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Abstract

Background: Accurate adjustment for the amplification efficiency (AE) is an important part of real-time quantitative
polymerase chain reaction (QPCR) experiments. The most commonly used correction strategy is to estimate the AE by
dilution experiments and use this as a plug-in when efficiency correcting the AAC. Currently, it is recommended to
determine the AE with high precision as this plug-in approach does not account for the AE uncertainty, implicitly
assuming an infinitely precise AE estimate. Determining the AE with such precision, however, requires tedious
laboratory work and vast amounts of biological material. Violation of the assumption leads to overly optimistic
standard errors of the AAC, confidence intervals, and p-values which ultimately increase the type | error rate beyond
the expected significance level. As qPCR is often used for validation it should be a high priority to account for the
uncertainty of the AE estimate and thereby properly bounding the type | error rate and achieve the desired
significance level.

Results: We suggest and benchmark different methods to obtain the standard error of the efficiency adjusted AAC,
using the statistical delta method, Monte Carlo integration, or bootstrapping. Our suggested methods are founded in
a linear mixed effects model (LMM) framework, but the problem and ideas apply in all gPCR experiments. The methods
and impact of the AE uncertainty are illustrated in three gPCR applications and a simulation study. In addition, we

validate findings suggesting that MGSTT is differentially expressed between high and low abundance culture initiating
cells in multiple myeloma and that microRNA-127 is differentially expressed between testicular and nodal lymphomas.

Conclusions: We conclude, that the commonly used efficiency corrected quantities disregard the uncertainty of the
AE, which can drastically impact the standard error and lead to increased false positive rates. Our suggestions show
that it is possible to easily perform statistical inference of AAC,, whilst properly accounting for the AE uncertainty and
better controlling the false positive rate.
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Background

Despite being an aging technique, real-time quantita-
tive polymerase chain reaction (QPCR)—arguably one of
the most significant biotech discoveries of all time—is
still heavily used in molecular biology [1]. qPCR is an
extremely sensitive and cost effective technique to amplify
and quantitate the abundance of DNA and RNA using a
Taq polymerase that for RNA analysis are preceded by a
reverse transcriptase conversion into template DNA. In
life sciences, qPCR is typically applied to quantify candi-
date gene transcripts that are biomarkers of diagnostic,
prognostic, and even predictive value in e.g. infectious
diseases and cancer. In the slip stream of high-volume
omics-data, another very important application of qPCR
has arisen. Here, qPCR is the gold standard validation
tool for the most promising gene transcripts generated by
high-throughput screening studies such as microarrays or
sequencing. For validation experiments in particular the
ability to control the type I error rate is very important.
Unfortunately, important statistical details are often omit-
ted resulting in a failure to obtain the desired type I error
probability. Validation without such an ability cannot be
considered very meaningful and therefore conservative
approaches should be taken.

The so-called AAC; quantity is the normalized rela-
tive expression of a target gene of interest between treated
(case) and untreated samples (control) accounting for
undesired variations using one or more endogenous ref-
erence genes (also called housekeeping gene) assumed to
be approximately unchanged due to the treatment. The
A ACy-value is usually based on the assumption of perfect
AEs for both the target and reference gene. However, the
target and reference genes might be subject to different
AE which yield biased AACy-values. In turn, the AAC,
has been modified to AE corrected versions [2—4].

Despite the tremendous success of qPCR, ‘statisti-
cal inference considerations are still not accorded high
enough priority’ [5, 6]. We find this particular true for the
estimation of the AE. Although efficiency calibration has
been extensively treated by [2] or in the more general-
ized model by [7], there seems to be a lack of systematic
studies of the unavoidable influence of the uncertainty
of the AE estimate on the conclusions of qPCR exper-
iments based on formal statistical inference. The cur-
rent AE adjusted AAC,; methods do not account for the
uncertainty of the estimated AE and thus effectively
assumes the AE to be estimated with infinite pre-
cision. This assumption entails a systematic underes-
timation of the standard error of AAC, leading to
too narrow confidence intervals, decreased p-values,
and thereby increased type I error rates. If the AE
is poorly determined, this underestimation can drasti-
cally increase the standard error of AAC,; and similar
quantities.

Page 2 of 14

Recently, some effort has been devoted to studying error
propagation in qPCR [8-11]. Nordgaard et al. [8] stud-
ied error propagation primarily on the Cy-values includ-
ing the effect of the AE uncertainty. This study was,
however, statistically informal and made no attempt to
quantify the effect on the AAC, and inference hereof.
Furthermore, they [8] considered AE estimation from the
amplification curve (thus for each well) and not from
separate dilution experiments. Tellinghuisen and Speiss
[9-11] stressed and discussed the importance and neg-
ative impact of improper error handling, including AE
estimation, although again with emphasis on determining
C4-values and the florescence level at the hypothetical
cycle zero using different methods. In this paper, we
explicitly discuss only the AE estimation from dilution
curves, which assumes a constant AE across certain genes.
While this assumption has been contested and alter-
natives by branching processes suggested [12—15], the
problem still exist as AE estimates from individual ampli-
fication curves also have an associated error which affect
all ‘down-steam’ estimated quantities and inference. The
numerous estimated well-specific AEs arguably amplify
the problem as even more errors—one for each well—is
propagated further on.

The work by Svec et al. [16] also recently assessed
the impact of AE uncertainty as a function of the num-
ber of technical replicates at each concentration and the
qPCR instrument. They conclude that a minimum of
3—4 replicates at each concentration are needed and that
a significant inter qPCR instrument effect is present.
However, they do not gauge the effect of the number of
concentrations used—an important variable as additional
technical replicates rarely contribute with much informa-
tion to determine the AE. Nonetheless, Svec et al. [16] also
do not address the impact of AE uncertainty on formal
statistical inference on the AACy, as this paper intends.

Aims

Primarily, we aim to highlight the common problem of
disregarding the uncertainty of the AE estimate in statis-
tical inference of the AACy-value in qPCR experiments.
And we propose and benchmark different off-the-shelf
and novel solutions to this problem.

To this end, we employ a statistical model which allows
such formal inference. This covers statistical model for-
mulation, confidence intervals, hypothesis testing, and
power calculation, with special emphasis on false positive
rates. Simultaneous estimation of the uncertainty of the
AE estimate and mean C,-values by linear mixed effects
models (LMM), which allows a more appropriate han-
dling of the technical and sample errors, is described. We
investigate the use of the statistical delta method, Monte
Carlo integration, or bootstrapping to correctly perform
inference on the value of AAC,.
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Note two important observations: First, the problem
exists for all statistical models and methods which incor-
rectly disregard the uncertainty of the AE estimate and
is not limited to LMMs. Secondly, the problem exists not
only for AACy-values, but also all similar quantities, e.g.
AC, and Cy, and the statistical inferences based on these.

The idea of using LMMs for qPCR experiments is
not new [17-21]. For example, [17] and [18] have used
mixed effects modeling to identify candidate normaliz-
ing genes. The work by [19] applied the related general-
ized estimation equations to handle intra and inter group
variation. However, the usage of LMMs combined with
the statistical delta method, Monte Carlo integration, or
bootstrapping to handle uncertainty stemming from the
efficiency estimation seems to be novel and provides a
general statistical framework for qPCR experiments and
may be considered an extension of the strategy by [7].
Others use the mixed models primarily for the C;-value
estimation [20, 21].

We demonstrate that considering the uncertainty of
the AE is, unsurprisingly, highly important when the AE
is determined with inadequate precision and vice versa.
We do so by three application examples and a simula-
tion experiment. In the first two applications, the con-
sideration of the AE uncertainty is largely unimportant
for AAC, inference due to a large number of dilution
steps and well-determined AE. In the last application, we
see that the AE uncertainties have a drastically differ-
ent impact on AAC, inference. In a simulation study, we
show that the methods proposed indeed control the false
positive rate better than the conventional approach and
provide further insight into the problem.

In the first application, we also verify that multi-
ple myeloma cancer cell lines differentially express the
MGST1 gene depending on the abundance of culture ini-
tiating cells. In the second application, the approaches
are also used to design and analyze a study which results
turned out to support the hypothesis of [22] that miRNA-
127 is differentially expressed between testicular and
nodal DLBCL.

Methods

Observational model

In order to approximate the standard error of the AE
adjusted AAC,; we model the amplification process in the
following way

Fe, = kNo(2)“, 1)

where Fc, is the fluorescence measurement at the C,’th
cycle, k is a sample-specific proportionality constant, Np
is the number of transcripts of interest in the initial sam-
ple before amplification, and 2¢ is the AE from which « is
interpreted as the percentage growth on the log scale. In
practice, the transcript abundance level is determined by
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the cycle C, for which a given fluorescence measurement
Fc, is reached. Please note, by sample-specific we mean
inter sample variations, like pipetting error, which should
be accounted for by the reference genes. We rearrange (1)
and notice that C; can be expressed as «C,; = log, Fc, —
log, ¥ Np. In order to estimate the relative amount of tar-
get (tgt) gene transcripts between case and control (ctrl)
samples, we assume the amount of the reference (ref)
gene template is the same in both the case and the con-
trol, Noyefcase = Norefctrl, and that the AE only vary
between the target and reference gene. We then arrive at
the following expression for the log,-fold change of the
target gene template between case and controls:

No,t

,tgt,case

10g2 Novor ot = logz KcaseNO,tgt,case - 10g2 KkcaseNQ ref,case
0,tgt,ctrl

- 1082 KctrlNO,tgt,ctrl + 10g2 KctrlNO,ref,ctrl

== { (Oltgth,tgt,case — ayefC, ,ref,case)

— (atgtc Ltgtetrl — orefC ,ref,ctrl)} ,

assuming that the C;-values have been determined by a
common florescence level Fc,. This method of estimat-
ing the log relative abundance between case and controls
is often referred to as the AAC,-method [23], after the
double difference appearing in the expression:

AAC, = (atgtc ,tgt,case_‘)lrefC ,ref,case)
- (atgtc ,tgt,ctrl_arefc ,ref,ctrl) .

(2)
Thus we have 2742C4 as the relative abundance of the
original target transcript corrected for the AE.

Statistical model

We study the problematic aspects of ignoring the uncer-
tainty of the AE estimate. Note, however, that this prob-
lem persists for all statistical models and methods which
naively ‘plug-in’ the AE estimate from dilution curves into
formulae concerning the AAC,.

For ease of notation we use the abbreviations i €
{tgt,ref} for gene types target and reference; j €
{case, ctr], std} for sample types case, control, and stan-
dard curve; s € {1,...,n;} for samples in the ij'th
group; and k € {0,...,Kjs} for dilution steps for each
sample. To estimate AAC, of (2), estimates of «; are
needed. A popular way of estimating the AE is by ordi-
nary linear regression. Le. by regressing C,; against a
series of increasing values 0 = x; < < XK,
defined by Nojx = No;27%, and naively plugging
@; into (2) and thus disregarding its uncertainty. Here,
k denotes the dilution step and x; the number of 2-
fold dilutions (e.g. x;1 = 1 means the first dilution
step halves the original concentration). The Cg;-values
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and ¢; can then be estimated simultaneously when formu-
lated as a LMM [24];

Cq,ijsk = pij + Ajs + vixr + €ijsks (3)
where p;; is the group means, Aj; is a random effect from

sample s under the j’th sample type, and y; = o, s the
inverse log,-AE. That is,

1
AE; = 2% = 2%,
The random effects A of (3) are N/ (0, ag)—distributed

and the error terms € are independent and N (0, 012)-

distributed with a sample type specific variance o?. The
random effects account for the paired samples across
tgt/ref for each j. LMMs provide a more correct quan-
tification of the sources of variation and thereby a more
correct estimate of the uncertainty of 11;; and their derived
quantities.

In one application we shall relax the assumption that the
AE is independent of j and consider group-specific AEs
ajj = yi/-_l.

Although, variation due to technical replicates should be
modeled in (3) as an additional random effect term, we
average out technical replicates for simplicity. For further
simplicity of this paper, we refrained from using multiple
reference genes simultaneously in the AAC, estimation
although our the framework and methods easily extends
to this case.

Inference for AACq by the delta method and Monte Carlo
integration

We first consider hypothesis testing and confidence inter-
vals for AAC, by the statistical delta method. Let the
maximum likelihood estimates of the fixed effects

T
0= (Mtgt,case’ Mtgt,ctrls Yegts> Mref,cases Mref,ctrls )/ref)

be denoted by § = (ﬁtgt,case) lltgt,ctrl’ ?tgt: fref,cases Mref,ctrls
?ref)—r. We wish to test the hypothesis Hy : ¢(#) = 0, where
¢ is the continuously differentiable function of the fixed
effects given by

c(0) = [(Mtgt,caseytgtl - Mref,case)’rgg)
(4)
- (Mtgt,ctrl Vtgtl - /Lref,ctrl)/r;fl)} .

The main task of this paper is to approximate the stan-
dard error of c(@) and thereby account for the uncertainty
of AAC,. That is, the standard error,

se(f) = ,/Var[c(é)], (5)

is of central interest. The standard error is used in the
statistic for testing Hy given by £ = ¢(0)/se(#). From a first
order Taylor expansion of ¢ around 6,

() ~ c(0) + V@) (0 —0),
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where Var[@] is the variance-covariance matrix and Vc¢(0)
is the gradient vector, the variance can be obtained by

Var[c(@)] ~ Vc(O)TVar[é] V().

Notice, this expression coincides with the formula for
error propagation in Tellinghuisen and Speiss ([10], p. 95).
Hence we approximate ¢ by

0

t (6)

\/ V(@) TVar[0] Ve(8) '

According to ([24], Section 2.4.2), t is approximately ¢-
distributed with n degrees of freedom. The degrees of
freedom of multilevel mixed effects models are non-trivial
to obtain in general. We do not pursue this further and
restrict ourselves to the case of balanced experimental
designs where 7 is obtained relatively straight-forwardly.

On the basis of (6), an approximate (1 — «)100 %
confidence interval of ¢(#) can then be given by

(@) £ty /2,,7\/ V(@) TVar[d] Ve(d).

Likewise, p-values can be obtained by computing
P(|t| > T) where T is t-distributed with n degrees of
freedom.

Alternatively to (6), the variance Var[c(@)] can be eval-
uated by Monte Carlo integration. One way is to simulate
a large number N of parameters 61, ...,0y from a mul-
tivariate normal distribution using the estimated param-
eters Ng (9,Var[é]) and compute the sample variance of
c(01),...,¢c(0n).

Both maximum likelihood (ML) and restricted maxi-
mum likelihood estimation (REML) of LMMs is imple-
mented in the R-packages 1me4 and nlme [24, 25]. The
packages readily provides the estimate 0 and Var[8] and
we use these in the construction of test and confidence
intervals for the AAC; as described above. The needed
gradient in (6) is computed straight-forwardly from (4).

We note that the division by y; in (4) is problematic as ;
is normally distributed and values near zero can increase
the variance dramatic. In practice, this is only problematic
if the standard error of p; is sufficiently large. One way to
solve this problem is to use the log, concentration as the
response and the Cy-values as the explanatory variables
in a regression model of the standard curve to estimate
a; directly. This approach is not without conceptual prob-
lems as this puts the errors on the explanatory variables.
To this end, note that the hypothesis Hy : ytgtyrefc(é) =0,
can be equivalently tested for which the standard error of
the test-statistic can be worked out exactly.

If ytgtl and yrgfl are assumed to be one (or otherwise
known) then (4) becomes a simple linear hypothesis for
which the standard error is easily calculated. This cor-
responds to leaving out the terms in (3) involving these
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parameters and thus ignoring dilution data. If ytgtl =
)/rgfl = 1 is assumed, we shall refer to the obtained esti-
mate as the naive LMM. If ytgtl and yrzfl are assumed
known (i.e. disregarding the standard error hereof) we
refer to the obtained estimate as the efficiency corrected
(EC) estimate. The estimate where the uncertainty of the
AE is considered is referred to as efficiency corrected and
variance adjusted by either the delta method (EC&VA1)
or Monte Carlo integration (EC&VA?2).

Inference for AACg by the bootstrap method

We now consider hypothesis testing and confidence
intervals for AAC, by bootstrapping as an alternative
approach. The bootstrap, which avoids calculating gra-
dients, is often cited to perform better in small sample
situations [26].

The basic idea of the bootstrap is that inference on
AAC, can be conducted by re-sampling the sample data
with replacement to obtain an approximate sampling dis-
tribution of the statistic and thereby its properties. In
the usual qPCR setup with paired samples and dilution
data, straight-forward bootstrapping will quickly fail. We
propose non-parametric block bootstrap samples for the
case-control data generated by sampling matched pairs
of tgt/ref genes with replacement for cases and con-
trols, respectively. However, as we have only got a single
observation for each dilution step we chose to re-sample
residuals from a simple linear regression model and sub-
sequently adding the residuals to the fitted values from
the linear regression. Hence the B bootstrapped datasets
consists of the re-sampled matched pairs and the resid-
ual bootstrapped standard curve. For each dataset, §; =
AACq(l),...,SB = AACq(B) are computed to obtain
the bootstrap distribution from which confidence inter-
vals and p-values can be obtained. The standard error of
AACy is estimated by the sample standard deviation of
the bootstrap distribution. A (1 — «)100 % confidence
interval can be computed as (g(a/z),g(l_a /2)) where e.g.
3(0(/2) denotes the «/2-percentile of 31, e 33. The p-value
for the null hypothesis of § = 0 is computed by

1+ 30, 1§ < 0]

2min(mw,1 — w)where m =
B+1

While the bootstrap is an intuitive and excellent method
for estimating the standard error, it quickly becomes com-
putationally heavy. The rather complicated designs of
qPCR experiments with paired samples, dilution data,
and other random effects also makes the bootstrap less
attractive as good bootstrap sampling schemes are hard to
produce.

Alternatively, parametric bootstrap can be used by sim-
ulating datasets from the fitted model. Here, both new
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random effects and noise terms are realized and added to
the fitted values to generate new datasets.

Re-sampling methods for qPCR data have previously
been proposed by [27] to infer the relative expression
directly by permutation testing. Unlike the permutation
testing of [27], the bootstrap is here used to estimate the
mean and standard error of AAC,; and not directly test
the stated hypothesis. The bootstrap approach suggested
here also allows for constructing confidence intervals.

Applications

We applied the described approaches to two qPCR valida-
tion experiments regarding culture initiating cells (CICs)
in multiple myeloma (MM) and non-coding microRNAs
in diffuse large B-cell lymphoma (DLBCL). In both experi-
ments, the C;-values were extracted for both the reference
and target transcripts with automatic baseline and thresh-
old selection [28]. We also illustrate the method on a
public available qPCR dataset concerning the differen-
tial gene expression in arabidopsis thaliana grown under
different conditions. In order to gauge the performance
of the methods we subsequently performed a simulation
study.

CIC study

Introduction

A cell is culture initiating if it can initiate a sustained
production of cells when cultured in vitro. The viability
potential of a cell population can be assessed by mea-
suring the number of culture initiating cells (CICs). This
number can be estimated by a dilution experiment where
cells are seeded in decreasing numbers. The ratio of CICs
can then be estimated by e.g. Poisson regression [29].
CICs are of particular interest in cancer research as can-
cers with high culture initiating potential seemingly have
stem cell like properties making them resistant towards
chemotherapy [30].

In search for genes associated with a high culture ini-
tiating potential in MM we made limiting dilution exper-
iments of 14 MM cell lines and divided them into 7 cell
lines with low and 7 cell lines with high culture initiat-
ing potential. Gene expression profiling by microarrays
identified genes MGSTI and MMSET to be differentially
expressed between cell lines with high and low abundance
of CICs. As gene expression detection by microarrays can
be hampered by high false positive rates, the purpose of
this experiment was to validate the findings of the asso-
ciation of MGST1 and MMSET with culture initiating
potential by qPCR.

Sample and data preparation

For this, 8 MM cell lines (AMO-1, KMM-1, KMS-11,
KMS-12-PE, KMS-12-BM, MOLP-8, L-363, RPMI-8226)
with > 10 % CICs, and 8 MM cell lines (ANBL-1,
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KAS-6-1, LP-1, MOLP-2, NCI-H929, OPM-2, SK-MM-
2, U-266) with < 1 % CICs were used. The fraction of
CICs was determined by the limiting dilution method,
see [29]. Total RNA was isolated from frozen cell cul-
ture pellets, using a combined method of Trizol (Invit-
rogen) and Mirvana spin columns (Ambion). Isolated
RNA was reversed transcribed into complementary DNA
(cDNA) synthesis using SuperScript III First-Strand Syn-
thesis Supermix (Invitrogen). As input into the total
cDNA synthesis of 250 ng total RNA was used. Equal
amounts of random hexamers and oligo(dT) were used
as primers. Quantitative real-time reverse transcriptase
polymerase chain reaction was performed on a Mx3000p
qPCR system (Agilent Technologies/Stratgene) using the
TagMan UniversalPCR Master Mix, No AmpErase UNG,
and TagMan gene expression Assays (Applied Biosys-
tems). The following TagMan Gene Expression Assays
were used (Assay ID numbers in parentheses): MGST1
(Hs00220393_m1), MMSET (Hs00983716_m1). The two
reference genes beta-actin (ACTB) and GAPDH were used
as endogenous controls, assay IDs 4333762-0912030 and
4333764-1111036, respectively. For each target and refer-
ence transcripts a standard curve based on seven 2-fold
dilutions was constructed on a reference sample consist-
ing of material from the AMO-1 cell line.

DLBCL study

Introduction

The association between oncogenesis and micro RNAs
(miRNAs), short non-coding RNA transcripts with reg-
ulatory capabilities, has recently prompted an immense
research activity. The possibility to change treatment
strategies by transfecting antisense oligonucleotide to
control abnormally up-regulated miRNAs in malignant
tissue is of particular interest [31]. In that respect up-
regulated miR-127 and miR-143 in testicular DLBCL have
shown treatment changing potential [22]. However, as the
number of screened miRNAs was high and the sample
size was low in Robertus et al’s work invoking high risk
of false discoveries we set out to validate the differen-
tial expression of miR-127 and miR-143 in tissues from
our own laboratory using our improved qPCR analysis
workflow.

Sample and data preparation

For this study, DLBCL samples were collected from 8 tes-
ticular (case) and 8 nodal (control) paraffin embedded
lymphomas at Aalborg University Hospital. The lym-
phoma tissues were collected during the diagnostic pro-
cedure in accordance with the research protocol accepted
by the Health Research Ethics Committee for North
Denmark Region (Approval N-20100059). Total RNA was
isolated using a combined method of Trizol (Invitrogen)
and Mirvana spin columns (Ambion). An amount of 10 ng
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total RNA was synthesized into first strand cDNA in a
15 pL reaction using TagMan MicroRNA Reverse Tran-
scription Kit (Applied Biosystems) according to the man-
ufactures instruction. In total 1.33 uL ¢cDNA was used as
template in the real time PCR amplification performed by
Mx3000p QPCR system (Agilent Technologies/Stratgene)
with sequence specific TagMan primers (Applied Biosys-
tems). As reference transcripts we chose RNU-6B and
RNU-24, which were less variable and equally expressed
across nodal and extra-nodal samples among a larger list
of candidate reference genes. For each target and reference
transcripts a standard curve based on seven 2-fold dilu-
tions was constructed on a reference sample consisting of
pooled material from all 16 lymphomas.

Arabidopsis thaliana study

Introduction

In order to illustrate the effect of applying variance
approximations in a dataset with a limited number of
dilution steps and samples we considered the arabidopsis
thaliana dataset published by [7]. The dataset contains one
gene of interest, MT7, potentially differentially expressed
under two growth conditions of the plant arabidopsis
thaliana and two reference genes ubiquitin (JBQ) and
tublin.

Sample and data preparation

The arabidopsis thaliana plant growth, RNA extraction,
and qPCR experiments were carried out as described in
[32]. The cDNA was diluted into 1-to-4 and 1-to-16 serial
dilutions. Real-time PCR experiments was performed in
duplicates for each concentration [7].

Due to the study design, we naturally fitted estimation
efficiencies y;; = o ! for each group. Because of the few
samples we omitted the, in this case, meaningless random
sample effect of the LMM.

Simulation study

In order to properly benchmark statistical test proce-
dures one needs to have an idea of the false positive rate
(FPR), or type I error rate, as well as the true positive rate
(TPR), or sensitivity. As ground truth is usually not avail-
able in non-synthetic data, we use simulation experiments
to determine the error rates of the discussed statistical
procedures.

In our setting, the FPR of a statistical test is the proba-
bility that the test incorrectly will declare a result statisti-
cally significant given a vanishing effect size or difference
of ¢c(f) = 0 between case and controls; i.e. FPR =
P(|t| > ti—aj2,4lc() = 0). On the other hand the TPR
of the statistical test is the probability that the test will
correctly declare a result statistically significant given an
non-zero effect size § = ¢(0) between case and controls;
Le.TPR = P (|t| > t1—a/2,ylc(0) = §).
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A straightforward way to obtain an estimate of the TPR
is to simulate a large number n of datasets under the
alternative hypothesis of ¢(#) = 4, fit the model for
each dataset, and compute ¢-values 1, .. ., t,. From these
t-scores the TPR can estimated by

1<
TPR = — Y 1t > tioayanle®) = 6],
i=1

where 1[ - ] is the indicator function. Hence, the esti-
mated TPR is the fraction of tests correctly declared
significant.

Likewise, an estimate of the FPR is obtained by simulat-
ing n datasets under the null hypothesis of ¢(¢) = 0 and
obtaining t-values ¢, . . ., t, from which FPR is estimated
by

_ 1
FPR = — > 1 [1til > t1-a/2lc(®) = 0],
i=1

i.e. the fraction of tests incorrectly declared significant.

Simulating under the log-linear statistical model
described above, we estimate the FPR and the TPR for
each discussed method under different choices of sam-
ple sizes and number of dilutions whilst fixing the size
of the sample and experimental variations. These con-
stant sample and experimental variations corresponds to
homoscedastic errors on the log-scale. No technical repli-
cations are simulated.

Results

CIC study

The C;-values and dilution curves for the CIC study
are depicted in Fig. 1 panels a—b, respectively. The sim-
ple linear regressions show well-determined standard
curves with small standard errors on the estimate of the
slopes.

The values of the considered estimators for AAC, are
seen in Table 1. The table also shows results of tests
for difference in gene expression assessed by the AAC,
for both target genes MGST1 and MMSET normalized
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to each of the reference genes GAPDH and ACTB. We
used four different methods to estimate and perform
inference: (1) EC: Efficiency corrected LMM estimate
ignoring the uncertainty of the efficiency estimates. (2)
EC&VAL1: EC and variance adjusted LMM estimate using
a first order approximation. (3) EC&VA2: EC and variance
adjusted LMM estimate using Monte Carlo integration.
(4) Bootstrap: Estimate by the bootstrap described in
Section “Inference for AAC, by the bootstrap method”
fitting the LMM and using the EC estimate.

Consider the first section of Table 1 where tgt MGST1 is
normalized against the reference GAPDH. The tests for a
vanishing A AC, are all highly significant with comparable
95 % Cls. As expected, the efficiency corrected estimates
are unchanged due to the variance adjustment, and only
the standard deviation of the estimate is increased. The
increase of the standard error is very small resulting in
small but unimportant increases of the absolute ¢- and
p-values. The results remain significant for the MGST1
gene. Very similar results are obtained if ACTB is used
as reference. In conclusion, there is good evidence that
MGST1 is differentially expressed between cell lines with
high and low abundance of CICs.

For the target gene MMSET normalized with respect
to both reference genes, all estimates are not significantly
different from zero. Again, the various methods all agree
and no substantial inter-method differences are seen and
we find no evidence for differential expression of MMSET
between cell lines with high and low abundance of CICs.

In all instances, the bootstrap distribution mean agree
well with the estimates obtained using the delta or Monte
Carlo methods while it seems to provide a larger stan-
dard error. This tendency have one or more probable
explanations. The first order delta method and Monte
Carlo approximations may underestimate the standard
error and the bootstrap, corresponding to a higher order
method, more correctly quantify it. More likely, the data
deviate slightly from the model assumptions and the boot-
strap is sensitive to this slight misspecification.

We see that the large number of dilution steps, as rec-
ommended and expected, ensures a low impact of the AE
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Fig. 1 Overview of CIC experiment data. a Raw Cg-values for different cell lines (samples) for each gene type and sample type. The point type and
colour differentiates the different gene types. b Dilution data for reference genes (ACTB, GAPDH) and target genes (MGST1, MMSET)
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Table 1 CIC data: Method comparison for estimating the A ACg-value
Estimate se t-value df p-value LCL UcL

MGST1 vs GAPDH

EC -862 162 -531 21 292-107° -12 -524

EC&VAT -8.62 1.66 -5.18 21 389.107° -12.1 -5.16

EC&VA2 -8.62 1.67 -5.17 21 404-107° -12.1 -5.15

Bootstrap -8.66 2.06 1.00-1073 =125 -441
MGST1 vs ACTB

EC -8.98 1.61 =557 21 157-107° -123 -5.63

EC&VAT -8.98 1.65 -545 21 208-107° -124 -5.56

EC&VA2 -8.98 1.65 -545 21 2.10-107° -124 -5.55

Bootstrap -8.98 2.09 1.00-1073 -12.7 -4.48
MMSET vs GAPDH

EC 0.679 0.585 1.16 21 2.59.107" -0.538 19

ECRVA1 0.679 0.587 1.16 21 260-107" -0.541 19

EC&VA2 0.679 0.589 1.15 21 262107 -0.545 1.9

Bootstrap 0.688 0.678 3.12-107" -0.656 2
MMSET vs ACTB

EC 0318 0.962 0.331 21 744.107" -1.68 2.32

EC&VAT 0318 0.962 0.331 21 744.107" -1.68 2.32

EC&VA2 0318 0.964 033 21 745.107" -1.69 2.32

Bootstrap 0.342 0.987 7.05-107" -1.68 2.13

EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VAT EC and variance adjusted LMM estimate using the delta method. EC&VA2 EC
and variance adjusted LMM estimate using Monte Carlo integration. Bootstrap estimate by the bootstrap described in Section “Inference for A ACy by the bootstrap method”
fitting the LMM and using the EC estimate. Bootstrap shows the mean and standard deviation of 2000 bootstrap samples using the EC estimate. The last two columns show

the 95 % lower and upper confidence interval limits

on the standard error and thus on the inference of the
AAC,.

DLBCL study

The Cj;-values and dilution curves for the DLBCL study
are depicted in Fig. 2, panels a—b, respectively. Analogous
to the previous section, the differences in gene expressions
assessed by the AAC; for the target genes miR-127 and
miR-143 with respect to each reference gene rnu6b and
rnu24 were estimated using the four different methods.

Again 2000 bootstrapped samples were used. The results
are seen in Table 2.

We notice the efficiency corrected estimates are exactly
equal with and without variance adjustment, while the
standard deviation of the estimate and the p-values are
higher for the adjusted values as expected. The size of the
increase is again undramatic hinting at well determined
AE using the dilution curves.

For all combinations of reference genes the estimates for
miR-127 are significantly different from zero at the usual
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Fig. 2 Overview of DLBCL testis data. a Raw Cy-values for different patient samples for each gene type and sample type. The point type and colour
differentiates the different gene types. b Dilution data for reference genes (RNU-24, RNU-6B) and target genes (miR-127, miR-143)
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Table 2 DLBCL data: Method comparison for estimating the AACy-value

Estimate se t-value df p-value LCL ucL
mir127 vs ruéb
EC 267 113 2.37 22 2681072 0336 5.01
EC&VAT 267 113 237 22 2711072 0.331 5.01
EC&RVA2 267 113 2.36 22 2751072 0325 5.02
Bootstrap 268 1.05 1.00-1073 0.876 4.82
mir127 vs ru24
EC 2.38 1.08 22 22 3871072 0.136 4.63
EC&VAT 2.38 1.09 2.19 22 391.1072 0.13 4.64
EC&VA2 238 1.09 2.19 22 3941072 0.126 4.64
Bootstrap 242 118 1.00- 1072 0416 5.02
mir143 vs ru6b
EC 1.17 0.846 1.38 22 182-1071 -0.589 292
ECRVA1 1.17 0.846 1.38 22 1821071 -0.59 292
EC&VA2 117 0.847 137 22 183-107" -0.592 292
Bootstrap 1.15 0.794 144.107" -0.341 27
mir143 vs ru24
EC 0.878 0.81 1.08 22 290-107" -0.801 2.56
EC&VAT 0.878 0.81 1.08 22 290-107" -0.802 2.56
ECRVA2 0.878 0.811 1.08 22 290-107" -0.803 2.56
Bootstrap 0.897 0.822 2671071 -0.603 2.58

EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VAT EC and variance adjusted LMM estimate using the delta method. EC&VA2 EC
and variance adjusted LMM estimate using Monte Carlo integration. Bootstrap Estimate by the bootstrap described in Section “Inference for AACy by the bootstrap method”
fitting the LMM and using the EC estimate. Bootstrap shows the mean and standard deviation of 4 bootstrap samples using the EC estimate. The last two columns show the

95 % lower and upper confidence interval limits

5 % significant level, but not at the 1 % significance level.
The miR-143 estimates are not significantly different from
zero. Despite the very small increase in standard error, the
p-values increase at the second digit.

The bootstrap method provides a standard deviation
similar to the delta method and Monte Carlo integration
for both miR-127 and miR-143.

Regarding the biological interest, we conclude there is
evidence for a difference in miR-127 expression between
testicular and nodal DLBCL whilst the data is not

compatible with difference in miR-143 expression. While
the AE estimate had no influence in these cases a change
in significance is easily imagined in other cases.

Arabidopsis thaliana data
The Cj-values and dilution data for the arabidopsis
thaliana data are shown in Fig. 3.

The estimated difference in gene expression between
case and control of the target gene MT7 normalized to
either reference (Tublin or UBQ) is seen in Table 3. The
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Fig. 3 Overview of Arabidopsis thaliana data [7]. C4-values against the dilution step for case and control samples. Dilution data are present for both
the target (MT7) and reference genes (Tublin, UBQ)
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Table 3 Arabidopsis thaliana data [7]: Method comparison for estimating the A ACg-value

Estimate se t-value df p-value LCL UcCL
MT7 vs Tublin
EC -4.374 04319 -10.13 4 5353.107% -5.573 -3.174
EC&VAT -4.374 3.788 -1.155 4 31261071 -14.89 6.144
MT7 vs UBQ
EC -3.381 0137 -24.67 4 1601-107° -3.761 -3
EC&VAT -3.381 1.351 -2.503 4 66581072 -7.132 0.3699

EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VAT EC and variance adjusted LMM estimate using the delta method. The last

two columns show the 952000 lower and upper confidence interval limits

table shows the efficiency corrected method with and
without variance adjustment by the delta method. In both
cases, we see a dramatic increase in the standard error,
p-values, and size of the confidence intervals. When using
variance adjustment there is no longer a highly statisti-
cal significant difference in MT7 expression between case
and ctrl growth conditions.

The results may be surprising at first sight when con-
sidering the relatively small standard errors of the slopes
in the simple linear regressions shown in Fig. 3. One
might imagine that the uncertainty of the AE is negligi-
ble and thus perform the usual analysis. However, we see
the contrary for several reasons. First, using only 3 dilu-
tions steps leaves very few degrees of freedom left in each
group as we are left with few samples and a high num-
ber of parameters to be estimated. Secondly, as dilution
curves are used for each group the four group-specific
AE estimates will all contribute to increasing the stan-
dard error of the AAC,. While this example was selected
as a worst-case scenario, it should illustrate that although
the standard curves are seemingly well determined, it is
hard to intuitively predetermine the combined effect on
the standard error of AAC,,.

We note here, that no pre-averaging of the technical
replicates for each concentration was done. Instead, the
technical replicates where modeled as a random effect.

Simulation study

First, we present results of a simulation study for a two-
sided test for the null hypothesis of a vanishing AAC, ata
5 % significance level. We simulated 2000 datasets under
both the null and alternative hypothesis with 6 samples in
each case and control group and standard curves with 6
dilution steps. The effect size under the alternative was set
to § = 10/9. The sample and experimental standard devi-
ations were set to os = 1 and 0 = 1, respectively. The
AE for the target and reference genes were set to 0.80 and
0.95, respectively. The parameters were primarily chosen
to conveniently yield estimates and error rates on a sensi-
ble scale whilst secondarily being comparable to estimated
quantities in the applications.

The four discussed methods were applied to the 2 x 2000
datasets and the p-value testing the null hypothesis were
computed. The results of these tests are summarized in
Table 4 from which the FPR and TPR can be computed
at the 5 % cutoff. From Table 4, we see the estimated
FPRs are 0.073, 0.053, and 0.083 for the efficiency cor-
rected LMM (EC), the efficiency corrected LMM with
variance adjustment using the delta method (EC&VAL),
and the bootstrap, respectively. We omitted EC&VA by
Monte Carlo integration here due to the computational
cost and the similar results with EC&VAL1 in the previ-
ous. As expected, the EC method does not control the
FPR at the 5 %-level. The variance adjusted estimator is
consistent with controlling the FPR at the 5 % level. By
construction, the variance adjusted will always perform at
least as good as the EC in terms of FPR. Surprisingly, the
bootstrap has the worst performance in terms of FPR.

Secondly, the TPR are estimated to be 0.3825, 0.3175,
0.366 for three methods EC, EC&VAIL, Bootstr., respec-
tively. As expected, we notice that an improved FPR comes
a the cost of a decreased TPR for a given statistical
procedure.

The above simulations were repeated for sample sizes
4 or 8 in both case and control groups in combination
with 4 or 8 dilution steps with the same simulation param-
eters. Figure 4 shows the performance of the methods
in terms of FPR and TPR. Each panel corresponds to a
given number of samples and dilutions. In each panel
the p-value cut-off is varied between 0.01, 0.05, and 0.1.

Table 4 Contingency tables for the different estimators for at
5 % p-value threshold

EC EC&VA1 Bootstr.
Ho Ha Ho Ha Ho Ha
p-values
p > 0.05 1854 1235 1894 1365 1834 1268
p < 0.05 146 765 106 635 166 732

The used estimators are the LMM with efficiency correction (EC), the LMM with EC
and variance adjustment (EC&VA), and the bootstrapped LMM approach
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Overall, we see that the EC&VA estimate is the only pro-
cedure consistent with controlling the FPR at the nominal
chosen significance level. Likewise, for many dilutions,
the difference between the EC and EC&VA procedures
diminish as the uncertainty of the AE is relatively low. As
expected a decrease in FPR corresponds to a decrease in
TPR.

To gauge when the standard error of (5) is determined
with adequate precision, we simulated 2 x 2000 datasets
and computed the mean standard error of the AAC for
the EC and EC&VA procedures as a function of the num-
ber of dilutions and samples. We varied the number of
dilutions in the range 4-9 for a number of samples in
the range 4—10 with the same settings as above. Figure 5
shows these results. As expected, increasing the num-
ber of samples or the number of dilutions yield a smaller
standard error. Also unsurprising and as already seen in
the applications, the differences in the standard error for
the EC and EC&VA methods are very substantial for a

small number of dilutions and vanish as the number of
dilutions steps increase. The differences in the standard
error seems to be larger under the alternative than the
null hypothesis. Similar figures might also aid in design-
ing qPCR experiments and help determine if investing in
additional dilutions or samples is preferable—obviously
with properly chosen simulation parameters in the given
context.

Discussion and conclusion

The commonly used efficiency corrected A AC, and many
other approaches to the analysis of qPCR data disregards
the uncertainty of the estimated AE leading to increased
false positive rates. As qPCR experiments are often used
for validation this is highly undesirable. Our primary
approach based on the statistical delta-method to approx-
imate the variance of the efficiency adjusted AAC,, shows
that it is possible to perform statistical inference about
qPCR experiments whilst more properly accounting for
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the AE uncertainty. We stress that the problem is not
limited to the AAC, statistic, but all statistics that depend
on the AE.

In this paper, we focus on the widely used dilution curve
approach as it is complex enough to capture the most
important variations but also simple enough to be eas-
ily interpretable. This is probably also the reason dilution
curves, when carefully used, are still very popular in qPCR
experiments. However, this approach has been criticized
in the literature as it relies on a number of assumption
[12-15]. First, the dilution curve approach assumes the
AE to be constant up to the C;’th cycle. A way to check
this is to assess whether the dilution curves are reasonably
linear, as non-constant behaviour up to the C,'th cycle
in our dynamic range would cause the dilution curves to
level off. In our data examples, we do not see any viola-
tion of the linear behaviour. Secondly, one also assumes
the AE varies between wells. However, if we assume that
the actual reciprocal AE y,4 varies around a true recipro-
cal AE value y, by a random variation I', say, which could
be assumed to be Gaussian distributed with mean 0 and

variance alg one arrives at the following model for C;

Cy=u+( +T)No+e
= 11+ yNo + (¢ + T'Np)
———

error term

From this follows the proposed cycle dependent varia-
tion is captured by the error term in the LMM. We note,
however, due to the multiplication with Ny a variance het-
erogeneity could be present. We have therefore assessed
the LMMs by plotting the residuals against the fitted val-
ues and noticed no variance heterogeneity to be present.
In conclusion we find our model sufficient to capture the
variation for the problems we have at hand.

In practice, the approach was used to: (1) validate that
MGST1 is differentially expressed between MM cell lines
of high and low abundance of CICs, (2) analyze and study
the hypothesis that miRNA-127 is differentially expressed
between testicular and nodal DLBCL, and (3) illustrate the
effect of a small number of dilution steps.

In the latter application, we saw a dramatic increase
in the standard error of the estimate when the variance
approximation was introduced, potentially leading to a
change of significance for the presented dataset depend-
ing on the desired significance level. This illustrates the
importance of considering the AE uncertainty when con-
ducting AE correction of qPCR experiments.

Although not in the context of AAC, estimation,
Tellinghuisen and Speiss [10] concluded that uncertainty
as well as bias of the AE estimate substantially impacts
subsequent quantities. They highlight that some meth-
ods achieve very good performance as measured by the
low standard errors by tacitly assuming the AE known
and fixed to 2. This is an unsurprising consequence as
it is essentially the same as disregarding the AE uncer-
tainty. We also note, as seen in this paper, that a low
standard error in itself is not always a proper benchmark
of procedures.

Problems with uncertainty in AE estimates should be
handled by establishing well-estimated dilution curves as
argued elsewhere [6], however even in this case the pre-
sented method also allows for design guidelines for power
calculations and assessing the influence of the estimated
dilution curves.

It is also noteworthy that model based estimation of
the AAC; also allows for model checking by e.g. residual
plots.

Lastly, we note that the algorithm [28] we used for
threshold selection and Cj-value extraction in the CIC
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and DLBCL studies may not be optimal—cf. [9, 33], and
improvements by [34]—as it can be affected by the AE.

Nonetheless, this has no bearing on the stated problem
of this paper. The estimated standard error of AAC, is still
affected in a similar manner by the uncertainty of the AE
and thus too optimistic.

Despite the extensive use of qPCR, more statistical
research is needed to establish qPCR more firmly as a
gold standard to reliably quantify abundances of nucleic
acids. Researchers analyzing qPCR experiments need to
model their experiments in detail, e.g. via linear or non-
linear (mixed) models, as the propagation of uncertainty
needs to be carefully assessed and accounted for. This is
necessary for making valid inferences and upholding the
common statistical guarantees often erroneously assumed
to be automatically fulfilled. We recommend the conser-
vative and proper approach of always accounting for the
uncertainty of the AE.

Supplementary material and software

The statistical analysis were done using the programming
language R v3.2.3 [35] using 1me4. All data, R code,
LaTeX, and instructions for reproducing this present
paper and results are freely available at http://github.
org/AEBilgrau/effadj/ using knitr, an extension of
Sweave [36, 37]. Functionality from the packages Hmisc
[38], lattice (and latticeExtra) [39], epiR [40],
snowfall [41], and GMCM [42], were used for tables,
figures, FDR/TPR confidence intervals, parallel execu-
tion of simulations, and multivariate normal simulations,
respectively.
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