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Abstract

Background: Proteins play a special role in bioinformatics. The surface shape of a protein, which is an important
characteristic of the protein, defines a geometric and biochemical domain where the protein interacts with other
proteins. The similarity analysis among protein models has become an important topic of protein analysis, by which
it can reveal the structure and the function of proteins.

Results: In this paper, a new protein similarity analysis method based on three-dimensional protein models is
proposed. It constructs a feature matrix descriptor for each protein model combined by calculating the shape index
(SI) and the related salient geometric feature (SGF), and then analyzes the protein model similarity by using this
feature matrix and the extended grey relation analysis.

Conclusions: We compare our method to the Multi-resolution Reeb Graph (MRG) skeleton method, the L1-medial
skeleton method and the local-diameter descriptor method. Experimental results show that our protein similarity
analysis method is accurate and reliable while keeping the high computational efficiency.
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Background
Protein similarity analysis is an important topic in bio-
informatics. With it, we can help understand the structure
and the function of proteins. The protein shape analysis
plays an important role in medical research, computer
aided molecular design, protein structure retrieval and
prediction, among others. However, the analysis is highly
challenging due to the complexity of a protein’s three-
dimensional surface shape, which can deform significantly
enough to change the topological structure during mo-
lecular interactions [1].
Many researchers have contributed to similarity ana-

lysis methods for comparing protein shapes. Via et al.
[2] gave a survey on the current knowledge of the pro-
tein surface similarity. The similarity analysis method
based on comparison of shape feature is a common ap-
proach. Sael et al. [3] proposed a popular protein surface
similarity method based on a 3D Zernike descriptor.
Compactness and rotational invariance of this descriptor
enable fast comparison suitable for protein database
searches. However, in order to capture the high resolution

of the protein surface similarity, computation increases as
the number of terms in its series expansion increases. And
it is not applicable for the protein models with complex
topology such as holes. Osada et al. [4] provided a shape
distribution method based on the statistical histogram that
measures the vertex distribution of the whole model sur-
face, from which it forms a shape feature distribution
histogram, and finally obtains a three-dimensional model’s
geometric similarity measure by comparing two similar
distances. Horn et al. [5] proposed an algorithm based on
an extended Gaussian image, in which it maps each grid
of the model surface to a unit sphere, thus obtains an
extended Gaussian ball vector. Ohbuchi et al. [6] pre-
sented a statistical histogram algorithm in which the
three-dimensional model vertices are sampled and then
a three-dimensional coordinate axis histogram is used
to generate three statistics about the model’s geometric
features. Vranic et al. [7] introduced a functional ana-
lysis method that assesses the three-dimensional model
similarity using the modulus of a spherical harmonic
analysis coefficient.
Other shape similarity methods based on topology are

also widely studied. For example, Hilaga et al. [8] proposed
a multi-resolution Reeb graph (MRG) method. It uses the
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model surface’s geodesic distance as a Morse function
to draw the multi-resolution Reeb graph of a three-di-
mensional model. Bronstein et al. [9] provided a method
based on heat kernel signatures (HKS). It draws analogies
with feature-based image representations to construct
shape descriptors, which are invariant to a wide class of
transformations on one hand and are discriminative on

the other hand. Forked et al. [10] proposed a method
based on the simplified medial axis, which is parameter-
ized by a separation angle. The angle is formed by the vec-
tors connecting a point on the medial axis to the closest
points on the boundary. Du et al. [11] proposed a method
based on the skeleton graph. It first calculates the skeleton
node of a three-dimensional model and then constructs

Methods
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Fig. 1 Main steps of our similarity analysis for protein models. For a given 3HLN model, the high SI and SGF areas are colored in red on the 3HLN
surface, respectively. The distribution of feature matrix is constructed by the SI and SGF distribution vectors
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Fig. 2 1HLB protein model and its geometric feature models. a 1HLB protein model. (a-1) Local area of the vertex A. (a-2) Local area of the vertex B.
b Gaussian curvature model of 1HLB protein. c Mean curvature model of 1HLB protein. d Shape index model of 1HLB protein. e Salient geometrical
feature model of 1HLB protein
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the corresponding skeleton graph between nodes. Both of
these methods are computationally expensive, are more
sensitive to holes in the three-dimensional models, and
are lack of robustness to noise. Morris et al. [12] obtained
a similarity comparison of three-dimensional protein
models by spherical harmonic expansion. Fang et al. [13]
proposed a shape comparison method based on the local
diameter (LD). Qin et al. [14] introduced an improved
MRG skeleton algorithm. In this process, sample points
are used to build the local diameter (LD) for a model simi-
larity comparison, but it is a computationally expensive
approach. Li et al. [15] presented a method based on an
improved L1-medial protein skeleton, but they only apply
it to the CPK protein model. Hence, their method is

not generally applicable to all three-dimensional protein
models.
Motivated by the salient theory of a three-dimensional

model proposed by Hoffman and Singh [16], and by the
shape index (SI) concept by Bradford et al. [17], we propose
a new shape comparison method for three-dimensional
protein models. We first compute the shape index
which reflects the protein surface’s geometric feature
including the concave and convex properties. Then we
construct the salient geometric feature (SGF) through
the region-related shape index information. The shape
index and the salient geometric feature are then com-
bined to form the feature matrix of each protein model.
We finally use the extended grey relation analysis to

(a)                    (b) (c)
Fig. 3 Feature distribution figures of 1HLB protein model. a Shape index feature distribution. b Salient geometric feature distribution. c Feature
distribution combination model of 1HLB protein model

1BPD 2BPG

1WRP                 3WRP
Fig. 4 Four protein models (1BPD, 2BPG, 1WRP and 3WRP). Red regions represent salient shape index areas
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analyze the feature matrix and obtain the final shape
similarity results of protein models.

Methods
A three-dimensional protein model can be represented
by the form with the triangular mesh. We first estimate
the curvature of each vertex on a protein model surface,
and calculate the shape index (SI) and the salient geomet-
ric feature (SGF) based on the shape index of each vertex.
Then, we construct the protein model’s feature matrix
through the shape index and the salient shape index.
Finally, we do the similarity analysis for protein models
by the matrix-based grey relation analysis. The main
process of our algorithm is shown in Fig. 1.

Shape index (SI)
The concept of shape index was proposed in [17]. It is a
curvature-related parameter that describes the protein
surface’s concave and convex properties. As we know,
surface curvature controls the surface orientation and
provides information about its degree of concavity or
convexity. Thus, the shape index is thought to play an
important role in determining the stability of the protein
molecules in the process of molecular recognition and
structure prediction. The shape index of a protein model
can help us study the atomic-level geometry of the interact-
ing versus non-interacting regions of a protein, and there-
fore help us understand protein interaction mechanisms.

Here, we focus on using the shape index to represent the
shape characteristics of a protein surface. The shape index
(SI) of a protein model is defined as

SI ¼ −
2
π
arctan

k1 þ k2
k1−k2

;

where k1 and k2 denote the maximum and the minimum
principal curvatures, respectively. From the above formula,
we know SI is between -1 and 1. When the shape index is
close to 1, it indicates the convex shape of the given vertex
on the protein surface. On the contrary, when the shape
index is close to -1, it indicates the concave shape of the
given vertex on the surface. When k1 = - k2, the shape
index is 0.
SI relates to the curvature estimation of each vertex

on the model surface. We use Dyn and Hormann’s
method [18] to estimate the discrete Gaussian curvature
kG and the discrete mean curvature kM. Then, the max-
imum principal curvature k1 and the minimum principal
curvature k2 are obtained by

k1 ¼ kM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

2−kG
q

; k2 ¼ kM−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

2−kG
q

:

For the 1HLB protein model in Fig. 2a, we give the
corresponding Gaussian curvature figure and mean curva-
ture figure as shown in Fig. 2b and c, where the red and
the blue areas represent large and small curvature regions,
respectively. We also show the corresponding shape index
figure in Fig. 2d, where the red and the blue areas repre-
sent convex and concave regions, respectively.

Salient Geometric Feature (SGF)
Salient geometric feature is built on the theory of sali-
ence of visual parts proposed by Hoffman and Singh
[16]. They regarded that the salience of a part depends
on two factors: its size relative to the whole object, and
the number of curvature changes and their strength.
This concept has been applied to three-dimensional mesh
model matching [19]. It constructed a salient feature for-
mula based on geometric information, which can detect
some areas that the topology and numerical calculations
may not be similar, but they are considered to be substan-
tially similar. Here, we focus on using the shape index to
construct the salient shape index of a protein surface. It
similarly includes the local area size and its shape index
variance by

Table 1 Comparison by the grey relation distance between Qin
et al’s algorithm [15] and our algorithm

Similarity values by different algorithms

1BPD 2BPG 1WRP 3WRP

Algorithm in [15] 0.9713 0.5625 0.5816

Our algorithm 0.9856 0.3853 0.3605

2BPG 1BPD 1WRP 3WRP

Algorithm in [15] 0.9713 0.6497 0.6823

Our algorithm 0.9856 0.3844 0.3596

1WRP 1BPD 2BPG 3WRP

Algorithm in [15] 0.5625 0.6497 0.9597

Our algorithm 0.3853 0.3844 0.9723

3WRP 1BPD 2BPG 1WRP

Algorithm in [15] 0.5816 0.6823 0.9597

Our algorithm 0.3605 0.3596 0.9723

Bold numbers mean the similarity values measured by different methods for
similar proteins

Table 2 Running time comparison between Qin et al’s [15] algorithm and our algorithm (The time unit is ms)

Model 1BPD and 2BPG 1WRP and 3WRP

Time Algorithm in [15] Our algorithm Algorithm in [15] Our algorithm

2153 112 5716 216
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SGF ¼
X
i∈F

w1Area ið ÞSI ið Þ3 þ w2N SIð ÞVar SIð Þ;

where F is a cluster consisting of each vertex i, w1 and
w2 are the weights, we set them as 0.5. Area(i) is the
area of the patch associated with vertex i relative to a
cluster size, N(SI) is the number of local minimum(s) or
maximum(s) shape index in the cluster, Var(SI) is the
shape index variance in the cluster, SI(i) is the shape
index associated with vertex i.
For the 1HLB protein, we give its salient geometric

feature model in Fig. 2e. The regions with the red color
represent the more salient parts, and the regions with
the blue color are the less salient parts. And we also use
the 1HLB model as the example to address the differ-
ence scales of SI and SGF on the protein surface. For
vertex A in Fig. 2(a-1), its SI value is 0.5368 and its SGF
value is 0.6425. For vertex B in Fig. 2(a-2), its SI value is
0.5279 and its SGF value is 0.2981. We find their SI
values are close which are hard to reflect the difference
of local feature. Whereas, their SGF values have a big
difference because SGF value is related to the local geo-
metric region. When the local geometric region varies
saliently, the SGF value is high. So from this model, we
conclude that point A has a salient geometric feature
since it has a high SGF value.

Feature descriptor structure
The shape index and the salient geometric feature of all
vertices on a three-dimensional model constitute an n-di-
mensional vector (where n is the number of model verti-
ces), respectively. Because the number of vertices on each
model surface is not the same for different proteins, these
vectors cannot be directly compared and analyzed. In our
approach, we cluster all feature values into the same group
number through a clustering algorithm [20]. For the num-
ber of clusters representing different features in K-means
clustering, the high value of K will improve the accuracy of
shape analysis, but it also increases the computation of
shape comparison. The low value of K does not need the
high running time of computation, but it can not guarantee
the accuracy of shape analysis. Here, we set it as K = 48.
Then, we calculate the mean for each group ti and obtain a
feature described vector of shape indexes T = (t1, t2, …, tK).
For the shape index feature clustering of a protein model,
we randomly select K data points from the database of n
values as the initial cluster centers for use with the K-
means clustering algorithm. We perform clustering until
the change in cluster centers reaches a convergence condi-
tion. From this, we obtain the final K data point clusters.
Similarly, the salient geometric features of a protein

model can be represented as a vector P = (p1, p2, …, pK).
The shape index feature and salient geometrical feature
of the 1HLB protein model are shown in Fig. 3a and b,

where the horizontal axis represents 48 representative
groups obtained by clustering, and the ordinate axis rep-
resents the features. We notice that there is no corres-
pondence between clusters in Fig. 3a and b, because
each cluster is determined by the randomly selected ini-
tial vertices on the protein surface.
In order to better reflect the shape feature of a three-

dimensional protein model, the method based on the
feature matrix expression has become a popular method
for the model shape analysis [21]. Here, we apply above
two vectors to construct a matrix which contains rich
feature information as a feature descriptor. We denote
QK×2 = [T; P]T and use QTQ to represent a K × K (K = 48)
feature matrix, then do the similarity analysis for the
protein models with this feature descriptor. We give the
feature matrix figure of 1HLB protein model in Fig. 3c.

Similarity measurement
For the shape analysis of a protein sequence or its surface
model, common methods use distance measurements
such as Euclidean distance, Manhattan distance, angle co-
sine method and correlation coefficient method, etc [22].
One problem using these methods is that the measure
value is normally not guaranteed to lie in the standard
interval [0, 1]. If we use the normalization to transform
the values into [0,1], it relates to the maximum and the
minimum measure values of all protein models and this
transformation will influence the accuracy of the shape
analysis for protein models.
For our similarity analysis of three-dimensional protein

models, because we construct a matrix-based feature de-
scriptor, the previous vector-based method is not directly

Table 3 Grey relation distance comparison by different
similarity measure methods

Similarity measure methods 1BPD and
2BPG

1WRP and
3WRP

Feature vectors of SI (T) 0.9346 0.9517

Feature vectors of SGF (P) 0.9419 0.9486

Combined feature vectors of SI and SGF
((T + P)/2)

0.9357 0.9541

Matrix-based feature descriptor (QTQ) 0.9856 0.9723

Table 4 Similarity results for six protein models from Fig. 5

Models 2B3I 1NIN 1RCD 1IER 1DBW 1B00

2B3I 1.0000 0.9500 0.8812 0.4460 0.9350 0.9244

1NIN 0.9500 1.0000 0.9269 0.4918 0.9241 0.9176

1RCD 0.8812 0.9269 1.0000 0.9630 0.9109 0.7513

1IER 0.4460 0.4918 0.9630 1.0000 0.4749 0.4785

1DBW 0.9350 0.9241 0.9109 0.4749 1.0000 0.9930

1B00 0.9244 0.9176 0.7513 0.4785 0.9930 1.0000

Bold numbers mean the similarity values measured by different methods for
similar proteins
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applicable for our measurement. At the same time, we
hope to advocate the use of a scalar value of similarity
directly between 0 and 1, where higher values represent
greater similarity between two protein models. Here we
popularize the vector-based grey relation analysis [23]
to the matrix-based grey relation analysis, which also
keeps the value in [0,1] and other properties of the grey
relation analysis. Then, we apply it to measure the simi-
larity of three-dimensional protein models.
Suppose that X and Y are matrices with the same m

rows and n columns

X ¼ x i; jð Þ½ �m�n; Y ¼ y i; jð Þ½ �m�n;

i ¼ 1; 2; ⋅⋅⋅ ; m; j ¼ 1; 2; ⋅⋅⋅ ; n:

For the kth row, we produce the image of zero starting
point of matrix X and Y

x
0
k; qð Þ ¼ x k; qð Þ−x k; 1ð Þ; y

0
k; qð Þ ¼ y k; qð Þ−y k; 1ð Þ;

q ¼ 1; 2; ⋅⋅⋅ ; n:

Then, we compute the grey relation degree of matrix
X and Y for each row

2B3I                              1NIN

1RCD                             1IER

1DBW                             1B00

Fig. 5 Six protein models from Skolnick dataset (2B3I, 1NIN, 1RCD, 1IER, 1DBW and 1B00)

Table 5 Running time comparison between the skeleton extraction algorithm [14] and our algorithm

Model 2B3I 1NIN 1RCD 1IER 1DBW 1B00

A B A B A B A B A B A B

2B3I 2480 104 2481 104 2465 105 2481 105 2480 104 2464 105

1NIN 7472 215 8472 202 7753 208 6131 210 11809 198 10733 205

1B00 7457 208 10733 205 7738 207 10743 200 10732 194 10749 202

1RCD 7488 210 7753 208 7737 212 7759 198 7753 207 7738 207

1DBW 7456 204 11809 198 7753 207 6130 194 11825 195 10732 194

1IER 7472 199 6131 210 7753 198 6147 194 6130 194 10732 200

Notes that A is the running time of algorithm in [14], B is the running time of our algorithm. The time unit is ms
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εmij kð Þ ¼ 1þ s kð Þj j þ t kð Þj j
1þ s kð Þj j þ t kð Þj j þ s kð Þ−t kð Þj j ;

ðwhereÞ

s kð Þ ¼
Xn
q¼1

x
0
k; qð Þ; t kð Þ ¼

Xn
q¼1

y
0
k; qð Þ;

k ¼ 1; 2; ⋅⋅⋅ ; n:

Similarly, we get the grey relation degree εij
n(k) of

matrix X and Y for the kth column. Finally, we obtain the
grey relation degree of matrix X and Y by

η ¼ 1
2

1
m

Xm
k¼1

εmij kð Þ þ 1
n

Xn
k¼1

εnij kð Þ
 !

:

From the above calculation process, it is easily known
that the grey relation degree is between 0 and 1, and the
degree indicates the high similarity of two models when
it is close to 1.

Results
The algorithm presented in this paper is implemented
on a Intel(R) Core(TM) i3-3110 M CPU @2.5 Ghz desk-
top computer with 4GB RAM running MS Windows 7.
The software environment of the experiment is based on
Mathworks’ MATLAB R2010a.
We first chose four protein models from the Protein

Data Bank [24], which are shown in Fig. 4. We already
know that the 1BPD and 2BPG models are similar and
the 1WRP and 3WRP models are similar [15]. Table 1
shows the results of comparing our algorithm with Qin
et al’s algorithm [15] which is based on the improved
L1-medial skeleton extraction. The similarity measure-
ment values of two methods are both between 0 and 1,
and the more similar two protein models, the more close
to 1 their values. Our analysis method obtains a reasonable
similarity comparison result because our value is closer to
1 by comparing bold data in Table 1. In Table 2, we com-
pared the execution time of two algorithm’s implementa-
tions, which shows that our method runs faster than
Qin et al’s algorithm [15]. We also compare our matrix-
based feature descriptor to the vector-based method

1HLM    2LHB   5MBN 1CHR    5P21

1HLB 1MBA   1LH2   2MNR 1GNP

Fig. 6 Ten protein models from Chew–Kedem dataset (1HLM, 1HLB, 2LHB, 1MBA, 5MBN, 1LH2, 1CHR, 2MNR, 5P21, 1GNP)

Table 6 Similarity results for ten protein models from Fig. 6

Models 1HLM 1HLB 2LHB 1MBA 5MBN 1LH2 1CHR 2MNR 5P21 1GNP

1HLM 1.000 0.973 0.562 0.676 0.437 0.752 0.653 0.549 0.789 0.752

1HLB 0.973 1.000 0.608 0.763 0.574 0.647 0.564 0.653 0.742 0.698

2LHB 0.562 0.608 1.000 0.969 0.579 0.695 0.745 0.659 0.732 0.634

1MBA 0.676 0.763 0.969 1.000 0.614 0.713 0.697 0.705 0.720 0.744

5MBN 0.437 0.574 0.579 0.614 1.000 0.987 0.353 0.438 0.493 0.464

1LH2 0.752 0.647 0.695 0.713 0.987 1.000 0.434 0.468 0.464 0.413

1CHR 0.653 0.564 0.745 0.697 0.353 0.434 1.000 0.993 0.563 0.615

2MNR 0.549 0.653 0.659 0.705 0.438 0.468 0.993 1.000 0.595 0.685

5P21 0.789 0.742 0.732 0.720 0.493 0.464 0.563 0.595 1.000 0.981

1GNP 0.752 0.698 0.634 0.744 0.464 0.413 0.615 0.685 0.981 1.000
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directly by SI, SGF, and the simply combined feature vector
method ((SI + SGF)/2). The results are shown in Table 3.
For two pairs of similar proteins, we find our similarity
result is more close to 1.
Then, we chose three groups of protein models from

the Skolnick dataset [25], which are shown in Fig. 5. We
already know that the 2B3I and 1NIN proteins are simi-
lar because they are in the same clustering [14,25]. For
other four protein models, the 1RCD and 1IER models
are similar, and the 1DBW and 1B00 models are similar
[14,15]. We used our method to compare similarities of

these three pairs of proteins and find that they are in ac-
cordance with the results of [14,15,25]. Table 4 indicates
that two models with bold underlined data are similar
(The similarity of a model with itself is always 1.000).
We also compared the execution time of Li et al’s method
[14] based on the improved skeleton extraction by Reeb
Graph and our method in Table 5. We find our method is
obviously faster than the method in [14] because it does
not need to conduct the skeleton extraction.
Next, we chose 10 protein models from the Chew–

Kedem dataset [26], which are shown in Fig. 6. We have

Fig. 7 Average linkage of Skolnick's dataset by our method

Table 7 Running time comparison including searching the dataset between the skeleton extraction algorithm [14] and our
algorithm

ModelsMethods 1HLM 2LHB 5MBN 1CHR 5P21

A 20mins 28 s 25mins 05 s 22mins 49 s 18mins 58 s 21mins 36 s

B 5mins 7mins 6mins 5mins 6mins

43 s 19 s 57 s 34 s 26 s

Note that A is the algorithm in [14] and B is our algorithm
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known that the 1HLM and 1HLB proteins are similar
because they are in the globin family, the 5P21 and
1GNP proteins are similar because they are the alpha–
beta family [26]. We computed the matrix-based grey
relation distance by using our method. The similarity
results of protein models corresponding to 10 proteins
are shown in Table 6. We find our similarity results are
in agreement with the results in [26].
We also demonstrate a total running time including

searching the most similar protein model for 5 protein
models in the Chew-Kedem dataset. In Table 7, we find
our method has a fast searching speed for obtaining the
similar protein model.
To increase the robustness of our method, we added

another testing dataset as Skolnick’s dataset from R[25]
for the experiment, which includes 40 proteins models.
We use our method to construct the average linkage of
Skolnick's dataset in Fig. 7 and find that our result is
almost consistent with the result in R[25]. For example,
the 3YPI and 1AMK proteins are in the same cluster,
the 1NAT and 3CHY proteins are in the same cluster.
These results are in accord with the current evolution-
ary research [14,25].
Finally, we compared two proteins (1BAR and 1RRO)

that have a similar shape surface but have completely
different secondary structure elements [13] (Fig. 8). The
algorithm [13] based on the shape analysis by the local
diameter construction resulted in a similarity of 0.9956,
which is close to 1. It falsely reflects the similarity

properties of the two proteins with different secondary
structures. Our method produced a similarity value of
0.7546 which is comparatively some smaller than 1. It can
infer the non-similarity for two protein models although
they have similar shape surface. We conclude that our
approach, in this specific case, improves the similarity ana-
lysis for non-homologous protein models with similar
shapes.

Discussion
Our method is based on the surface analysis and the ad-
vantage is that the running time is fast because it does
not need to conduct the skeleton extraction. The disadvan-
tage is that it can not be applied for other protein models
such as protein CPK models. The advantage of the skeleton
based method is that it can be applied for both the protein
surface (triangular mesh model) and the protein CPK
model (point cloud representation), the disadvantage is the
skeleton extraction requires a time-consuming process.

Conclusion and future work
In this paper, we propose a three-dimensional protein
model’s similarity analysis algorithm based on salient
shape index. We first calculate the shape index (SI) and
salient geometric feature (SGF) of the protein models.
And then we construct the matrix-based feature descrip-
tor by SI and SGF information. Finally, we compare the
similarity of protein models by the matrix-based grey

1BAR  1RRO

Fig. 8 1BAR and 1RRO protein models with their feature distributions
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relation degree. Experimental results show the effective-
ness of our protein similarity analysis method.
Currently, we only consider the shape index (convex

and concave properties of the protein surface) and the
salient geometric feature to analyze the similarity of the
protein models. We do not take account of the physical
properties of the protein molecules. In fact, these prop-
erties such as pH, polar and non-polar, hydrophilic, also
affect the structure and the function of the protein
molecules. How to combine these factors for the protein
shape similarity analysis will be our future research. For
the clustering in our similarity analysis, we find the
cluster size is normally not equal and the clustering is
sometimes dominated by several big clusters. The size
of the clusters might be highly relevant in describing the
global shape of the protein model. This also gives us an
interesting work for our future research.
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