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Abstract

Backgroud: To facilitate advances in personalized medicine, it is important to detect predictive, stable and
interpretable biomarkers related with different clinical characteristics. These clinical characteristics may be
heterogeneous with respect to underlying interactions between genes. Usually, traditional methods just focus on
detection of differentially expressed genes without taking the interactions between genes into account. Moreover,
due to the typical low reproducibility of the selected biomarkers, it is difficult to give a clear biological interpretation
for a specific disease. Therefore, it is necessary to design a robust biomarker identification method that can predict

disease-associated interactions with high reproducibility.

Results: In this article, we propose a regularized logistic regression model. Different from previous methods which
focus on individual genes or modules, our model takes gene pairs, which are connected in a protein-protein
interaction network, into account. A line graph is constructed to represent the adjacencies between pairwise

interactions. Based on this line graph, we incorporate the degree information in the model via an adaptive elastic net,
which makes our model less dependent on the expression data. Experimental results on six publicly available breast
cancer datasets show that our method can not only achieve competitive performance in classification, but also retain
great stability in variable selection. Therefore, our model is able to identify the diagnostic and prognostic biomarkers
in a more robust way. Moreover, most of the biomarkers discovered by our model have been verified in biochemical
or biomedical researches.

Conclusions: The proposed method shows promise in the diagnosis of disease pathogenesis with different clinical

characteristics. These advances lead to more accurate and stable biomarker discovery, which can monitor the
functional changes that are perturbed by diseases. Based on these predictions, researchers may be able to provide

suggestions for new therapeutic approaches.

Keywords: Protein-protein interaction network, Edge-biomarker discovery, Network-based pairwise interaction,

Node degree, Adaptive elastic net

Background

Biomarker discovery for cancer based on multiple molec-
ular data, such as gene or protein expression data, has
become a major strategy in biomedical fields for person-
alized medicine. Diagnostic and prognostic biomarkers
have the potential to provide deeper insights into disease
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pathogenesis [1]. Revealing the mechanisms of disease
initiation and progression can be valuable for the selection
of new therapeutic approaches and the prediction of later
clinical benefit 2, 3].

With the increasingly accumulated “omics” (e.g.
genomics, transcriptomics and proteomics) data gen-
erated from high-throughput technologies, extensive
variable selection methods such as lasso [4] and elastic
net [5] have been proposed to select relevant biomarkers
for disease diagnosis or prognosis, where the genes or
proteins are regarded as variables. These methods often
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focus on the variables that can discriminate patients in
the training set with the outcome measured by categorical
variables, such as normal and disease, and are able to
predict well unseen patients [6]. It is a computational
and statistical challenge to detect reliable and useful
biomarkers for diseases with the relative small sample
size and high dimensionality of most molecular data
[7]. With a wealth of publicly molecular data for the
same disease, it is common that the biomarker signa-
tures from different studies have few overlaps [8]. This
is partly because that many different biomarkers have
similar discriminatory power. Another reason is the
instability of the variable selection method towards the
used samples. The low reproducibility of these signatures
often result in the difficulty of achieving clear biological
interpretation. On the other hand, the criterion that
identifying differentially expressed genes often neglects
non-differentially expressed genes which play a central
role in the molecular mechanism of complex biological
phenomena by interacting with other genes [9]. Complex
diseases are multifactorial biological events manifested
through changes in expressions of many individual genes
and proteins, and mediated through complex interaction
mechanisms [10-12]. This connectivity implies that the
impact of a specific genetic abnormality is not restricted
to the activity of the gene product that carries it, but can
spread along the interactions and alter the activity of
the connected gene products [13]. Therefore, changes of
these interactions of which the involved genes or proteins
are not differentially expressed may also result in the
different states of a biological system.

In this situation, traditional variable selection methods
(e.g. lasso and elastic net) which are based on the additive
model are insufficient for predicting an outcome of inter-
est. To overcome this limitation, a regression model with
pairwise interactions between those variables is proposed
by Bien et al. to select a subset of variables and interac-
tions between variables that is predictive of the response
[14]. However, their work is based on an assumption that
an interaction is allowed into the model only if at least one
of the corresponding variables is also in the model. This
restriction makes it impossible to identify the interactions
with the non-differentially expressed variables. Zhang
et al. propose a new idea based on a new vector represen-
tation of an edge to identify edge-biomarkers which are
the differentially correlated molecular pairs with optimal
classification abilities [9]. In their work, the correlation
of each molecular pair is depicted by two new coupled
variables, which makes the dimension of the new space
increase to p(p — 1), where p is the number of orig-
inal variables. The computation is so time consuming
that a preliminary variable screening is needed. In addi-
tion, the correlations used in these methods are only
based on the expression data, which are not sufficient
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to reveal the physical interaction between two genes or
proteins.

To deal with limitations in existing methods, a promis-
ing direction is to integrate expression profiles with rich
biological knowledge in network datasets. A useful tech-
nique is to incorporate biological networks into variable
selection process by a network-constrained regulariza-
tion procedure, where the network is represented as a
graph and its corresponding Laplacian matrix [15-17].
Another idea is to use these networks as Markov ran-
dom field priors to guide the selection of relevant genes
[18, 19]. The contribution of the network information
used by these network-regularized approaches is to ensure
smoothness of the coefficients on the network. They do
not explicitly select the important interactions. Strategies
to identify gene subnetwork or module have been pro-
posed by integrating gene expression data and biological
networks [3, 20-22]. Guo et al. treat the gene expres-
sions within a functional module as an integrative data
point based on the Gene Ontology (GO) enrichment anal-
ysis [22]. Some algorithms start from “seed” genes with
highly differentially expressed in the network to gener-
ate the subnetwork-biomarkers, resulting in the neglect of
the subnetworks with non-differentially expressed genes
but different interactions [20, 21]. Moreover, Das et al.
identify overlapping functional modules based on the
topological properties of the protein interaction network
by some clustering algorithms, and then use the elastic-
net-based regression model to detect the differentially
expressed functional modules [3]. The prognosis pre-
diction results and the identified differentially modules
may partly depend on the selected clustering algorithms.
Another new perspective to reveal potential mechanisms
altering the biological states is analyzing the compari-
son of biological networks across a set of conditions, and
identifying the subnetwork-biomarkers which are differ-
entially co-regulated [23, 24].

Motivated by the challenges posed by the instability and
complex interactions in high-dimensional gene expres-
sion datasets, this study proposes a regularized logistic
regression with network-based pairwise interaction via
adaptive elastic net for biomarker identification (Fig. 1).
The model embeds variable selection in the classifier
construction process with the advantage that the differ-
entially interactions can be used directly to predict the
states of the new samples. Instead of identifying dis-
criminative genes or functional modules with differential
expression, where the modules often need to be deter-
mined in advance by some algorithms such as in [3, 22],
we focus on the detection of gene pairs which exhibit
different positive or negative interactions, thus the per-
formance of the proposed method will not depend on
the module detection algorithms. The results based on
experimental characterization of mutant alleles in various
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Fig. 1 Identification of an edge biomarker using the regularized logistic regression with network-based pairwise interaction via adaptive elastic net.
a The available data, including expression data and PPI network data. b A line graph G'(V/, £/, W) is constructed based on the similarities S(ei, €j)
which are treated as the weights for the new edges of graph, where the elements of the new node set V' are the interactions in the biological
network. ¢ The expression of each gene is mapped to the edge of the network in different conditions by integrating both the network and
expression information. d If the expression of the interaction change in the different states of a biological system, the edge is labeled in red, while
green if not. e The informative edges identified by our model. The genes with differential expression is marked in purple, while blue if with

disorders show that the biochemical and physical inter-
actions which are represented in models as edges are
correlated with distinct structural properties of disease
proteins and disease mechanisms [25, 26]. The model only
considers the interactions belonging to a protein-protein
interaction (PPI) network. The interactions based on both
high-dimensional “omics” data and biological network can
help to filter out the correlations between expression that
have no underlying biological causality, which make the
model have a low complexity [27]. The integrated infor-
mation can lead to the improvement of both predictive
accuracy and interpretability of the selection results [18].
In addition, different from the elastic-net-based regres-
sion model used by Das et al. in [3], our model includes
an extension of the standard adaptive elastic net to con-
sider the degree of proteins based on the line graph
and the assumption that disease-genes tend to have high
degrees in biological networks [28, 29]. This formula-
tion leads to more stable biomarkers because the model
is less reliant on the expression data. By applying the
new model to six publicly available breast cancer datasets,
we show that the algorithm is robust against the inclu-
sion or exclusion of some patients on variable selection
process at both gene and functional levels. Furthermore,

our method can achieve competitive classification results
with the state-of-the-art algorithms on detecting differ-
ent responses to a certain survival time. The relevance of
many identified biomarkers with breast cancer have been
verified through biochemical or biomedical research.
The Gene Ontology (GO) analysis further indicate the
significant biological and functional correlations of the
edge-biomarkers.

Methods

Regularized logistic regression with network-based
pairwise interaction

Suppose that there are n independent p-dimensional
observations, with binary response vector y =
&1, »yn) T and design matrix X = (x1,--- ,x,)’, where
x; = (Xi1,%i2, - . ., %ip) and y; € {0, 1}. Let p(x;) represents
the class-conditional probability for observation i when
y; = 1 at particular parameters By, 8 = (81, - ,,BP)T.
In order to identify the biomarkers which have low
discriminative power but play a central role in the molec-
ular mechanism of complex biological phenomena by
interacting with other genes, we define p(x;) through
network-based pairwise interactions between variables as
follows
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1

pxi) =Pr(y; = 1|x) = G B

(1)

where ), denotes the sum over all unordered pairs {j, k}
for which j and k are adjacent on the certain undirected
biological network. The pairs {j, k} and {k, j} are regarded
as the same pair and will be treated in the model only
once. The proposed regularized logistic regression model
maximizes the penalized log-likelihood

1 n
=D lyilogpa) + (1= y) log(1 = px)] = APa(B),
i=1

2)

where P, (B) is a penalty function which can shrink some
components of 8 to zero for some appropriately chosen A
and « [30]. Compared with the two-way interaction model
in [14] which includes p + p(p — 1)/2 variables, the pro-
posed model only takes account into the pairwise interac-
tions or edges in the biological network, whose number is
much less than p(p — 1)/2. This form not only makes the
model have an advantage in complexity, but also combines
biological network information with genomics or pro-
teomics datasets. The integrated information can reduce
the impact of the noise from gene expression data on the
process of estimating the biomarkers. Thus, the model will
be less sensitive to the samples used in the phase of gene
selection.

There are many penalty functions which are suitable for
the regularized logistic regression model, such as lasso [4],
adaptive lasso [31], and elastic net [5]. Zou and Zhang pro-
posed the following adaptive elastic net as an improved
version of the elastic net for analyzing high-dimensional
data using a combination of the Ly penalty and the adap-
tive L; penalty,

p
Pu(B) = [;(1 — )} +aW;|/3;I], (3)

j=1
where {a)j}f:l are the adaptive data-driven weights [32].
The parameter « is typically fixed to select a trade-off
between adaptive lasso penalization and ridge regres-
sion, while A is varied to tune the model [33]. In order
to overcome the problem that the correlated variables
have different coefficients, the value of « should not
be too close to one [34]. Existing studies show that
this adaptive elastic net penalty not only have group
effect which can select groups of correlated variables, but
also can identify a number of representative biomark-
ers with clear biological meanings and achieve effec-
tive classification [32, 35, 36]. Instead of computing the
weights by
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A -r
w=(1B541) @
where 7 is a positive constant and BFV is the elastic net
estimator, we calculate the weight for each gene accord-
ing to the biological network information, resulting in the
higher stability of the gene selection process. The specific
method will be introduced in later section.

The intercept parameter Sy and regression coefficient
vector B can be estimated by the maximizer of objec-
tive function (2). The objective function can be written
in the form of a concave function of the parameters as
follows

n M LR
1 ~ Bo+ Z BmZim
-3 [y,» (ﬂo+2 ﬂmfcim> — log (1+e T )} — 1Py (B),
i=1 m=1
(5)
where
Xim = XijXik (6)

for the edge j ~ k of the network, and M is the num-
ber of the edges that is much less than p(p — 1)/2. The
Newton algorithm can be used to approximate the objec-
tive function (5) by a second-order Taylor series expansion
at current estimates [30]. Then the maximization of (5)
is equivalent to a penalized weighted least-squares prob-
lem which can be solved by an efficient coordinate descent
algorithm. Based on this algorithm, the matlab code
“glmnet” can provide a path of solutions for a decreasing
sequence of values for X given a fixed value of «.

The weights for adaptive elastic net

For the regularized logistic regression with network-based
pairwise interaction via adaptive elastic net (RLRNPI-
AEN) (5), instead of computing the weights by Eq. (4),
we calculate the weights based on the characteristics of
networks topology.

Firstly, we present a biological network by a weighted
graph G(V,E, W), where V is the set of p nodes that cor-
respond to the p variables, E = {e;} is the set of edges
between two nodes, and W is the set of weights of the
edges. The edge weight can be used to measure uncer-
tainly of the edge between vertices. For a network without
explicit edge weights, the weight of every edge is set to
one. A weighted adjacency matrix A can be used to rep-
resent the weighted edges, where A;; = wj; if there exists
a edge between nodes i and j and w;; is the weight of the
edge, and A;; = 0 otherwise. For an undirected graph, the
adjacency matrix A is symmetry. The degree of node i is
defined as d; = Zle aj.

Secondly, we construct a line graph for the interactions
(edges) which describes the relationships between over-
lapping edges, where each node may belong to more than
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one edge. The similarity between two edges is referred to
the measure stated in [37]. The set that includes node i
and its neighbors is denoted as n (i). If two edges do not
share a same node, their similarity will be set to zero. Oth-
erwise, the similarity between edges e; and ej is defined
as

|y (D) (V14 ()

. 7
Iy () U ny () @

S(eir ejx) =

Since the shared node k provides no additional infor-
mation, it does not present in the definition [37]. This
definition is based on the assumption that edge pairs with
a shared node are expected to be more similar than those
unconnected pairs, and the similarity between two con-
nected edges relies on the fraction of common neighbors
that their unshared nodes have. Then, we can construct
a line graph G'(V',E’, W’), where V' consists of nodes
which correspond to the interactions in the biological net-
work (i.e. ), and E’ consists of the edges in this line graph.
There is an edge between e;; and e since they share a
common node and the weight of this edge is S(ex,ej)
(Fig. 1). Since an interaction (node in line graph G’) that
includes high degree nodes (node in original graph G) will
be more likely to have common nodes with other interac-
tions, it will have high degree in the line graph G'. Studies
have shown that disease-genes are always characterized
by large degrees in biological networks, and are more
likely to interact with other disease-genes [28, 29]. In addi-
tion, the variation of the high degree nodes will impose
more influence on the action of the whole network,
since they have more interacting partners. Therefore, we
prefer to pick out the genes with higher degrees. The
weights for adaptive elastic net (3) in objective function
(5) are set to be inversely proportional to the degrees as
follows,

W = (d;) - )

where d; is the degree of the interaction j in the line graph
G’ and r > 0 is a parameter that controls the weights. This
definition tends to select the interactions which include
nodes with high degrees in the biological network. When
r = 0, the adaptive elastic net penalty turns back to the
elastic net. The larger value of r will promote the stability
of the gene selection process because of the less depen-
dence of the model on the samples. However, a too large r
will generate a model that only focuses on the degrees of
genes and neglects their discriminating abilities. We will
discuss the specific method for the determination of r in
the next section. The main steps of the proposed method
are summarized in Algorithm 1.
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Algorithm 1: RLRNPI-AEN

e Input: The gene expression of the training samples
X = (x1,- ,%,)7T and their corresponding labels
y=@1---yn) !, the biological network G(V, E, W),
the value of parameters «, A, r, and the gene
expression of the testing samples X' = (x], - - -, x/,) L.

¢ Output: The set of the selected genes SG, and the
predicted posterior probability p(x}) =Pr(y; = 1|x})
of the testing sample x, i = 1,--- , u.

1. Constructing a line graph G'(V’, E', W) for the
interactions (edges in graph G(V, E, W)) to describe
the relationships between overlapping edges based on
the similarity definition (7).

2. Computing the degree d]’. of each interaction in the
line graph G'(V', E', W').

3. The expression of each gene for both training and
testing samples is mapped to the edge of the network
G(V,E, W) in different conditions according to (6).

4. Optimizing the objection function (5) by matlab code
“glmnet” based on the training samples to obtain the
estimators of By, m=1,--- , M.

5. The interactions with the corresponding B # 0 are
identified as informative edge-biomarkers, and the set
of the selected genes SG includes the genes belonging
to the edge-biomarkers.

6. The predicted posterior probability of testing sample
Xyi=1,---,uis

1

D) = Pr(y; = 1jx]) = o)
px; r(yl |x’) _(ﬂ0+2%:1 ﬁ’”k;’”)

1+e

Evaluation metrics
We use three metrics to assess the performance of var-
ious methods. Firstly, the classification performance of
the model on the certain dataset is measured by the area
under the ROC curve (AUC). Similar to [38] and [39],
we perform ten times ten-fold cross-validation experi-
ments for each dataset to minimize sampling noise. The
repeated ten-fold cross-validation estimator is found to
have better performance than the .632+ bootstrap esti-
mator which suffers from a bias problem for large sam-
ples as well as for small samples [40]. Given a fixed «
and r, another 10-fold validation is used for the selec-
tion of the parameter A based on the training set (90 %
of the original dataset), and the AUC is computed on
the remaining testing set (10% of the original dataset).
Similar to that in [3], for each ten-fold cross-validation,
the median AUC value is computed over the ten
experiments.

Secondly, as mentioned in [41], the stability of gene
selection process is compared on different samples
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in three settings: the soft-perturbation, the hard-
perturbation, and the between-datasets settings. For the
regularized logistic regression with network-based pair-
wise interaction, the set of selected interactions will be
transferred to gene set, where the genes which belong to
different interactions will be considered only once. The
soft-perturbation setting evaluates stability with respect
to small perturbation of the training set, where a pair of
training sets are randomly generated with 80 % overlap.
Through the 10-fold cross-validation for A, the following
Jaccard coefficient between the two gene sets Gj and G is
considered as the index for the stability of gene selection
process,

_ G M Gal
1G1 U G2l

The median is evaluated over the 20 repeats of the
above random sampling. The hard-perturbation setting is
referred to a procedure that randomly subsamples each
dataset into pairs of subsets with no sample in common.
A similar process is used to compute the median Jac-
card coefficient. The between-datasets setting considers
each dataset independently, using all samples on each
dataset. In this setting, the genes are ranked by the num-
ber of times that the variables become selected when A
decreases. For each pair of the datasets, we compute the
overlap of the two sets of the top k genes. The results are
computed by taking the median stabilities of the total pairs
of all the datasets.

Thirdly, the functional stability of a gene selection pro-
cess is also assessed in the above three settings. We
measure the functional similarity of two gene sets by the
method stated in [42] which is based on the similarity
of the GO terms of the genes. The three GO domains,
biological process (BP), cellular component (CC) and
molecular function (MF) are considered respectively.

JC )

Datasets

Breast cancer remains the most prevalent cancer among
women in many countries. All the six datasets used in this
study are measured on Affmetrix HGU133 microarrays,
and each dataset includes 22283 transcripts. They are
available through the Gene Expression Omnibus (GEO)
database. A summary of these datasets are listed in
Table 1. Except datasets GSE1456, GSE6532, GSE4922
which are downloaded as ready normalized, we prepro-
cess the other three datasets by background correcting,
quantile normalizing and log2 transforming using R pack-
age “preprocessCore” [43] (Bolstad, B: Probe level quantile
normalization of high density oligonucleotide array data,
unpublished). The probesets which do not have corre-
sponding gene names are not considered and removed
from our datasets, and the expression values for probe-
sets that map to the same gene are averaged, resulting
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in 12754 genes. Both survival time information and the
corresponding event indicator are used to divide samples
into two classes according to whether patients develop a
reported metastasis/relaspe/disease event within 5 years
or are free of metastasis/relaspe/disease at least 7 years. A
high-quality protein-protein interaction (PPI) network in
H. sapiens from the High-quality INTeractomes (HINT)
database (version: 06/03/2013) is used for constructing
the pairwise interaction and calculating the weights in
adaptive elastic net [44]. We only consider genes both
in expression data and interaction network. In this PPI
network, there are 18864 pairwise interactions includ-
ing 6342 genes after self loops are removed. All datasets
used in this study are obtained from papers and databases
that have been already published and required no ethics
approval.

Results and discussion

In the experiments, we apply seven algorithms, namely,
regularized logistic regression via elastic net (RLR-EN)
[30], regularized logistic regression via adaptive elastic net
(RLR-AEN), regularized logistic regression with network-
based pairwise interaction via elastic net (RLRNPI-EN),
logistic regression with differentially expressed genes
selected using the LIMMA package (limma) [45, 46],
elastic-net-based prognosis prediction (ENCAPP) [3],
SVM-based classification with average expression pro-
file of pathways (SVM-AEP) [22] and RLRNPI-AEN
on six human breast cancer datasets (The descriptions
of RLR-EN and RLR-AEN are presented in Additional
file 1). For limma, a 10-fold cross-validation is used to
find the suitable number of differentially expressed genes.
For ENCAPD, there are two parameters « and A in the
elastic net model, where « is fixed as described below
and X is chosen by a 10-fold cross-validation. SVM-AEP
is implemented with R package “netClass” using default
parameters [39].

Parameter settings

There are three parameters o, A and r in the proposed
model which require multi-parameter optimization based
on cross-validation and grid search. However, when sam-
ple sizes are small, the performances of the proposed
model with different parameters are often same or similar.
So it is difficult to choose a proper parameter combi-
nation. In addition, a grid search for three parameters
takes a long time. Therefore, it is useful to fix all but one
parameter and select a model based on that parameter.
We investigate the effect of « only on methods RLR-EN
and RLRNPI-EN, where we do not need to consider the
value of r. We run the RLR-EN and RLRNPI-EN models
on the six datasets with « = 0.8,0.7,0.6,0.5,0.4,0.3,0.2.
The median AUC based on 10-fold cross-validation for
A is shown in Fig. 2. For both RLR-EN and RLRNPI-EN
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Table 1 Overview about employed breast datasets
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Dataset Publication # patients Classification # patients of each class
GSE2034 [62] 242 time torelapse < 5y &relapse=True 95
time to relapse > 7y &relapse=False 147
GSE1456 [63] 111 time to relapse < 5y &relapse=True 35
time to relapse > 7y & relapse=False 76
GSE11121 [64] 125 tdmfs < 5y &edmfs=True 28
tdmfs > 7y & edmfs=False 97
GSE6532 [65] 178 tdmfs < 5y &edmfs=True 51
tdmfs > 7y & edmfs=False 127
GSE4922 [66] 204 DFS.time < 5y & DFS.status=True 70
DFS time > 7y & DFS.status=False 134
GSE12093 [67] 79 DFS.time < 5y & DFS.status=True 12
DFS.time > 7y & DFS.status=False 67

t.dmfs denotes the time for distant metastasis-free survival and e.dmfs is the corresponding event indicator. DFS.time denotes the time for disease-free survival and

DFS.status is the corresponding event indicator

models, the results indicate that the classification pro-
cesses are very similar with a small perturbation of @ when
o falls to [0.2,0.4]. Thus, the value of o will be set to 0.3
for all the five models related with the elastic net.

The value of parameter r will result in a trade-off
between stability of gene selection and accuracy of clas-
sification in the model with adaptive elastic net. We will
consider the stability of RLR-AEN and RLRNPI-AEN
in the between-dataset setting with different value of r
(r € {0.001,0.01,0.05,0.1,0.2,0.4,0.6,0.8}). According to
the definition of weight in (8), the larger value of r will
enhance the influence of the degrees of the variables on
the models which do not change with different samples.
Figure 3 compares the median stability of the top 100
genes estimated by RLR-AEN and RLRNPI-AEN with
different values of r using all samples on each dataset.

With the increase of r, there is a clear growth trend for
the median stability over total pairs of all the six datasets.
This phenomenon accords with the theoretical analysis.
However, on the other hand, a larger r may result in a
poor classification process. A two-parameters grid search
based on 10-fold cross-validation on the training set is
used to find the proper value of r for each dataset. The
chosen (A, r) is the one giving the largest AUC over 10-
fold cross-validation which may be not the same under
different random partition for training and testing sets. If
there are more than one combination (A, r) that reach the
biggest AUC, we will choose the one that has the largest
r. Figure 4 presents the selected frequency for each r in
100 (10x 10-fold) experiments. In order to avoid a two-
parameters grid search in the following experiments and
the instability brought by different r selected based on
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Fig. 2 Effect of parameter « on the resulting AUC of RLR-EN and RLRNPI-EN models. The median AUC are obtained over 100 experiments based on
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of the top 100 genes are computed using all samples on each dataset.
The genes are ranked by the number of times that the variables
become selected when A decreases. The results are computed by
taking the median stabilities of the total pairs of all the six datasets

different samples, we attempt to use a fixed r for each
dataset, which is set to the most frequently occurring
value in 100 experiments. According to Fig. 4, the value of
r for each dataset is presented in Table 2. It is vary with
the type of dataset for RLRNPI-AEN. The datasets consid-
ering the time for distant metastasis-free survival tend to
choose the model with small », while the other two types
of datasets prefer the model with larger r.
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Accuracy of the classification

Given the fixed « and r, we assess the predictive accuracy
of the model based on a 10-fold cross-validation which
is repeated ten times on each dataset. Table 3 shows the
median AUC and the adjusted p-values for the seven mod-
els, where the p-values evaluate the significance of differ-
ence in classification performance between RLRNPI-AEN
and the other six methods based on Mann-Whitney U
test. For each dataset, the p-values are corrected using
Holm-Bonferroni method for multiple testing. The Holm-
Bonferroni method is more suitable for the multiple
testing with small number of individual hypotheses and
offers a simple test uniformly more powerful than the
Bonferroni correction [47]. In general, classifiers using
biological network information (RLR-AEN, RLRNPI-EN,
ENCAPP, SVM-AEP and RLRNPI-AEN) have higher pre-
dictive power than those using gene expression dataset
only (RLR-EN and limma). The results show that RLRNPI-
AEN consistently outperforms limma with adjusted p-
values < 0.05 for all the six datasets except GSE4922.
Since the value of r used in the adaptive elastic net for
RLRNPI-AEN is not large for datasets GSE2034, GSE1456
and GSE4922, the classification performances of RLRNPI-
EN and RLRNPI-AEN do not have significant difference.
RLR-AEN, RLRNPI-EN and SVM-AEP have similar per-
formances which are significantly different from those
of RLRNPI-AEN for datasets GSE11121, GSE6532 and
GSE12093. ENCAPP generally achieve the second best
classification performance. RLRNPI-AEN has the mani-
fest superiority in the case of small sample size, especially
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Fig. 4 The selected frequency of each rin 100 experiments for RLR-AEN and RLRNPI-AEN models. The chosen (A, r) is the one giving the highest
AUC over 10-fold cross validation. If there are more than one combination (A, r) that reach the highest AUC, we will choose the one that has the
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Table 2 The value of r used in RLR-AEN and RLRNPI-AEN for each dataset

Dataset GSE2034 GSE1456 GSE11121 GSE6532 GSE4922 GSE12093
RLR-AEN 0.1 0.001 0.001 0.01 0.2 0.1
RLRNPI-AEN 0.01 0.001 02 0.8 0.05 02

for datasets GSE11121 and GSE12093 (adjusted p-values
< 0.05 compared with all the other six methods). The
network-based pairwise interaction may help the model
away from the effects of noise and instability brought by
the small sample size.

Stability of gene selection process

The stability of gene selection process is evaluated by
Jaccard coefficient in three settings: the soft-perturbation,
the hard-perturbation, and the between-datasets set-
tings. Both soft-perturbation and hard-perturbation set-
tings are based on the 10-fold cross-validation for the
tuning parameter A. Figure 5 shows the median sta-
bility of the selected genes estimated by seven models
over 20 repeats of random sampling (The summary of
median stability and adjusted p-values is presented in
Additional file 2: Table S1). It appears very clearly that
RLRNPI-AEN provides more stable gene selection pro-
cess than the other six methods, especially in the hard-
perturbation setting where the adjusted p-values are less
than 1072 in most cases. With a larger value of r, a
significant stability is observable for datasets GSE11121,
GSE6532 and GSE12093, using RLRNPI-AEN in soft-
perturbation setting (adjusted p-values < 0.05 except
that of ENCAPP for GSE11121). This indicates that the
idea of setting the weights for adaptive elastic net to
be inversely proportional to the degrees is very useful

for improving the stability of the gene selection. Since
ENCAPP and SVM-AEP also take into account the bio-
logical network information, they have higher median
stabilities in some of the datasets GSE2034, GSE1456 and
GSE4922 in the soft-perturbation setting, where the value
of r for RLRNPI-AEN is small. However, in these cases,
the p-values indicate that the differences are not signifi-
cant. In the between-datasets setting, another way is used
to present the ability of one gene selection method in
identifying the similar gene set for the same cancer from
different datasets. We use all samples of each dataset.
For the five elastic net based methods, given a decreas-
ing sequence of values for A, the genes are ranked by the
number of times that they are selected. For limma and
SVM-AEP, the genes are sorted in increasing order by the
p-values of the corresponding tests, i.e., the moderated
t-statistic test for limma and the test related with GO cat-
egory’s enrichment analysis for SVM-AEP. Figure 6 gives
the stabilities for the seven methods which are obtained
by taking the median of pairwise stability measures. On
one hand, for all the seven methods, the stability rise with
the number of the top genes. The bigger gene sets will
have more chance to share some genes. On the other hand,
the four methods that consider biological network infor-
mation yield much more stable biomarker selection than
RLR-EN, RLR-AEN and limma. Because RLRNPI-AEN
uses pairwise interactions based on both gene expression

Table 3 Prediction performance of RLRNPI-AEN in comparison to other methods in terms of area under ROC curve (AUC)

Dataset RLR-EN RLR-AEN RLRNPI-EN limma ENCAPP SVM-AEP RLRNPI-AEN
GSE2034 0.638 0.663 0.657 0.627 0.681 0.647 0.690
(0.0219) (0.0516) (0.0516) (0.0036) (0.5966) (0.0516) =)
GSE1456 0.724 0.734 0.711 0.619 0.722 0.717 0.736
(0.9768) (0.9920) (0.5600) (0.0114) (0.9920) (0.6024) -)
GSE11121 0.736 0.725 0.739 0.542 0.750 0.695 0.820
(0.0171) (0.0076) (0.0250) (0.0012) (0.0250) (0.0050) )
GSE6532 0.721 0.725 0.725 0.643 0.730 0.715 0.747
(0.0451) (0.0424) (0.0422) (0.0012) (0.4725) (0.0219) -)
GSE4922 0.620 0611 0611 0.606 0.593 0.622 0614
(1.0000) (1.0000) (1.0000) (1.0000) (0.1032) (1.0000) )
GSE12093 0.571 0.518 0613 0.685 0.616 0.607 0.845
(0.0012) (0.0012) (0.0012) (0.0208) (0.0034) (0.0012) -)

The median AUC obtained for each method on the six datasets over ten times ten-fold cross validation. The adjusted p-values calculated using a Mann-Whitney U test are
shown within parentheses, which evaluate the significance of difference in classification performance between RLRNPI-AEN and the other six methods. For each dataset, they
are corrected using Holm-Bonferroni method for multiple testing. The best two median AUCs and the adjusted p-values that are less than 0.05 are shown in boldface
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dataset and biological network to identify marker genes,
it can retrieve significantly more overlapped biomark-
ers. For example, among the top-100 genes estimated
by RLRNPI-AEN from datasets GSE11121 and GSE6532
which both consider the time for distant metastasis-free
survival, there are 20 common genes, while RLR-EN, RLR-
AEN, RLRNPI-EN, limma, ENCAPP and SVM-AEP only
identify 2, 1, 8,0, 5 and 2 common genes, respectively (The
number of common genes between each pair of datasets
among the top-100 genes is presented in Additional file 3:

Table S2). Our results indicate that RLRNPI-AEN is an
effective way to produce a more stability gene set.

Functional stability

Since many gene selection methods are based on the
samples, it is not easy to reach a high stability in term
of genes with the change of samples. However, these
biomarker sets with little common genes may exhibit the
same biological function which also make sense for can-
cer diagnosis, treatment, and prognosis. Therefore, it is

0.06

RLR-EN
— — — RLR-AEN
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Fig. 6 Stability for the top-ranked genes in between-datasets setting based on all samples on each dataset. The stabilities are obtained by taking the
median of the pairwise stability measures. The x-axis is the number of selected genes
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important for one gene selection method to identify some
specific biological function related with the cancer in a
robust manner. The stability analysis of the model in terms
of biological function is implemented by using R pack-
age “GOSemSim” [42]. We assess on Figs. 7 and 8 the
functional stability of all methods in the soft-perturbation
and hard-perturbation settings, respectively. The three
GO domains are analyzed separately (The summary of
the median GO stability and adjusted p-values for the
three GO domains BP, CC and MF in soft-perturbation
and hard-perturbation settings is presented in Additional
file 4: Table S3). From Figs. 7, 8 and Additional file 4:
Table S3, we can find that the stability results at the func-
tional level are very similar to the results at the gene level.
Overall, RLRNPI-AEN is the most stable method. The
advantages of the network-based methods in GO stabil-
ity further show the strength of biological networks for
achieving more clear biological interpretation. Since the
sample difference is relatively small in soft-perturbation
setting, the functional stabilities of the ENCAPP, SVM-
AEP and RLRNPI-AEN models do not have large dis-
tinction for some datasets such as GES2034. However,
RLRNPI-AEN exhibits significant functional stability ben-
efits in hard-perturbation setting where there is no over-
lap in samples. In addition, the functional stability results
with the change of the number of the top genes for the
seven methods in between-datasets setting are presented
in Fig. 9. In general, RLRNPI-EN and RLRNPI-AEN offers
significant benefits in terms of stabilities for GO terms BP
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and MF. Another two methods ENCAPP and SVM-AEP
which are integrated with biological network also per-
form better than RLR-EN, RLR-AEN and limma. There is
no obvious difference between the functional stability of
RLRNPI-EN and RLRNPI-AEN in this between-datasets
setting. Since this pair of methods is based on similar
ideas, they tend to identify genes with consistent func-
tions. However, there are clear strengths of highlighting
the heterogeneous underlying interactions.

Biomarker identification

The other five methods focus on the differentially
expressed genes or modules, while RLRNPI-EN and
RLRNPI-AEN identify the gene interactions of which
the changing may result in different states of a bio-
logical system. Figure 10 presents the number of the
different genes among the top-k genes selected by RLR-
AEN and RLRNPI-AEN, using all the samples on each
dataset. Although these numbers are vary with different
datasets, all the results indicate that there are obvious dif-
ference between the biomarkers identified by RLR-AEN
and RLRNPI-AEN. We will make a detailed analysis of the
biomarkers for datasets GSE1456 and GSE11121.

For GSE1456, we first decide the number of biomarkers
based on AUC by 10-fold cross-validation on the whole
dataset. To reduce the variability, the cross-validation is
conducted 10 times. Then we select the top-k variables
which are sorted by the number of times that the vari-
ables become selected when A decreases, where k is set
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to the median biomarker number over the 10 repeated
experiments. The subnetworks based on the 19 interac-
tions identified by RLRNPI-AEN are presented in Fig. 11,
where the color of each node indicates whether the gene
belong to the top-19 genes estimated by RLR-AEN (red)
or not (green). There are 34 genes selected as informa-
tive, including 5 expression-based discriminative genes
that belong to the 19 genes selected by RLR-AEN (The
19 important interactions identified by RLRNPI-AEN

for datasets GSE1456 are presented in Additional file 5:
Table S4). RLR-AEN tends to select a part of genes of
the subnetwork which are differentially expressed and
neglect the genes who interact with some discriminative
genes to form a collective biological function or present
differential correlation under many kinds of biological
states. The functional and biological relationships of the
selected genes of each subnetwork are analyzed based
on the GO annotation, which is implemented by using R
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Fig. 9 GO stability for the top-ranked genes in between-datasets setting based on all samples on each dataset. The GO stabilities are obtained by
taking the median of the pairwise stability measures. The x-axis is the number of selected genes. a BP term. b MF term. ¢ CC term
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selected marker genes ranked by the number of times that the
variables become selected when regularization parameter decreases.
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package “clusterProfiler” [48]. A p-value of a GO terms set
transferred from a gene set is calculated using the hyper-
geometric distribution and then is adjusted using the FDR
correction for multiple testing. Table 4 lists the GO terms
with the smallest adjusted p-value for some subnetworks
shown in Fig. 11 at 5% FDR. The small p-value shows
that the genes in each subnetwork have significant bio-
logical and functional correlation, and the common GO
functions they share are often related to the relapse time
of breast cancer.
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Fig. 11 The subnetworks for dataset GSE1456 estimated by

RLRNPI-AEN. Nodes represent human genes, and they are connected
by a link if they belong to the PPl network. Each gene is labeled by its
gene symbol. The color of each node indicates whether the gene are

identified by RLR-AEN (red) or not (green)
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Specifically, the smallest adjusted p-value is 2.61 X
10~* corresponding to GO:0000977 which is related to
RNA polymerase II regulatory region sequence-specific
DNA binding. All the genes in the third subnetwork
share this common GO function, which are not identi-
fied by RLR-AEN. It is a molecular function related with
RNA polymerase II which plays an important role in
breast [49, 50].

Figure 12 shows the heatmap of the expression profile
of the involved 34 genes and the 19 interactions. The dis-
tinction between two classes are more significant in edge
data than that in the gene expression, which shows that
our proposed method does select reasonable biomark-
ers for classification. Most of identified biomarkers are
considered to have diagnostic values for breast. For exam-
ple, the suppression of LRIG1 gene of the top-1 edge
is identified as a common feature of breast tumors, and
contributes to poor patient prognosis and therapeutic
resistance [51]. TAC1 has been implicated in the devel-
opment of breast which can lead to the production of
cytokines with growth promoting functions [52]. In addi-
tion, CIAPINI is reported to participate in breast cancer
multi-drug resistance, changing cell cycle and enhancing
the anti-apoptotic capability of cells [53].

Unlike conventional regularized logistic regression, our
model with network-based pairwise interaction can impli-
cate disease-related genes with low discriminative poten-
tial, such as ATF2 and OFD1. The activation of ATF2 has
been detected to play a direct role in malignant pheno-
typic changes of human breast epithelial cells [54]. Fur-
thermore, OFD1 is reported to be possible to reverse the
cilia-defective phenotype of a transformed breast cancer
cell line [55].

Next, the top-26 interactions for dataset GSE11121 are
also analyzed, including 31 informative genes of which
3 are shared with RLR-AEN (The 26 important interac-
tions identified by RLRNPI-AEN for datasets GSE11121
are presented in Additional file 5: Table S4). Figure 13
presents the network of the top 26 interactions. Differ-
ent from the subnetworks with a few nodes for GSE1456,
the biomarkers tend to form a larger subnetwork for
GSE11121. The larger value of r for GSE11121 may make
RLRNPI-AEN select the genes with higher degree. It indi-
cates that there may exist different modes between breast
metastasis and relapse. The GO results for some subnet-
works are shown in Table 5. It can be seen from this table
that genes in each subnetwork share some common GO
functions with high statistical significance, indicating high
biological and functional correlation of the genes in this
subnetwork. Therefore, the genes without differentially
expressed remain essential for maintaining the integrity
of the subnetwork. For the first subnetwork, GO:0002433
with adjusted p-value 2.66 x 10710 is a biological process
shared by seven genes among 16 genes, which is related
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Table 4 The Gene Ontology results of the subnetwork identified by RLRNPI-AEN for dataset GSE1456

Subnetwork GO number Ontology description Adjusted p-value
TFG GPRASP1 TAC3 OFD1 GO:0043015 gamma-tubulin binding 3.07 x 1072
G0:0043014 alpha-tubulin binding 307 x 1072
SPTANT CRK FANCA GO:0045309 protein phosphorylated amino acid binding 3.02 x 1072
G0:0030507 spectrin binding 302 x 1072
GO:0046875 ephrin receptor binding 302 x 1072
GO:0042169 SH2 domain binding 302 x 1072
GO:0051219 phosphoprotein binding 348 x 1072
BACH2 ATF7 JUN G0:0000977 RNA polymerase Il regulatory region sequence-specific DNA binding 261 x 1074
GO:0001012 RNA polymerase Il regulatory region DNA binding 261 x 1074
G0:0000976 transcription regulatory region sequence-specific DNA binding 261 x 1074

GO:0000981 sequence-specific DNA binding RNA polymerase Il transcription factor activity 261 x 1074

G0:0000980 RNA polymerase Il distal enhancer sequence-specific DNA binding 261 x 1074

The first column (Subnetwork) presents the elements of subnetwork of which the functional and biological relationship are analyzed based on the GO annotation

time to relapse <=5y time to relapse >7 y
relapse=True relapse=False

time to relapse <=5y time to relapse >7 y
relapse=True relapse=False

Fig. 12 The heatmap of the expression profile of the 19 interactions identified by RLRNPI-AEN and their corresponding genes for dataset GSE1456. a
Interactions (b) Genes
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to immune response-regulating cell surface receptor sig-
naling pathway involved in phagocytosis. There are results
demonstrate that phagocytosis of extracellular matrix is
an inherent feature of breast tumor cells that correlates
with and may even directly contribute to their invasive
capacity [56].

The heatmap of the interactions and the corresponding
genes are presented in Fig. 14. It is consistent with the
results presented in Fig. 12 that the opposite patterns
between the two classes are clear in interaction data
but not in the gene expression data. Some of the genes
are well known in the literatures. Although one node of
top-1 edge ICAM4 is not yet indicated to play an impor-
tant role in breast cancer susceptibility, its role in cell
adhesion and cell signaling together with its low level
expression in cancer-relevant tissues leave the possibility
that its dysregulation or dysfunction may increase cancer
risk [57]. The other node CREB3 is not selected by RLR-
AEN of which the over-expression is shown to substan-
tially increase the migration of MDA-MB-231 metastatic
breast cancer cells [58]. FYN which belongs to the top-
2 edge is implicated in diverse biological functions such
as neuronal development, T-cell receptor signaling, and

Table 5 The Gene Ontology results of the subnetwork identified by RLRNPI-AEN for dataset GSE11121

Subnetwork GO number Ontology description Adjusted p-value
AGER ATP2A3 CRK CSF2RA DLGAP2 ECT2 G0:0002433 immune response-regulating cell surface 266 x 10710
F2RL2 FYN GRB2 MAP2K5 NCK1 PIK3R1 receptor signaling pathway involved in
SEMA7A TPSAB1 TPSB2 WIPF2 phagocytosis
G0:0038096 Fc-gamma receptor signaling pathway 266 x 10710
involved in phagocytosis
GO:0038094 Fc-gamma receptor signaling pathway 266 x 10710
G0:0002431 Fc receptor mediated stimulatory signaling 2.70 x 10710
pathway
GO:0006909 phagocytosis 553 % 1078
CREB3 MS4AT ICAM4 FA2H GO:0031726 CCR1 chemokine receptor binding 225 % 1072
GO:0008140 cAMP response element binding protein 225 x 1072
binding
GO:0044877 macromolecular complex binding 225 x 1072
GO:0035497 CcAMP response element binding 276 x 1072
GO:0005102 receptor binding 2.76 x 1072
AGGF1 CCDC85B PRCT NGFRAP1 GO:0005123 death receptor binding 417 x 1072
GO:0008656 cysteine-type endopeptidase activator activ- 417 x 1072
ity involved in apoptotic process
GO:0016505 peptidase activator activity involved in apop- 417 x 1072
totic process
GO:0019894 kinesin binding 417 x 1072
GO:0016504 peptidase activator activity 417 x 1072

The first column (Subnetwork) presents the elements of subnetwork of which the functional and biological relationship are analyzed based on the GO annotation
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Fig. 14 The heatmap of the expression profile of the 26 interactions identified by RLRNPI-AEN and their corresponding genes for dataset GSE11121.

is reported to be linked to increased breast cancer risk,
especially in women with expression of ER and PR in
their breast tumors [59]. GRB2 of the top-3 edge plays
an important role in the first subnetwork. Over expres-
sion of GRB2 might modulate the growth factor sensitivity
of human breast cancer cells and has influence on tumor
progression [60].

Conclusions

In this paper, we present an effective biomarker discovery
and cancer classification algorithm: a regularized logis-
tic regression with network-based pairwise interaction via
adaptive elastic net. Different from the algorithm based on
functional modules proposed by Das et. al in [3], where
the modules often need to be determined in advance by
some clustering methods and thus the algorithm perfor-
mance may depend on the module detection, we focus on
the gene pairs which exhibit different positive or negative
interactions. The discriminative modules treat the genes
and the interactions as a whole and do not consider the
diversity of the interactions between a variety of diseases.
Since the mutation of buried residues of the proteins leads
to loss or gain of specific interactions, the interactions
identified by the proposed method can be great helpful for

the analysis of exposed residues in turn of which the muta-
tion has been shown to be a higher fraction of mutations
associated with autosomal-dominant diseases [25, 61].
In addition, by considering the changes of interactions
towards different biological states, we can identify the
non-differentially expressed genes which play central roles
in functional process within cells. Our algorithm com-
bines gene expression profiles with PPI networks, which
can reduce the influence of noise brought from the corre-
lation between expression that in fact have no underlying
biological causality. The degree information based on the
PPI network is introduced to make the model less sensi-
tive to the training samples and predict biomarkers with
higher reproducibility.

Since we only take account of the interactions between
two genes, it may miss some informative biomarkers
which do not participate in any interactions. Therefore,
in the future work, the subnetworks or the pathways
consisted of both nodes and edges are needed for the
accuracy of diagnostic and prognostic biomarker identifi-
cation. Although the network information introduced in
our model facilitate the discovery of more reproductivity
biomarkers, the results may be dependent on the network
structure. With the availability of a variety of biological
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networks such as KEGG pathways, we can incorporate all
these sources as prior information to build variable selec-
tion methods to decline the sensitive of the model towards
both gene expression data and networks.
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