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Abstract

Background: DNA methylation at a gene promoter region has the potential to regulate gene transcription.
Patterns of methylation over multiple CpG sites in a region are often complex and cell type specific, with the
region showing multiple allelic patterns in a sample. This complexity is commonly obscured when DNA
methylation data is summarised as an average percentage value for each CpG site (or aggregated across CpG
sites). True representation of methylation patterns can only be fully characterised by clonal analysis. Deep
sequencing provides the ability to investigate clonal DNA methylation patterns in unprecedented detail and
scale, enabling the proper characterisation of the heterogeneity of methylation patterns. However, the sheer
amount and complexity of sequencing data requires new synoptic approaches to visualise the distribution of
allelic patterns.

Results: We have developed a new analysis and visualisation software tool “Methpat”, that extracts and displays
clonal DNA methylation patterns from massively parallel sequencing data aligned using Bismark. Methpat was
used to analyse multiplex bisulfite amplicon sequencing on a range of CpG island targets across a panel of
human cell lines and primary tissues. Methpat was able to represent the clonal diversity of epialleles analysed at
specific gene promoter regions. We also used Methpat to describe epiallelic DNA methylation within the
mitochondrial genome.

Conclusions: Methpat can summarise and visualise epiallelic DNA methylation results from targeted amplicon,
massively parallel sequencing of bisulfite converted DNA in a compact and interpretable format. Unlike
currently available tools, Methpat can visualise the diversity of epiallelic DNA methylation patterns in a sample.
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Background
In mammals, the predominant and most widely studied
DNA methylation mark occurs at CpG dinucleotide
(CpG) palindromic sequences [1]. The vast majority of
methods that investigate DNA methylation utilise bisul-
fite treatment of genomic DNA followed by PCR ampli-
fication to distinguish methylated from unmethylated
CpG sites [2–5]. Bisulfite treatment discriminates
methylated from unmethylated cytosines by selectively
reacting with unmethylated cytosines to generate uracil.
During the subsequent first step of PCR amplification,
the uracils are read as thymine. Conversely, methylated
cytosines do not react with the bisulfite reagent and
remain as cytosines after PCR amplification [6]. DNA
methylation readouts at single sites employing bisulfite
conversion become analogous to genotyping assays by
detecting either a cytosine or thymidine at the C position
of a CpG site and are interpreted as methylated or
unmethylated cytosines respectively.
An epiallele refers to a distinct pattern of methyla-

tion, typically over a short genomic region [7, 8]. In
addition to the methylation state given for each CpG
site, the pattern of DNA methylation of all CpG
sites across the epiallelic or clonal template can also
be characterised [7]. Indeed, in terms of biological
function, CpG methylation should be often considered
in an allelic fashion over multiple adjacent CpG
sites [9, 10].
However, currently most studies summarise data into

average percentage values at each CpG site thus losing
the positional pattern information of DNA methylation
across each clonal template [9]. Analysis platforms such
as the Illumina Infinium BeadArray [11], bisulfite pyro-
sequencing [12] and SEQUENOM™ EpiTYPER™ [13]
use bisulfite mediated chemistry to discriminate the
methylation state of CpG sites but summarise mea-
surements into percentage values across each CpG
site or region of interest. Percentage methylation de-
scribed in most DNA methylation studies hides im-
portant pattern and positional information of DNA
methylation with potential functional and regulatory
relevance [7]. It is only with clonal sequencing ap-
proaches [1, 14, 15], whole genome bisulfite sequencing
[16] or reduced representation bisulfite sequencing
[17], that the methylation state of individual CpG
sites within a genomic DNA template can be readily
measured in a digital sense, as methylated or not,
allele by allele.
Imprinted regions of the genome such as IGF2/H19

and MEST typically display two epialleles, where one is
completely methylated and the other is unmethylated.
The loss of imprinting at such loci leads to syndromic
complications [18, 19]. Average DNA methylation across
these loci are typically presented as 50 % methylation

but the pattern of DNA methylation at each epiallele is
lost [7].
Heterogeneous DNA methylation describes the

phenomenon where different contiguous CpG sites
have different levels of methylation. DNA methylation
heterogeneity can arise in a variety of ways including
but not limited to: (i) more than a single population of
cells is analysed that differ in DNA methylation at the
locus of interest, (ii) the locus of interest is imprinted
i.e. two different epialleles are present in each cell or,
(iii) the locus is inherently heterogeneous in its DNA
methylation composition. It is only using clonal se-
quencing approaches with allelic outputs, high reso-
lution melting (HRM) [7, 20], or a novel ligation
mediated approach [10] that heterogeneous DNA
methylation can be detected. It is also inferred by
varying methylation at CpG sites e.g. from Pyrose-
quencing. Importantly, the number of methylated
alleles can be substantially underestimated unless
clonal approaches are used [20]. Clonal sequencing
is currently the best method to investigate heteroge-
neous DNA methylation and the extent of epiallelic
methylation patterns that exist within a single
sample [15].
Until recently, it has been cost prohibitive to assess the

complexity of methylation patterns, as large number of
clones need to be individually sequenced to determine the
extent of heterogeneous DNA methylation. As one clone
represents a single epiallele, many tens to hundreds of
clones need to be sequenced to gain a true representation
of different epialleles in a sample. The introduction of
massively parallel sequencing enables the sequencing of
many thousands of DNA templates from multiple regions
simultaneously providing a true representation of the di-
versity and extent of heterogeneous DNA methylation
patterns derived from a given sample. However, as the
number of clones sequenced increases, the ability to
analyse and present this type of data then becomes a
significant challenge, and at this time, there are very
few software tools available to manage such data from
massively parallel sequencing experiments [21, 22].
Some visualisation and analysis tools are available for
Bisulfite Sanger Sequencing including BiQ Analyzer
[23], MethVisual [24], QUMA [25], BISMA [26].
However, these tools do not scale up with massively
parallel sequencing having been designed for Sanger
sequencing. BiQ Analyser HiMod is a tool that en-
ables visualisation of high throughput sequencing of
5-methylcytosine and other methyl-variant modifica-
tions [27] however, results are expressed in percent-
age methylation values masking allelic methylation
patterns.
In this study, we have developed Methpat, a software

tool which processes bisulfite sequencing data following
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Bismark alignment [28] and summarises DNA methyla-
tion according to epiallelic methylation patterns. This
software has been used to analyse multiplex bisulfite
amplicon PCR coupled to massively parallel deep se-
quencing on a range of primary haematopoietic tissue
samples and model cancer cell lines to observe the
extent of heterogeneous DNA methylation. Methpat is
also able to create publication-ready, compact visualisa-
tions of the summarised data showing heterogeneous

DNA methylation patterns in a space efficient and
comprehensible manner.

Materials, methods and implementation
Samples, library preparation, sequencing and sequence
alignment. Details of sample preparation, library gener-
ation, sequencing and sequence alignment protocol
employed are summarised in the Additional file 1.
Human samples used in this study were approved for

Table 1 Mapping statistics of bisulfite amplicon libraries

Sample Mapping Efficiency Unique Hits Methylated CpG Methylated CHG Methylated CHH Total C’s analysed

293 52.2 % 7539 64.9 % 0.2 % 0.3 % 316211

40424 55.3 % 9414 37.5 % 0.2 % 0.2 % 351086

910046 42.0 % 7060 32.6 % 0.2 % 0.3 % 299795

12a-cd19 14.9 % 48648 47.9 % 0.4 % 0.5 % 1933767

12a-cd34 30.3 % 85049 36.5 % 0.1 % 0.2 % 3703147

12a-cd45 32.4 % 109173 32.6 % 0.1 % 0.2 % 4714744

12acd33 36.2 % 161885 32.8 % 0.2 % 0.2 % 6997070

6-mda453 54.6 % 201660 84.4 % 0.8 % 1.3 % 9179816

6c-cd19 7.9 % 22258 77.8 % 0.2 % 0.3 % 777739

6c-cd33 27.9 % 20071 35.2 % 0.2 % 0.2 % 851116

6c-cd34 19.5 % 36928 49.7 % 0.2 % 0.2 % 1628107

6ccd45 33.0 % 31087 39.5 % 0.1 % 0.2 % 1314281

9a-cd19 21.2 % 39352 48.7 % 0.2 % 0.3 % 1638757

9a-cd33 31.9 % 125884 35.8 % 0.2 % 0.2 % 5459419

9a-cd34 26.2 % 77870 43.4 % 0.2 % 0.2 % 3321993

9a-cd45 46.6 % 28085 29.8 % 0.2 % 0.2 % 1211803

9awholeblood 31.5 % 97532 30.8 % 0.2 % 0.2 % 4081834

brl 49.3 % 9107 32.7 % 0.2 % 0.4 % 398977

caco 19.6 % 129536 78.1 % 0.2 % 0.2 % 4512574

dg75 51.7 % 10827 57.2 % 0.3 % 0.3 % 489096

ekvx 23.0 % 115915 63.1 % 0.2 % 0.2 % 4494359

hela 43.1 % 41650 55.9 % 0.2 % 0.2 % 1731811

hepg2 39.2 % 24667 63.4 % 0.3 % 0.3 % 971693

ht1080 40.7 % 4586 67.0 % 0.2 % 0.4 % 176188

htb22-col 30.9 % 45576 79.9 % 0.2 % 0.2 % 1863098

jwl 31.3 % 18814 42.7 % 0.2 % 0.2 % 771188

k562 49.7 % 144791 55.9 % 0.3 % 0.3 % 6230391

ls174t 41.2 % 3691 57.2 % 0.2 % 0.3 % 151722

mcf7 30.0 % 87404 71.6 % 0.8 % 0.8 % 3786412

mda-mb231-bag 29.0 % 94811 77.3 % 1.0 % 1.1 % 4171147

nalm6 43.6 % 37669 85.8 % 0.2 % 0.2 % 1569041

nccit 44.0 % 31656 45.7 % 0.4 % 0.3 % 1406165

ovcar8 32.3 % 46864 63.4 % 0.3 % 0.3 % 1917527

sknas 21.6 % 275040 27.7 % 0.1 % 0.2 % 11313285

u231 14.0 % 123302 74.8 % 0.4 % 0.2 % 4389352
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Fig. 1 (See legend on next page.)
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research by The Royal Children’s Hospital Human
Research Ethics Committee (RCH HREC#27138E).

Methpat—a tool to summarise epiallelic DNA methy-
lation patterns We have developed the software tool,
Methpat to summarise and visualise the resultant epial-
lelic DNA methylation patterns from multiplex bisulfite
amplicon experiments. Source code is available on
GitHub (http://bjpop.github.io/methpat/). Methpat takes
the output from bismark_methylation_extractor and
summarises the methylation state of each CpG site
within each amplicon template sequenced. DNA methy-
lation patterns are then counted and their abundance is
summarised into a tab delimited text file amenable for
further downstream statistical analyses. Methpat also
outputs a standalone HTML file that provides a visual-
isation of the DNA methylation pattern of each ampli-
con of interest and a visual summary of their abundance
in each sample. A range of visualisation settings are
customisable so that the end-user can change the set-
tings to facilitate interpretation of the data and generate
publication-ready figures. These options include pre-
senting pattern counts as a percentage of the total, as
absolute count or log-scaled counts (Additional file 2:
Figure S1). Patterns can be arranged in order either by
count abundance or by DNA methylation state. Colours
within the visualisation can also be modified (Additional
file 3: Figure S2), and the image saved as a PNG file for
presentation or publication.

Results
Bismark alignment of sequencing data and statistics
After evaluating a range of bisulfite-aware massively
parallel alignment software [29], we decided to use
Bismark [28] with the highest mapping efficiency and
highest proportion of concordantly mapped reads across
the aligners compared to unique alignments in our
previous study [29]. In addition, Bismark produces an
output string that enables the processing of epiallelic
DNA methylation patterns when parsed. , We developed
Methpat to read this output and summarise the data in
a compact and interpretable manner.
Using the stringent criterion of no mismatches within

the initial 28 nt seed sequence during alignment and
discarding non-unique alignments, the range of unique
read alignments among the samples analysed ranged
from 3,691 to 275,040 reads in total, corresponding to a
mapping efficiency ranging from 7.9 to 55.3 % (Table 1).

The total number of cytosine residues analysed within
each sample ranged from 151,722 to 11,313,285 and
includes CpG dinucleotide and non-CpG cytosine resi-
dues (Table 1). An indirect measure of bisulfite conver-
sion efficiency was calculated by determining the
percentage methylation at CHG and CHH residues in
each sample. This was possible as the amplicons used in
this study do not target loci where such non-CpG
methylation is known to occur in humans [16] nor had
human stem cells been used that are known to contain
non-CpG DNA methylation [30]. CHG and CHH
methylation was observed at a frequency of 0.1 to 1.0 %
and 0.2 to 1.3 %, respectively, which corresponds to
98.7 to 99.9 % bisulfite conversion efficiency. This find-
ing provides high confidence in our dataset for scoring
DNA methylation states.
Furthermore, two amplicons targeting unique regions

within the human genome that contain no CpG sites
were used to determine the bisulfite conversion effi-
ciency in an orthogonal manner. Of the reads that
passed alignment criteria for a subset of samples, we
found that all non-CpG cytosines were converted in our
experiment (Additional file 4: Figure S3). Mapping
efficiency is one of many metrics used to determine the
quality of the data and would suggest data from 6c-cd19
was not nominal. However, across all samples analysed,
the bisulfite conversion efficiency was very high and was
therefore included for visualisation using Methpat.
For the target regions analysed, an overall DNA

methylation level ranging from 27.7 to 85.8 % was
observed. In the lower ranges, the samples were mainly
primary human tissue and non-cancerous cell lines
while many model cancer cell lines demonstrated
higher overall DNA methylation levels. This observa-
tion was expected, given that the amplicons selected
for analysis were predominantly from promoter re-
gions of genes known to be hypermethylated in can-
cer (Additional file 5: Table S2).

Methpat analysis of DNA methylation demonstrates a
wide diversity of DNA methylation patterns
DNA methylation of FOXP3 in primary haematopoietic cells
The promoter region of FOXP3 was analysed for DNA
methylation to validate the amplicon next generation se-
quencing, bioinformatics analysis and Methpat visualisa-
tion pipeline. Amplicons obtained from whole blood and
subpopulations of cells from bone marrow were analysed
from a single individual, from which, a diverse range of

(See figure on previous page.)
Fig. 1 Methpat visualisation of DNA methylation at the FOXP3 gene promoter region. Samples from one individual (blood) fluorescence activated
cell sorted (FACS) into various haematopoetic compartments were assessed for DNA methylation and analysed by Methpat. DNA methylation
across this locus varies according to cell type. Furthermore, the diversity of epialleles within each cell type analysed also varies with one or two
patterns dominating the read counts
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Fig. 2 (See legend on next page.)
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DNA methylation states and their abundance was ob-
served. Analysis of whole blood showed that although
the majority of epialleles were either completely meth-
ylated or completely unmethylated at CpG sites (Fig. 1),
there were a diverse array of methylation patterns
present (62 in total). This could reflect the cellular
composition of whole blood, such that a number of cell
types exist with a variable DNA methylation state at
FOXP3. In contrast, DNA extracted from CD34, CD19
and CD33 positive subpopulations were found to be
largely methylated at FOXP3. The CD45 positive compart-
ment was unmethylated (Fig. 1). This was in line with
previous investigations on similar sample types [31].

Methpat can visualise imprinted loci
The extent of DNA methylation at a known imprinted
locus, MEST, was investigated. This locus also served as
a PCR amplification bias control as the DNA methyla-
tion state was expected to be 50 %, as this locus is com-
prised of two populations of epialleles where one is
completely methylated while the other is completely
unmethylated. Both epialleles were clearly identified in
whole blood, CD34, CD33, CD19 and CD45 positive
samples (Fig. 2) with the unmethylated epiallele more
abundant than the methylated epiallele. Additional epial-
leles of varying DNA methylation patterns were also iden-
tified but at a significantly lower abundance (Fig. 2). The
same imprinted state was also observed in the lympho-
blastoid cell line, BRL (Fig. 2). The imprinting of MEST is
known to be disrupted in model cancer cell lines [32];
HeLa and MDA-MB-231-BAG cell lines were observed to
have predominantly hypermethylated epialleles at this
locus (Fig. 2) and is in keeping with publically available
datasets with these cell lines found on ENCODE [33].

Methpat visualisation of gene promoters associated with
cancer
The methylation state of the RASSF1A gene promoter,
which is known to be methylated in cancer [34, 35], was
determined. In wild-type whole blood and the lympho-
blast cell line JWL, unmethylated epialleles were primar-
ily observed with a significant number of other much
lower abundance epiallele states with varying patterns of
DNA methylation (Fig. 3). HeLa was also unmethylated
at RASSF1A while other cancer cell lines, HEPG2,
NALM6, Caco (Fig. 3), MCF7 and NCCIT (Additional
file 6: Figure S4) were predominantly hypermethylated.
Of note, the diversity and range of the DNA methylation

state of epialleles are much greater than might be ex-
pected of cell lines.
We also investigated DNA methylation of the gene

promoter of CDKN2A, at which DNA methylation is
also seen in many cancers [36] (Fig. 4). We found that
the unmethylated epiallele was most abundant in normal
whole blood, HeLa, HEPG2, JWL, MCF7 and NCCIT. In
contrast, Caco was hypermethylated at this locus. Inter-
estingly, in wildtype whole blood and the cell lines
HEPG2, JWL, and NCCIT, the completely methylated
epiallele could be observed but was at very low abun-
dance compared to the unmethylated epiallele (Fig. 4).
We confirmed that these alleles did not arise from
incomplete bisulfite conversion artefacts as all non-CpG
cytosines were converted to thymidine.

Methpat visualisation of mitochondrial genome DNA
methylation
Bisulfite amplicon primers to the mitochondrial DNA D-
loop regulatory sequence were included in the analysis to
determine the DNA methylation state of the mitochon-
drial genome. The predominant epiallele was found to be
unmethylated across most samples analysed; however,
there was a significant range in the abundance of epialleles
with variable DNA methylation state across all samples
(Fig. 5, Additional file 7: Figure S5), suggesting that DNA
methylation of the mitochondrial genome was present
[37] but appeared to be independent of the disease status
of the sample. This is in keeping with recent observations
of mitochondrial genomic DNA methylation in human
cells [38, 39]. We again confirmed that these alleles did
not arise from incomplete bisulfite conversion artefacts as
all non-CpG cytosines were converted to thymidine.

Discussion
Most studies investigating DNA methylation using con-
ventional sequencing approaches represent DNA methy-
lation into percentage values at each CpG site and in
turn, do not show important positional information
encoded within the epiallelic DNA methylation patterns.
A comparison of features between methylation visualisa-
tion tools is summarised in Table 2. We have developed
a new software tool called Methpat that processes
output files from Bismark to visualise DNA methylation
sequencing data by epialleles. Methpat facilitates vis-
ualisation of high throughput sequencing data after
Bismark analysis and does not attempt to determine the
success of a particular experiment. This is left to the

(See figure on previous page.)
Fig. 2 Methpat visualisation of DNA methylation at the MEST imprinted region on a range of primary cells (CD34, CD45, CD19 and CD33) and
tissue (Whole blood), model cancer cell lines (HeLA and MDA-MB-231-BAG) and a normal lymphoblast cell line (BRL). The methylation status of
MEST, expected to be ~50 % was observed in all normal sample types. The cancer cell lines demonstrate methylated MEST. In addition,
Methpat visualizes the epiallelic diversity of MEST in all these samples
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Fig. 3 Methpat visualisation of DNA methylation at the RASSF1A gene promoter region. Methylation of RASSF1A is present in cancer cell lines
(Caco, HEPG2 and NALM6) with the exception of HeLa. Examples of RASSF1A methylation in whole blood and a normal lymphoblast cell line
(JWL) are also shown
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Fig. 4 Methpat visualisation of DNA methylation at the CDKN2A gene promoter region
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investigator to interpret the metrics from Bismark prior
to Methpat visualisation. We demonstrate the utility of
Methpat by examining the DNA methylation pattern
abundance and epiallelic DNA methylation states that
are lost when DNA methylation is summarised as
percentage DNA methylation.
Methpat operates on Bismark output files and further

summarizes this data into an interactive visualization that
can be quickly interpreted within a web-browser. It can be
executed locally to generate an HTML file which can be
hosted remotely through the Internet or visualized locally
on the most common web browsers (Chrome, Safari,
Firefox, Internet Explorer). This feature which is unique
to Methpat, is a major advantage. At this stage, Methpat
does not have capability as a “genome-browser” to look at
DNA methylation patterns at a genome-scale because it
was designed for targeted deep sequencing of amplicons,
however, we have made the source code available for
further development by the research community to fur-
ther improve Methpat (http://bjpop.github.io/methpat/).

We demonstrated the importance of calculating epial-
lelic abundance on the imprinted locus MEST, where we
showed two predominant populations of epiallelic DNA
methylation patterns, one completely methylated and
the other completely unmethylated. Such patterns can-
not be interpreted with percentage values at each CpG
site as heterogeneous DNA methylation or, a sample
containing a heterogeneous population of cells with
variable DNA methylation states could give rise to the
same percentage value [7]. Using Methpat to visualise
the diversity of epialleles enables the inference at least of
the existence of heterogeneous DNA methylation, or, the
detection of heterogeneous populations of cells as
demonstrated by investigating FOXP3 in whole blood
and subpopulations of the haematopoietic compartment.
Of interest, in some model cancer cell lines, we

observed a wide and diverse range of methylated epial-
leles. Having ruled out to the best of our ability any
bisulfite conversion or PCR amplification artefacts, our re-
sults suggest that even within apparently homogeneous

Fig. 5 Methpat visualisation of DNA methylation within the D-Loop regulatory region of the mitochondrial genome
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Table 2 Alternative DNA methylation Analysis and Visualisation Tools

Software Program Language
and Implementation

Analysis Process Visual Output Input file Output file Epiallelic Counts Experiment Quality Check

Methpat Python, pip install,
URL available to install
files locally

Summarises Bismark
output

Interactive HTML and
summary text file of
epiallele counts.
Scalable PNG file

Bismark methylation
extractor output,
user-defined BED
format file

HTML and tab
delimited text file

Yes No, leverages Bismark

Bismark command line,
Python, requires bwa

Performs alignment to
bisulfite reference genome

None, generates BAM
files for visualisation
with SeqMonk or IGV

fastq file BAM and tab
deliminted text files

No Yes calculates C to
T conversion

BSPAT Java/JSP web interface Visualisation and
summarisation of Bismark
output

PNG file and UCSC
Genome Browser file

Bismark output,
fastq files

Text file summary,
PNG and UCSC
Genome Browser
BED file

Yes No

MPFE R library, Bioconductor Calculates probabilities that
epialleles are true

R image outputs Table of read counts from
bisulfite sequencing data

Derived statistics
and plots

Yes Yes

Methylation
plotter

R library, shiny interactive
web application

Visualises beta DNA
methylation values

Interactive webpage
with setting options to
adjust a static image of
DNA methylation values
for each sample. PNG
and PDF output.

Text file containing matrix
of sample vs beta value at
each CpG of interest

PDF and PNG image
file

No No

RnBeads R library, Bioconductor Processes summary data
from other software for
visualisation

Interactive HTML and
UCSC Genome browser
track hub files. PNG files

BED file HTML summary No Yes

coMET R library, Webserver for
analysis

For EWAS studies.
Analyses derived
matrix files

Image files of plots with
genomic locations.

Text matrix files Image files No No

EWAS epigenome-wide association studies using Illumina Infinium HM450 BeadArrays
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cell lines, the methylation state at a subset of gene pro-
moters analysed is heterogeneous. This could be due to
the nature of cell culture where the phenomenon of in-
creasing DNA methylation is observed with increasing
passage [40, 41], plasticity, or the setting of epigenetic
memory of a sub-population of cells in the culture [42].
The detection of completely methylated epialleles of the
CDKN2A gene promoter in whole blood and in other
samples interrogated supports the validity of our ap-
proach, and indicates that Methpat provides a new tool to
enable the detection of low level DNA methylation [43,
44]. The functional and biological implications of our
current findings remain unclear, however, further investi-
gation with appropriate specimens using Methpat is
warranted.
We investigated mitochondrial DNA methylation and

believe our analysis is one of the first accounts of
characterising epiallelic DNA methylation within the D-
loop regulatory region of the mitochondrial genome.
Our study confirms observations of DNA methylation
within the mitochondria [37–39]. Given there can be
many thousands of copies of the mitochondrial genome
per cell, it is not possible at this stage to determine the
providence of the methylation states we have identified.
The issue of heteroplasmy for mutations in the mito-
chondrial genome [45] apply for DNA methylation and
techniques to address heteroplasmy could be applied to
investigate DNA methylation within the mitochondrial
genome further [46]. By visualising DNA methylation
patterns within the mitochondrial genome, Methpat can
facilitate insight towards new biomarkers of disease [47].
While our current strategy and experimental results

are unable to resolve PCR amplification artefacts (over-
representation of particular sequence reads because of
amplification), incorporation of unique molecular identi-
fiers [48] could resolve this in future studies.

Conclusions
In summary, we demonstrate the feasibility of multiplex
bisulfite amplicon deep sequencing to identify the extent
of DNA methylation epialleles in a range of human sam-
ples. We have developed a software tool, called Methpat,
which enables the summarisation and visualisation of
DNA methylation sequencing data in the context of
epiallelic information.

Availability of data and materials
The raw amplicon sequencing data, Bismark alignments
and Methpat output files associated with this manu-
script have been published with the DOI 10.1186/
s13742-015-0098-x.
Methpat software can be obtained from this URL.

(http://bjpop.github.io/methpat/)

Additional files

Additional file 1: Sample preparation, library preparation and
sequencing methods. (DOCX 132 kb)

Additional file 2: Figure S1. Example of a screenshot of Methpat
visualisation. A. Epiallele representation of the patterns of DNA
methylation for respective amplicon in respective sample. B. Count
histogram, the abundance of each epiallele represented in A. C.
Genomic co-ordinate and position of CpG of interest. D. Proportion of DNA
methylation at each CpG position. E. Save button, export visualisation as a
PNG file. F. Amplicon of interest. G. Legend depicting DNA methylation
status. (PNG 202 kb)

Additional file 3: Figure S2. Example of a screenshot of the settings
page for each Methpat visualisation. A number of parameters can be
changed and the visualisation replotted for ease of interpretation.
(PNG 92 kb)

Additional file 4: Figure S3. IGV screenshot of two amplicon regions
used in this study that target DNA sequences with no CpG sites within
the RANBP17 locus. Therefore it is expected that all cytosines within this
region of interest are completely converted by bisulfite treatment. This is
shown here for MCF7 and MDA-MB-231-BAG. (PNG 135 kb)

Additional file 5: Table S2. Bisulfite PCR primers used in this study.
(XLS 15 kb)

Additional file 6: Figure S4. Diverse and wide ranging epiallelic DNA
methylation patterns of RASSF1A in MCF7 and NCCIT model cancer cell
lines. (PNG 434 kb)

Additional file 7: Figure S5. Epiallelic DNA methylation patterns of the
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