramolecular contact is represented as an edge connecting the corresponding residue nodes. After the graphical topology is
determined, parameterization is performed for the multiple sequence alignment in the same way as in conventional MRF methods. Then, pairwise
and positional coevolution scores are calculated from the edge and node weights, respectively

present study, intramolecular contact is determined by the
Cβ-Cβ (Cα in the case of GLY) atomic distance of <8 Å,
by following the contact definition adopted in the CASP
experiment [25].

Parameterization procedure
Given the MSA D = {x[1] , x[2] , · · · , x[M] } consisting of
M homologous sequences, the parameters for the MRF
can be estimated by maximizing the log-likelihood sum
written as

ll(v,w|D) =
∑
m

logP(x[m] ).

However, because the partition function Z is defined
over the entire space of the node and edge weights,
obtaining the parameters by the maximum log-likelihood
is computationally intractable. Alternatively, similar to
GREMLIN, we use the pseudo-likelihood objective, which
replaces the likelihood P(x) with

∏
i P(xi|x−i), where

x−i represents x1, · · · , xi−1, xi+1, · · · , xK , and P(xi|x−i) is
defined as

P(xi|x−i) = 1
Zi

φi(xi)
∏
j

ψij(xi, xj),

where Zi represents the local partition function that
is computationally more tractable. Consequently, the
pseudo-likelihood objective function is defined as

pll(v,w|D)

=
∑
m

∑
i
logP(xi[m] |x−i[m] )

=
∑
m

∑
i

⎡
⎣logφi(xi[m] ) +

∑
j
logψij(xi[m] , xj[m] ) − logZi

⎤
⎦ ,

=
∑
m

∑
i

⎡
⎣vi(xi[m] ) +

∑
j
wij(xi[m] , xj[m] ) − logZi

⎤
⎦ .

In addition to the pseudo-likelihood objective, to avoid
over-fitting, we use L2-regularization, defined as

R(v,w) = λv
∑
i

‖vi‖22 + λw
∑
i,j

‖wij‖22,

where λv and λw are determined as 0.01 and 0.2, respec-
tively, as in the GREMLIN model.
Tominimize the objective function, R(v,w)−pll(v,w|D),

we use the limited memory Broyden-Fletcher-Goldfarb-
Shannon (L-BFGS) algorithm [26] of libLBFGS imple-
mentation [27]. Compared to the GREMLIN model, an
SMRFmodel can be built more efficiently, despite the sim-
ilarity of their parameterization procedures, because the
structure-based graph topology of the SMRF effectively
reduces the search space for edge weights.

Measurement of evolutionary constraints
The coevolution score between residues i and j is cal-
culated by using the norm of the edge weight, defined
as

20∑
ki=1

20∑
kj=1

[
wij(xki , xkj)

]2
,
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and is corrected by using average-product correction
(APC) [28]. Because functionality annotation is usually
determined for individual residues, the coevolution score
defined for a residue pair should be transformed to a
positional value. The proximity-based average is a con-
ventional approach to derive a positional coevolution
score. This calculates the average of the coevolution scores
between a target residue and its neighboring residues
in the three-dimensional structure. Calculating the frac-
tion of coevolution is another approach to determine
the positional coevolution value. This involves calculat-
ing the fraction of coevolving residue pairs for a target
position. According to a previous study [7], we here con-
sider a residue pair to be coevolved if its Z-score of the
coevolution score exceeds 3.
Here, we develop a novel estimate of the positional

coevolution score by using the node weight of the SMRF
model. Since an MRF model tends to factorize the distri-
bution of a random variable at a specific node according
to the dependencies with neighboring nodes, the differ-
ence between the node weight and the amino acid fre-
quency at a specific position could represent the degree
of the coevolutionary constraint for the residue. Based
on this assumption, we formulate the positional coevolu-
tion score at position i by estimating the KL-divergence,
defined as

NW =
20∑
k=1

fi(xk) log
fi(xk)
pi(xk)

,

where fi(xk) represents the amino acid frequency at col-
umn i of the MSA, and pi(xk) represents the amino acid
frequency, defined as

pi(xk) = evi(xk)∑20
k̂=1 e

vi(xk̂)
.

Additionally, the conventional conservation score of
residue i is calculated by using the KL-divergence as

KLDf ,q =
20∑
k=1

fi(xk) log
fi(xk)
q(xk)

,

where q(xk) represents the overall amino acid frequency
in the MSA. Similar to the KL-divergence, the JS-
divergence is used for quantifying the degree of conserva-
tion as

JSDf ,q = λKLDf ,r + (1 − λ)KLDq,r ,

where r and λ are defined as r = λf +(1−λ)q and λ = 0.5,
respectively, according to a previous study [29].
To normalize the different distributions, the coevolution

and conservation scores are transformed to Z-scores over
all of the residues of the protein, respectively.

Data sets
We built three data sets, each of which describes differ-
ent types of functional site information. The first data set
was collected from the Catalytic Site Atlas (CSA) database
[30], which annotates catalytic sites from the literature
according to homology. For the CSA data set, the proteins
with five or more catalytic sites annotated in the liter-
ature were collected. The second data set was collected
from the AlloSteric Database (ASD) [31], which anno-
tates allosteric sites from the literature. For the ASD data
set, the proteins with five or more annotated allosteric
sites were collected. The third data set was collected from
the InterPro database [32], which provides comprehensive
information on various types of functional sites. For the
InterPro data set, the proteins with five or more annotated
functional sites were collected. Next, we chose proteins
whose Protein Data Bank structure has been determined
by X-ray diffraction with a resolution of ≤2.5 Å. To
remove sequence redundancy in the data set, the amino
acid sequences of proteins were clustered to the maxi-
mum sequence identity of <50% by running the CD-HIT
[33]. In addition, for reliably parameterizing the SMRF
models, we chose only proteins whose MSA consists of
more than 300 sequences. TheMSAs were constructed by
running the HHblits [34] with the option “-e 0.001” for
the NR20 sequence database (last update August 2011)
downloaded from the HHblits webpage. The NR20 is the
NCBI non-redundant database clustered to the maximum
sequence identity of 20%. Finally, the CSA data set con-
sisted of 99 proteins with 628 catalytic sites, the ASD data
set consisted of 54 proteins with 501 allosteric sites, and
the InterPro data set consisted of 688 proteins with 15,607
functional sites.

Assessment
The central objective of our study was to use the struc-
ture information for MRF-based coevolution modeling,
and to derive a novel positional coevolution estimate that
could more accurately represent functional constraints.
To assess the effectiveness of the protein structure-based
MRF architecture, we compared the SMRF approach with
the state-of-the-art MRF methods GREMLIN [18] and
PSICOV [17] using the recommended default options.
Additionally, we built a random predictor by randomly
permutating the coevolution scores of the SMRF 100
times and calculating the average. Since GREMLIN and
PSICOV were originally developed to predict residue-
residue contacts similar to other previously published
MRFmethods [9, 14–16, 19], they can only provide scores
determined for a residue pair. However, the pairwise
coevolution score is not commensurable with the func-
tional annotation determined for an individual residue.
Therefore, we computed the GREMLIN-style scores
derived from the edge weights of the SMRF model, and
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compared them with the original GREMLIN and PSICOV
scores. With this approach, a positive example is defined
as a residue-residue contact composed of at least one
functional site, a negative example is defined as a residue-
residue contact with no functional site, and residue pairs
not in contact are ignored.
The CSA and ASD data sets contain functional sites

only covering catalytic and allosteric functionalities,
respectively, whereas the InterPro data set provides com-
prehensive functionality information, which enables a
more systematic evaluation. Therefore, for the InterPro
data set, we evaluated the association between the posi-
tional coevolution score and functional sites by using
receiver operating characteristic (ROC) curves that visu-
ally describe the relative trade-offs between the true pos-
itive rate (TPR) and false positive rate (FPR), where TPR
and FPR are defined as

TPR = TP
TP + FN

FPR = FP
FP + TN

,

where TP, FP, TN, and FN represent the number of true
positive, false positive, true negative, and false negative
predictions at a certain cutoff. We compared the overall
performance by vertically averaging the ROC curves of the
target protein. Moreover, to evaluate the performance for
each target protein, we used the area under the ROC curve
(AUC), where an AUC value of 1 indicates perfect predic-
tion, 0.5 indicates a random prediction, and<0.5 indicates
worse than random. ROC curves and AUC scores were
estimated using the ROCR package [35].

Results
Evaluation of the protein structure-based architecture
For the SMRF model, we first determined the MRF
architecture by describing individual residues and their
intramolecular contacts as nodes and edges, respectively,
and then calculated the coevolution scores by parame-
terizing the MRF model. We assumed that a coevolution
model explicitly encoding the protein structure could
provide a better representation of functional constraints
rather than only encompassing structural constraints. To
validate this assumption, we examined the association
between the coevolution scores and functional sites, and
compared the results to those of the conventional MRF
method without a structure-based architecture. We used
GREMLIN [18], which incorporates the MRF architec-
ture of a complete graph topology connecting all available
residues. Except for theMRF architecture, GREMLIN and
SMRF calculated the coevolution scores in the same way.
For GREMLIN, the coevolution scores for intramolecular
contacts were considered. Consequently, the SMRF and

GREMLIN scores differed only with respect to the net-
work architecture of the MRF models. In addition, we
used PSICOV [17], which utilizes sparse inverse covari-
ance estimation. Similar to GREMLIN, only the coevolu-
tion scores of PSICOV for intramolecular contacts were
considered.
We estimated the fraction of residue pairs involving

functional sites (RPF) among hits. First, for the CSA data
set, the functional sites were determined as catalytic sites.
As shown in Fig. 2a, 6.5–7.2% of the SMRF hits were
associated with catalytic sites in the normalized rank of
0.1–1.5, whereas GREMLIN showed an RPF rate of 4.7–
5.3% in the same range. For PSICOV, an RPF rate of
4.8–5.3% was obtained in the normalized rank of 0.1–
0.6. The results for PSICOV are omitted above the nor-
malized rank of >0.6, because the output did not show
hits for some of the target proteins in this higher range.
The random prediction yielded an RPF rate of 4.5–4.9%.
Therefore, compared to the random prediction, SMRF
could increase the RPF rate by up to 33.0–60.8%, while
GREMLIN and PSICOV could only increase the RPF rate
by up to 18.1% and 13.7%, respectively. Consequently, by
using the proximity-basedMRF architecture, the coevolu-
tion scores were more likely to be associated with catalytic
sites.
Next, for the ASD data set, the functional sites were

determined as allosteric sites. As shown in Fig. 2b, the
SMRF resulted in a higher RPF rate than GREMLIN and
PSICOV in the normalized rank of 0.1–1.5, with a rate
of 6.3–8.3%. On the other hand, GREMLIN and PSICOV
showed RPF rates of 4.4–5.0% and 5.2–6.0%, respec-
tively, which are lower than the RPF rate obtained from
the random prediction (5.9–6.2%). This implies that the
coevolution scores of GREMLIN and PSICOV are not
associated with allosteric sites, whereas those of SMRF are
more likely to correspond to the allosteric sites as well as
catalytic sites.

Evaluation of the positional coevolution measure
In contrast to the coevolution score determined for a
residue pair, functionality is generally determined for an
individual residue. The conventional methods used to
convert the coevolution score for a residue pair to the
positional coevolution score are averaging coevolution
scores across neighboring links, denoted as EW, or cal-
culating the fraction of strongly coevolving residue pairs,
denoted as FC [7, 36–38]. Here, we propose a novel mea-
sure of calculating the positional coevolution score by
utilizing the node weight of the MRF model, denoted as
NW, and investigate the association with functional sites.
First, for the CSA data set, we investigated the associ-

ation between positional coevolution scores and catalytic
sites, as shown in Fig. 3a. When comparing EWmeasures,
SMRF showed a higher fraction of catalytic sites than
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A B

Fig. 2 Association of pairwise coevolution scores and functional sites. a For the CSA data set, the fraction of residue pairs with at least one catalytic
site among hits is represented across the rank cutoff. b For the ASD data set, the fraction of residue pairs with at least one allosteric site among hits is
represented across the rank cutoff. In (a) and (b), the rank is normalized by the sequence length of the target protein. For example, the normalized
ranks 0.1, 0.2, and 0.5 are equivalent to the top-L/10, top-L/5, and top-L/2, where L is the sequence length of the target protein. The gray shadow
represents the standard deviation

GREMLIN, analogous to the results described above. On
the other hand, when comparing FC measures, GREM-
LIN showed a higher fraction of catalytic sites than SMRF.
However, when using the NW measure, SMRF identified
many more catalytic sites. In particular, at the normalized
rank of 0.01, NW-SMRF showed an average of 28.4% cat-
alytic sites, while EW-SMRF, EW-GREMLIN, FC-SMRF,
and FC-GREMLIN showed fractions of 5.6%, 2.7%, 3.0%,
and 14.0%, respectively. In addition, the fraction of cat-
alytic sites from NW-SMRF was 7.9-times higher than
that of the random prediction. Below the normalized rank
of <0.05, NW-SMRF still showed a fraction of catalytic
sites that was >5.8-times higher than that of the random
prediction.
Next, for the ASD data set, we investigated the associa-

tion between positional coevolution scores and allosteric
sites, as shown in Fig. 3b. Similar to the above result,

EW-SMRF and FC-GREMLIN showed higher fractions of
allosteric sites than EW-GREMLIN and FC-SMRF, respec-
tively. Furthermore, for the most part, NW-SMRF showed
the highest fraction of allosteric sites below the normal-
ized rank of <0.2. In the normalized rank of 0.01–0.05,
NW-SMRF showed a fraction of allosteric sites of 5.2–
6.1%, which is 1.5–3.0-times higher than that of the
random prediction.
In addition to the CSA and ASD data sets, we eval-

uated the performance of the NW measure by estimat-
ing the ROC curve for the InterPro data set comprised
of a comprehensive annotation of residue functionality.
When comparing the ROC curves, the NW-SMRF was
found to outperform EW-SMRF, as shown in Fig. 4a.
The AUC values were 0.733 and 0.663 for NW-SMRF
and EW-SMRF, respectively, indicating that the AUC val-
ues improved by 10.5%. In addition, we compared the

A B

Fig. 3 Association of positional coevolution scores and functional sites. a For the CSA data set, the fraction of catalytic sites among hits is
represented across the rank cutoff. b For the ASD data set, the fraction of allosteric sites among hits is represented across the rank cutoff. In (a) and
(b), the rank is normalized by the sequence length of the target protein. For example, the normalized ranks 0.1, 0.2, and 0.5 are equivalent to the
top-L/10, top-L/5, and top-L/2, where L is the sequence length of the target protein. The gray shadow represents the standard deviation
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A B

Fig. 4 Performance comparison of positional coevolution measures of SMRF methods. a The solid lines represent the ROC curves vertically averaged
over all of the target proteins. NW-SMRF and EW-SMRF represent the positional coevolution measures derived from the node and edge weights,
respectively. b Scatter plot of AUC values for NW-SMRF (y-axis) and EW-SMRF (x-axis)

AUC values of NW-SMRF and EW-SMRF for each target
protein. As shown in Fig. 4b, NW-SMRF showed signifi-
cant improvement, with a p-value of <2.2e-16 (Wilcoxon
signed-rank test), outperforming EW-SMRF for 64.0% of
the targets. Consequently, from the results for the CSA,
ASD, and InterPro data sets, the novel positional coevo-
lution score based on the node weight of MRF can effec-
tively estimate the evolutionary constraints associated
with various types of functional sites.

Effectiveness of positional coevolution information in
combination with conservation information
Since conservation information represents the primary
evolutionary constraint and coevolution information rep-
resents higher-order evolutionary constraints, combining
this information could be useful to gain a better estima-
tion, owing to mutual compensation between the types of

information. To verify the complementary characteristics
of coevolution and conservation information, we investi-
gated the density distribution of conservation scores for
functional and non-functional sites. As shown in Fig. 5a,
the densities of conservation scores for functional and
non-functional sites were reversed for conservation score
values close to 0. This indicates that prediction of a
residue to a functional site is more likely to fail when
the conservation score is <0. Hence, using only the con-
servation score could easily lead to neglecting functional
sites with conservation scores of <0, which comprised
35.9% of all functional sites in the InterPro data set. More-
over, because functional site prediction is commonly per-
formed for a whole set of residues of a given target protein,
and a small fraction of residues belong to functional sites,
the sensitivity of the conservation score may decrease
considerably. Thus, additional information to supplement

A B

Fig. 5 Combination of positional coevolution and conservation information. a Kernel density estimate of the conservation score distribution
represented for functional and non-functional sites. b Scatter plot of AUC values for the logistic regression model combining conservation and
coevolution scores (y-axis) and the conservation score-based prediction (x-axis)
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conservation could be useful for increasing prediction of
constraints.
To validate the effectiveness of combining the positional

coevolution measure with conservation information, we
calculated conservation scores for protein residues by
using the KL-divergence from the MSA, and built logis-
tic regression models that use both conservation and
coevolution scores as input features. For the InterPro data
set, we conducted 20-fold cross-validation 30 times, and
averaged the AUC values for each target. The 20-fold
cross-validation procedure was carried out by randomly
splitting targets into 20 subsets, and predicting functional
sites for each subset with a predictive model that learned
from the remaining 19 subsets. The AUC values obtained
by combining coevolution and conservation scores were
compared against the AUC values obtained when using
only the conservation scores. As shown in Fig. 5b, com-
bining the coevolution and conservation scores improved
the predictive power for 85.3% of the target proteins
with a p-value of <2.2e-16 (Wilcoxon signed-rank test).
In addition, we replaced the KL-divergence with the JS-
divergence, because a previous study showed that JS-
divergence outperformed KL-divergence for functional
site predictions [29]. The overall AUC statistics are sum-
marized in Table 1, suggesting that positional coevolution
information could consistently complement conservation
information obtained from different types of measure-
ments. Similar to the combination with KL-divergence,
combining coevolution scores with JS-divergence conser-
vation scores improved the predictive power for 84.5%
of the target proteins (Wilcoxon signed-rank test p-value
<2.2e-16).
Furthermore, we validated the effectiveness of posi-

tional coevolution information in combination with con-
servation information for the CSA and ASD data sets to
investigate how well the combination could perform with

Table 1 Average AUC values of the logistic regression model for
the InterPro data set

Feature AUC0.1 AUC0.2 AUC0.5 AUC

NW-SMRF 0.023 0.069 0.275 0.733

KLD 0.024 0.071 0.277 0.733

KLD + NW-SMRF 0.027 0.076 0.293 0.758

JSD 0.025 0.072 0.279 0.736

JSD + NW-SMRF 0.027 0.077 0.294 0.758

AUC0.1, AUC0.2, and AUC0.5 represent the partial area under the ROC curve spanning
the false positive rates of 0.1, 0.2, and 0.5, respectively. The best AUC value between
the conservation score and the combination of the conservation score with the
coevolution score is shown in bold. NW-SMRF represents the coevolution measure
derived from node weights. KLD and JSD represent conservation measures using
KL-divergence and JS-divergence, respectively. KLD + NW-SMRF and JSD +
NW-SMRF represent the logistic regression models combining the coevolution and
conservation measures

Table 2 Average AUC values of the logistic regression model for
the CSA data set

Feature AUC0.1 AUC0.2 AUC0.5 AUC

NW-SMRF 0.030 0.080 0.288 0.736

KLD 0.047 0.115 0.362 0.839

KLD + NW-SMRF 0.049 0.120 0.372 0.851

JSD 0.045 0.110 0.353 0.829

JSD + NW-SMRF 0.048 0.116 0.365 0.844

See Table 1 for a description of the statistics

specific types of functional-site data sets. Similar to the
results for the InterPro data set, 20-fold cross-validation
was carried out 30 times, and the AUC values were aver-
aged for each target. As shown in Tables 2 and 3, the
combined methods consistently improved the individual
conservation measures for both the CSA and ASD data
sets, despite the fact that catalytic and allosteric sites
are known to have different conservation characteristics.
Overall, these results demonstrate that the novel posi-
tional coevolution score consistently complements the
conventional conservation score for various types of func-
tional sites.
Next, we compared the coefficients of the logistic

regression model to investigate the contribution of each
term according to a specific functionality. In this case, the
logistic regression models were built using the whole tar-
get samples for the InterPro, CSA, and ASD data sets. As
shown in Table 4, both the coevolution and conservation
terms showed a significant contribution for functional site
prediction. However, the amount of the contribution dif-
fered for each data set. Compared to the InterPro data set,
which consists of comprehensively determined functional
sites, the CSA data set, which is specialized for catalytic
function, showed a higher correlation with conservation
information, whereas the ASD data set, which is special-
ized for allosteric function, showed a lower correlation
with conservation information. Therefore, combining the
positional coevolution and conservation scores according
to a specific type of functionality would more accurately

Table 3 Average AUC values of the logistic regression model for
the ASD data set

Feature AUC0.1 AUC0.2 AUC0.5 AUC

NW-SMRF 0.012 0.040 0.189 0.607

KLD 0.013 0.041 0.196 0.607

KLD + NW-SMRF 0.013 0.042 0.202 0.618

JSD 0.012 0.039 0.187 0.594

JSD + NW-SMRF 0.012 0.041 0.194 0.609

See Table 1 for a description of the statistics
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Table 4 Weight values for coevolution (NW-SMRF) and
conservation (KLD) terms, and intercept values of logistic
regression models for the InterPro, CSA, and ASD data sets

Data set NW-SMRF KLD Intercept

InterPro 0.241*** 0.446*** −3.033***

CSA 0.226*** 0.875*** −4.638***

ASD 0.125* 0.195** −3.775***

p-values: ***(<2.2e-16), **(3.5e-5), *(0.003)

represent the evolutionary constraints acting at the rele-
vant sites of interest.

Robustness against the size of the multiple sequence
alignment
Recent studies [18] have suggested that for a meaning-
ful MRF analysis, the number of aligned sequences in an
MSA should exceed five times the length of the target
sequence. However, these studies were based on the MRF
model with a complete graph topology. In the present
study, we reduced the topological complexity by using
the three-dimensional protein structure, and the resulting
SMRFmodel had fewer edge parameters. Accordingly, the
SMRFmodel can be built with a smaller number of aligned
sequences. To demonstrate the robustness of the SMRF to
variations in the MSA size, for the CSA data set, we chose
47 proteins with an MSA size of >5L, where L indicates
the sequence length of the target protein, and then gener-
ated sub-MSAs by randomly including aligned sequences.
Because the EW and FC measures performed poorly in
the analyses described above, we examined only the posi-
tional coevolution scores, NW-SMRF, which were com-
pared to the random prediction. As shown in Fig. 6, SMRF
only showed a moderate difference in performance in the
range of>1L, but performance considerably decreased for
MSA sizes of<1L. Therefore, for a significant coevolution

analysis, SMRF may require less aligned sequences than
conventional MRF methods.

Computational complexity
The use of a structure-based architecture in SMRF
can reduce computation complexity. Conventional MRF
methods with a complete graph topology have computa-
tion complexity that is proportional to the square of the
length of the target sequence. However, because SMRF
only considers residue pairs in contact, its computation
complexity increases linearly with respect to the number
of intramolecular contacts, which is usually proportional
to the target sequence length. We compared the com-
putation time spent for building the MRF model. The
same 47 proteins chosen for the robustness assessment
described above were used with the sub-MSA of a size of
5L. Because GREMLIN and SMRF were implemented in
different environments, including different programming
languages and optimization levels, we scaled the computa-
tion times by that of the shortest sequence, 1dco_A, con-
sisting of 104 amino acids (aa). As shown in Fig. 7, as the
target length increased, GREMLIN showed a quadratic
increase in computation time, but SMRF showed a linear
increase. For instance, for the targets 1tyf_A (193 aa) and
1dli_A (402 aa), the computation times of GREMLINwere
2.66- and 3.71-times higher than those of SMRF, respec-
tively. This result indicates that SMRF can efficiently
reduce the computation complexity.

Discussion and conclusion
The effectiveness of SMRF for modeling evolutionary
constraints derives from the fact that the graph topol-
ogy is determined according to the proximity of pro-
tein residues. Explicitly encoding intramolecular contacts
forces the MRF edges to share similar structural con-
straints, so that the edges become parameterized along
other sorts of biochemical constraints, including those

A B

Fig. 6 Dependence of prediction on the number of aligned sequences in the multiple sequence alignment (MSA). For 47 target proteins, a the
precisions, determined as the fractions of catalytic sites, at the rank cutoff of a top-L/20 and b top-L/10 (y-axis) are represented according to MSAs of
different sizes (x-axis). The gray shadow represents the standard deviation
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Fig. 7 Evaluation of computational complexity. For 47 target proteins,
the computation time for running the GREMLIN and SMRF methods is
represented according to the sequence length of the target. Each
computation time is scaled by the computation time of the shortest
target, 1dco_A. Solid lines represent the local fitting lines for the
GREMLIN and SMRF methods. The gray shadow represents the
standard deviation

related to functional significance.Moreover, this approach
could avoid the potential bias of a covariation measure to
the core region [39], and improve the signal-to-noise ratio
of coevolution information. Consequently, in conjunction
with MRF methodology that considers the global context
of a random variable distribution, SMRF can encode the
evolutionary information associated with the functional
aspect. Based on comparisons with the conventional MRF
method, we have demonstrated that use of an MRF archi-
tecture derived from the three-dimensional protein struc-
ture can enhance the ability to derive information about
the inter-dependencies among functional residues.
Although the edge weight of the MRF model has been

commonly used for coevolution analysis, the node weight
has not been utilized sufficiently. In the present work,
we developed a novel positional coevolution estimate by
using the node weight of the SMRFmodel. This positional
coevolution score has a form comparable with a tradi-
tional conservation estimate; thus, the integrated analysis
of coevolution and conservation information can be eas-
ily achieved. Moreover, various machine-learning meth-
ods could append the positional coevolution score as an
additional component of their feature vector.
The use of a structure-based architecture in this context

is particularly advantageous when there are insufficient
available sequences for carrying out the conventional
MRF method. Previous studies have suggested that an
MSA consisting of more than 5L sequences [18] or 1000
sequences [24] is required for reliable coevolution anal-
ysis. However, in this paper, we demonstrated that the

SMRF method could perform robustly for an MSA with
fewer aligned sequences, which could extend the applica-
bility of coevolution analysis. Although high-throughput
sequencing progress is continuously expanding sequence
databases, information on certain kinds of proteins such
as newly evolved or rarely populated proteins has not been
expanded from this technology. Therefore, the extended
applicability of the method proposed herein could be
useful for large-scale coevolution studies.
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