
SOFTWARE Open Access

SoftPanel: a website for grouping diseases
and related disorders for generation of
customized panels
Likun Wang1†, Cong Zhang1†, Johnathan Watkins2,3, Yan Jin1, Michael McNutt1 and Yuxin Yin1*

Abstract

Background: Targeted next-generation sequencing is playing an increasingly important role in biological research
and clinical diagnosis by allowing researchers to sequence high priority genes at much higher depths and at a
fraction of the cost of whole genome or exome sequencing. However, in designing the panel of genes to be
sequenced, investigators need to consider the tradeoff between the better sensitivity of a broad panel and the
higher specificity of a potentially more relevant panel. Although tools to prioritize candidate disease genes have
been developed, the great majority of these require prior knowledge and a set of seed genes as input, which is
only possible for diseases with a known genetic etiology.

Results: To meet the demands of both researchers and clinicians, we have developed a user-friendly website called
SoftPanel. This website is intended to serve users by allowing them to input a single disorder or a disorder group
and generate a panel of genes predicted to underlie the disorder of interest. Various methods of retrieval including
a keyword search, browsing of an arborized list of International Classification of Diseases, 10th revision (ICD-10)
codes or using disorder phenotypic similarities can be combined to define a group of disorders and the genes
known to be associated with them. Moreover, SoftPanel enables users to expand or refine a gene list by utilizing
several biological data resources. In addition to providing users with the facility to create a “hard” panel that
contains an exact gene list for targeted sequencing, SoftPanel also enables generation of a “soft” panel of genes,
which may be used to further filter a significantly altered set of genes identified through whole genome or whole
exome sequencing. The service and data provided by SoftPanel can be accessed at http://www.isb.pku.edu.cn/
SoftPanel/. A tutorial page is included for trying out sample data and interpreting results.

Conclusion: SoftPanel provides a convenient and powerful tool for creating a targeted panel of potential disease
genes while supporting different forms of input. SoftPanel may be utilized in both genomics research and
personalized medicine.
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Background
Deployment of next-generation sequencing is becoming
increasingly widespread in scientific research and clinical
settings. While whole genome and whole exome sequen-
cing have greatly aided our understanding of the mo-
lecular basis of disease, targeted sequencing of a panel of

genes offers a number of benefits over these approaches
[1, 2]. Chief among these is the issue of unsolicited find-
ings, which are results that are not directly relevant to
the initial reason for performing a diagnostic test. Such
scenarios may present a host of ethical issues, in particu-
lar in whole genome and whole exome sequencing. A
second advantage of the targeted sequencing approach is
that narrowing the region to be sequenced from the
whole genome to a select panel of genes can result in
marked savings of cost and time, while obtaining deeper
sequencing coverage with a larger number of samples.
Giving priority to genes that are potential causes of
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disease can thus help researchers design a targeted panel
that enables investigation of biological or clinical issues
both effectively and economically.
A number of approaches have been proposed to

prioritize candidate disease-associated genes [3–7].
Among these approaches, one of the most widely-used
concepts is the “guilt-by association” principle, which
suggests that genes with the same interaction partners
or same expression data most likely share the same bio-
logical function [8]. According to this general principle,
genes associated with the same or similar disorders tend
to have a higher probability of having similar functions,
as well as similar gene expressions and physical interac-
tions among gene products [9]. Therefore, starting from
a set of seed genes known to be related to a particular
disorder, candidate genes can be ranked according to
their functional similarity to these seed genes. A variety
of biological data sources are used to calculate the func-
tional similarities from existing studies, including
protein-protein interaction, functional pathways, gene
ontology and many others [10]. Based on the fact that
these different data sources are complementary in nature,
the integration of multiple data sources can improve the
coverage and accuracy of prioritization [11]. Most of these
approaches call for prior genetic knowledge of the disease
of interest in order for a set of seed genes to be submitted
as input. However, for a significant proportion of human
disorders, the genetic basis remains unknown [12]. More-
over, for clinicians with a limited knowledge of genetics
and molecular biology, the selection of an appropriate set
of seed genes can be a particularly daunting task.
Given the absence of a known genetic basis to many

human diseases, some gene prioritization tools have
been devised using the similarity of a disease’s phenotypic
profile to that of other diseases or text mining method-
ology [5, 13, 14]. Many human disorders are modular in
nature [15]. This means that the genetic mechanisms and
phenotypes observed in one disease may also be operative
in other diseases with a similar phenotype. Lage et al. in-
vestigated this modularity at the phenotypic level by text
mining and integrated the resultant phenotypic similarity
profiles with a protein-protein interaction (PPI) network
[16]. Wu and colleagues used the correlation between
phenotype similarity profiles and gene proximities in a
PPI network to quantify the association between a disease
and a gene [5]. The incorporation of phenotypic similarity
profiling improved the performance of these gene
prioritization methods. The most widely used dataset pro-
filing phenotypic similarity was published by Driel
et al.[17]. However, this dataset covers only 5080 diseases,
which is substantially fewer than the 7000 diseases listed
in the Online Mendelian Inheritance in Man (OMIM)
database, thus limiting the coverage and accuracy of the
methods that make use of the Driel et al. dataset [12].

In an attempt to overcome these limitations, we have
developed a clinically oriented candidate disease gene
prioritization tool called SoftPanel. Multiple retrieval
methods are supported and can be combined to help
users get a disorder group and a set of candidate genes,
with little or no prior genetic knowledge required. Due
to its familiarity to clinicians and the fact it reflects con-
nections between similar disorders and their underlying
genes, we used indices from the International Classifica-
tion of Diseases, 10th revision (ICD-10) to help identify
disorders of interest. Searching by keyword as well as
other advanced options were implemented by making
use of OMIM application programming interface (API)
functions. In addition, we measured the phenotypic simi-
larity between human disorders with the newly updated
OMIM database and attempted to improve its perform-
ance by comparing different approaches to weighting, as
well as by adding the parsing of the title portion rather
than just the textual description [17]. Various types of
data resources were integrated in our prioritization
method, including PPI networks, pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG),
the REACTOME and Gene Ontology (GO) databases,
as well as other functional gene annotations [18–20].
An online support vector machine (SVM) was applied
to identify genes that potentially underlie a given dis-
ease group by employing gene set enrichment analysis
(GSEA) of known disease-associated genes. The output
provided includes a list of potential disease-associated
genes ranked by significance.

Implementation
Retrieval strategies
The website provides an arborized ICD-10 index list for
selecting and grouping disorders. The corresponding rela-
tionship between ICD-10 index codes and OMIM record
numbers was derived mainly from the OMIM and Orpha-
net databases [21]. The data were manually checked and
added. A network of disorder similarities was used to find
disorders similar to the disorder of interest. Further details
regarding the construction of the disorder phenotype
similarity network are provided below. Searching for dis-
orders with specific keywords invokes the APIs provided
by the OMIM database resulting in an automatically
search and extraction keyword-matching disorders. Some
advanced search options are presented on this website.
First-time users of this function can register for an API
key for free on the OMIM database.

Construction of the phenotypic similarity matrix
The OMIM database contains more than 20,000 records,
each of which describes a gene or disorder. OMIM re-
cords are prefixed with one symbol out of a possible five,
with each symbol corresponding to a particular type of
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record. Only records prefixed with “#”, “%” and “none”
representing phenotypes of possible disease conditions
(rather than those linked to certain genes) were selected.
The text (TX) and clinical synopsis (CS) fields were then
used to construct textual sub-vectors, and the title field
(TI) was used to construct the title sub-vector. MetaMap
was used to map the concepts contained in biomedical
text to entries in the Unified Medical Language System
(UMLS) Metathesaurus (MTH) and Medical Subject
Headings (MeSH) [22]. Semantic types were thus re-
stricted to “anatomy”, “chemicals and drugs”, “disorders”,
“genes and molecular sequences”, and “physiology”. Before
parsing the title field, serial numbers or letters referring to
a subtype were discarded to maintain the main character-
istic of the disorders. Next, the textual sub-vector and title
sub-vector corresponding to one given record were added
together. Records that could not be mapped to any con-
cept in both the title and textual sections were eliminated
from further analysis. Concepts occurring in one record
only were also discarded in order to improve the perform-
ance of the similarity network and reduce calculation
time. To account for the generic applicability of certain
concepts, terms that appeared across a range of diverse
phenotypes but did not provide further information about
the phenotype described were manually removed; for
example, “disease”.
OMIM records with relatively long textual description

tend to contain more concepts. In an effort to correct
the differences among vectors caused by different
OMIM record lengths, we applied the following global
weighting to each concept:

Global weighting ¼ log2
N

nconcept

� �

where N is the total number of records, and nconcept is
the total number of records containing a specific
concept. We also defined local weighting as follows:

Local weighting ¼ 0:5þ rconcept
2� rmax

where rconcept is the frequency of a specific concept in a
record, and rmax is the frequency of the concepts appear-
ing most frequently in a record. Similarity was calculated
by finding the cosine of the angle between each pair of
record vectors. The comparative analysis of the different
approaches to weighting is discussed below in the Re-
sults section.

Preparation of benchmark datasets
To evaluate the performance of our similarity matrix,
two sets of OMIM record pairs that were known to
overlap with respect to phenotype were sought as our
benchmark datasets.

First, we employed the “Phenotypic Series” dataset,
which consists of a tabular view of the genetic hetero-
geneity of similar phenotypes across the genome com-
piled from the OMIM database. Each series collects all
the subtypes of a particular disorder, such that the sub-
types are phenotypically similar to each other with only
a few genetic or clinical distinctions. Two subtypes from
the same phenotypic series were considered phenotypic-
ally similar. Pairing of subtypes in this way resulted in
retrieval of a total of 26,618 disorder pairs.
To improve the robustness of our results, an alterna-

tive, previously described benchmark dataset referred to
as the “Linked OMIM Record Pairs” dataset, was also
used [16]. It leverages on those records that embed a ref-
erence to another record. For example, if the description
of record A references record B, this is quite probably a
result of the high phenotypic overlap between the two.
Such links between OMIM records were extracted and
restricted to those prefixed with “#” or “%” to yield
16,155 pairs of disorder records. To determine the
prevalence of false-positive pairs in this link-derived
dataset, 100 random pairs were extracted and manually
checked for phenotypic similarity. Of these 100 random
pairs, 82 pairs turned out to be true positives, that is,
were disorder pairs with actual phenotypic overlap.

Performance evaluation of phenotype similarity matrices
Receiver operating characteristic (ROC) curves were
used to evaluate the performance of phenotype similarity
matrices using the ROCR package in R [23]. If a record
pair in the similarity matrix was present in a given
benchmark dataset, we labeled that pairing as a true
positive, and the remainder in the matrix were consid-
ered false positives.

Gene set enrichment analysis
After identifying disorders with a similar phenotypic
profile, genes known to be associated with this grouping
of disorders are automatically extracted from the OMIM
database and used as input to GSEA. Two supporting
sub-databases are available to SoftPanel users for per-
forming online GSEA. The first sub-database combines
PPI data from the PINA, iRefIndex and STRING data-
bases [24–26]. All genes that can interact with a given
gene are treated as a gene set. Based on this gene set and
the original list of disease-associated genes, a p-value
is calculated with a one-sided Fisher's exact test. This
p-value is used to evaluate the likelihood of PPIs among
the gene of interest and the original disease-associated
genes. This test is performed on all other potentially asso-
ciated genes that were not included in the original gene
list. The second sub-database contains the gene set collec-
tions from the MSigDB database [27, 28]. MSigDB gene
sets are divided into several major collections, each of
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which contains gene sets generated from different re-
sources. GSEA is performed on all gene sets that belong
to user-selected collections. In this website, gene sets are
displayed and ordered by respective p-values for each
user-selected collection.

Prediction of underlying genes
After GSEA, a p-value can be assigned to a gene in
order to estimate the degree of PPI between this gene
and the original disease-associated genes. In addition, a
given gene may belong to several gene sets in a certain
MSigDB collection. Gene set enrichment p-values for
those gene sets that refer to the original disease-
associated gene list can be calculated as described above.
For a given MSigDB collection (such as all gene sets
from the KEGG database), the lowest GSEA p-value
among these gene sets (to which the given gene belongs)
is also assigned to this given gene. Under normal cir-
cumstances, GSEA is performed on several major collec-
tions. As such, several collection-based scores may be
assigned to a gene. All of these scores are then used as
the input for performing machine learning. The original
disease-associated genes are treated as the positive train-
ing set, and a certain number of genes that are not in
the original disease-associated gene list are randomly se-
lected as the negative training set. In practice, some
genes in the original disease-associated gene list do not
have significant interactions with other genes in this list,
and do not belong to significant gene sets. These genes
cannot provide useful information for machine learning,
and are therefore removed from the core gene list. To
ensure that the machine learning process is real-time

and carried out online, this website employs Support
Vector Machine in JavaScript (svmjs), which supports
arbitrary kernels.

Results
SoftPanel workflow
Researchers and clinicians frequently wish to investigate
a series of disorders, rather than a single disease. These
disorders may share similar phenotypes and thus be diffi-
cult to distinguish. Hence, in clinical practice, one effective
strategy is to package disorders with similar phenotypes
into a targeted sequencing panel. To facilitate this process,
we offer the SoftPanel website, which is used to group and
classify disorders with similar phenotypes in order to iden-
tify known and predicted disease-associated genes.
This website provides several options for grouping dis-

orders (Fig. 1). First, SoftPanel gives users the opportunity
to group disorders using ICD-10 indices. An arborized
ICD-10 index list is displayed on the website so that users
can select and group disorders by choosing the corre-
sponding ICD-10 indices. After one or more ICD-10 indi-
ces are selected, all OMIM numbers for disorders of this
class are extracted. The second option makes use of a dis-
order similarity matrix of 7995 diseases, which we con-
structed by employing text mining methods on records
from the OMIM database. Upon inputting the OMIM
number of a particular disorder, a list of similar disorders
is returned, and this list is ranked by similarity score. In
addition, the overlapping phenotype keywords for these
disorders are also displayed for reference. Third, users can
search for disorders by inputting specific keywords, which
in turn invokes the APIs provided by the OMIM database.

ICD-10 index
Retrieval by keywords
Phenotype similarity

Disorder 1
Disorder 3

Disorder 2

Manual
addition

Different types of evidence:
Protein-protein interaction;
GO term;
KEGG pathway;
...

Core genes GO gene set 1
Gene Set

Enrichment
Analysis

Unknown gene
Gene A
Gene B
Gene C

...

Score vector
( 0.02, 0, 0.1, ...)

( 0.1, 1, 1, ...)
( 0.5, 0.2, 0.04, ...)

...

Evid
en

ce
 N

mret
O
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PPI

SVM training

Rank list
Gene A
Gene C
...

Targeted panel
Gene 1
Gene 2
Gene A
...

Known causitive genes

Gene
identification

Known gene
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Gene 2
Gene 3

...

Score vector
( 0.01, 0.03, 1, ...)

( 1, 1, 1, ...)
( 0.5, 0.02, 0.01, ...)

...

Core gene

...

Fig. 1 Flow chart for this website. Users first define a group of disorders using phenotype keyword searches, disorder phenotype similarity
scoring, ICD-10 index specification, or manual editing. After determining a disorder group, known disease-associated genes are extracted from
the OMIM database automatically. Users can next perform gene set enrichment analysis (GSEA) on the extracted list of disease-associated genes.
Finally, an online supporting vector machine (SVM) is applied to refine the identification of genes that potentially underlie the disorder of interest

Wang et al. BMC Bioinformatics  (2016) 17:153 Page 4 of 9



Users can then select disorders of interest and add them
to the working group. All the above methods of retrieval
can be combined to either define a broader group of disor-
ders or refine disorders into more closely related sub-
groups. Once a group of disorders is generated, the genes
associated with these disorders are extracted and displayed
in a table. Users can manually add or delete genes from
this table as desired to form the original gene list.
Online GSEA is then performed based on two sup-

porting sub-databases, and use of the original gene list
as input. One sub-database integrates PPI data from the
PINA, iRefIndex and STRING databases, and covers
19,903 genes. The other sub-database contains seven
major gene collections from MSigDB. A p-value is thus
assigned to a gene in order to estimate the degree of PPI
or one of the seven types of functional similarities
between this gene of interest and the original disease-
associated genes. All of these scores are then used to
construct an eight-dimensional vector, which is used as
the input for performing machine learning. Support vector
machines were employed to produce the ranked list of
potential genes.

Construction and evaluation of the disorder phenotype
similarity matrix
We measured the similarities among 7995 human phe-
notypes recorded in the OMIM database. Metamap was
employed to parse the disorder record and link concepts
contained in the title and textual description to entries
in UMLS MTH and MeSH. The title of a record may

reveal the main characteristic of a disorder. In order to
group disorders with similar characteristics, the serial
numbers of subtypes for a particular disorder listed in
the title field were discarded before parsing. Addition of
the title portion of the records improved the performance
of our similarity matrix (see Additional file 1: Figure S1).
Next, the feature vectors were weighted and phenotypic
similarities between OMIM record pairs were quantified
by calculating the cosines of the angles between each pair
of record vectors.
In order to improve the performance of our method,

we explored different approaches to weighting and chose
the one with the best performance. Four sets of similar-
ity score matrices with different weightings (unweighted,
global weighting, local weighting, and global–local
weighting), were compared by ROC curves against the
two benchmark datasets (Phenotypic Series and Linked
OMIM Record Pair datasets). This ROC analysis revealed
that globally-weighted vectors outperformed other weight-
ing methods, showing the greatest concordance with our
reference datasets, and producing a significantly higher
area under the curve (AUC) (Fig. 2, Table 1 and
Additional file 2). As such, only global weighting was
employed in our SoftPanel similarity matrix.
We computed a ROC curve for our SoftPanel similar-

ity matrix (Table 1). The Phenotypic Series-defined pairs
and Linked OMIM Record Pairs were separately classi-
fied as true positives, while the rest were deemed false
positives. In both conditions, the AUC was high (0.996
against the Phenotypic Series and 0.985 against the

Fig. 2 ROC curves of phenotype similarity matrices with different methods of weighting. ROC analysis with the two benchmark datasets (a:
Phenotypic Series, b: Linked OMIM Record Pairs) showed that global weighting was superior to other forms of weighting. The range of false
positive rates was restricted to (0, 0.1) in order to highlight the differences between each curve more clearly
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Linked OMIM Record Pairs dataset), demonstrating that
our similarity matrix is able to distinguish between simi-
lar and dissimilar pairs of disorders. The majority of the
false positives possessed relatively low similarity scores
(most < 0.05). However, the actual false-negative and
false-positive rates may be even lower since not all rec-
ord pairs in the benchmark datasets are phenotypically
overlapped, and some positive pairs resemble each other
to only a limited extent, while there are some false
positives which actually have similar phenotypes but
for various reasons may not be recorded in the
benchmark datasets.
To test further the reliability of our similarity matrix,

all phenotypically overlapping record pairs in our simi-
larity matrix were divided into 10 intervals according to
their similarity scores. For each interval, we calculated
the fraction of record pairs that overlap with the true
positive dataset (see Additional file 3: Figure S2). The
positive correlation when evaluated against both bench-
mark datasets suggested that the higher the phenotypic

similarity score between two specific records measured
in our matrix, the higher the probability that these two
records were considered to have phenotypic overlap by
the OMIM curators. This analysis provided evidence for
the utility and reliability of the similarity score as a
measure of phenotypic overlap between two disorder
records.

Comparison with previous methods
To assess whether our approach was superior to that of
existing prioritization methods that integrate disease
phenotype similarity data, we downloaded the MimMi-
ner network matrix dataset [17] and compared it with a
SoftPanel similarity matrix using ROC curves against the
two benchmark datasets. In the first instance prior to
calibration, the matrices were restricted to those with
identical dimensions in order to enable a consistent
comparison. We found the SoftPanel similarity matrix
performed better than results from MimMiner (Fig. 3,
Table 2 and Additional file 2). To investigate the influ-
ence of an updated OMIM database on MimMiner, we
employed the tree structure of MeSH to parse records
from the newest OMIM database, using the concepts
from the anatomy and disease categories, and weighted
the vectors with the global–local weighting method as
described in MimMiner. Again, our approach outper-
formed the updated similarity matrix (designated as
MeSHTree) which was constructed with the newest ver-
sion of OMIM database just as the approach adopted by

Table 1 AUCs using matrices with different weightings and two
benchmark datasets

Unweighted Global Local Global–local

Phenotypic Series 0.983 0.996 0.976 0.995

Linked OMIM Record Pairs 0.945 0.985 0.923 0.982

Four sets of similarity score matrices with different weightings (unweighted,
global weighting, local weighting, and global–local weighting) are shown. The
method applying global weighting is used in SoftPanel

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

SoftPanel
MeSHTree
MimMiner

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

SoftPanel
MeSHTree
MimMiner

A B

Fig. 3 ROC curves of SoftPanel and MimMiner phenotype similarity matrices. ROC analysis with the two benchmark datasets (a: Phenotypic
Series, b: Linked OMIM Record Pairs), demonstrated that our similarity matrix (SoftPanel) performed better compared with the results of an
existing method (MimMiner) and a similarity matrix constructed as MimMiner using the newest OMIM database (MeSHTree). The range of false
positive rates was restricted to (0, 0.1) in order to highlight the differences between each curve more clearly
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MimMiner (Fig. 3, Table 2 and Additional file 2). In
addition to using the newest OMIM database to obtain
greater coverage of human disorders, we also improved
the performance of the phenotype similarity matrix by
improving its means of construction.

Case study: prediction of genes underlying epilepsy-related
disorders
Once a group of disorders is generated, the genes known
to be associated with these disorders are extracted and
displayed in a table. Users can then predict potentially
novel disease-associated genes using the original disease-
associated genes.
To evaluate the performance of this prediction

method, we searched the OMIM database for the key-
word “epilepsy”. This returned a total of 494 OMIM
phenotype description entries and 354 OMIM gene de-
scription entries. Despite the fact that some of these
OMIM entries had no obvious relationship with epi-
lepsy, we retained all of these hits for evaluation. A set
comprising 391 known epilepsy disorder-related genes
was then compiled by extracting the genes linked to the
494 OMIM phenotype description entries. This original
disease-associated gene set was used as the positive
training dataset. From the original 354 OMIM gene de-
scription entries, we extracted 345 unique genes, 183 of
which had already been extracted from the phenotype
description entries. We therefore used the remaining
162 genes as our initial, unfiltered positive validation
dataset. The proportion of false positive genes in this
unfiltered positive validation dataset may be high due to
our retention of all OMIM search hits and their absence
from the phenotype description entries. Therefore, we
investigated and found that certain genes in this valid-
ation dataset had higher PPI likelihoods with genes out-
side the original disease-associated gene set, than with
genes within the original gene set. These genes therefore
had a high probability of being false positives, and so we
removed them to give a filtered validation dataset of 97
genes. Two ROC curves were drawn according to the
predicted ranking of the genes in the unfiltered and fil-
tered validation datasets (Fig. 4).

Discussion
We have provided an online real-time web server called
SoftPanel that groups disorders and predicts genes po-
tentially underlying these disorders. One of the most ob-
vious applications of this tool would be the generation
of customized panels of genes that can be used as input
for a targeted next-generation sequencing investigation.
This website can group or classify disorders, extract
disease-associated genes, and predict which additional
genes may be associated with the disorder of interest in
a semi-automated manner. All the methods used in this
website have been evaluated and rigorously tested for
their accuracy and reliability in generating panels of
bona fide disease-associated genes.
One of the advantages of our method is that it takes

the needs of the user into consideration. Compared to
existing gene prioritization methods, we allow the user
to begin with a disorder of interest rather than with a
pre-determined set of seed genes. This is based upon
our observation that the former scenario is the most fre-
quent starting point for clinicians and researchers inter-
ested in a given condition.
Human disorder phenotype similarity profiles have

been used in previous studies [5, 29, 30]. We have sup-
plemented this approach with the addition of the title
portions of OMIM records, as they can reveal the main
characteristics of diseases. At the same time, we applied
global weighting to the vectors instead of the global–
local weighting used in previous work [16, 17]. ROC
curves demonstrated the superiority of the similarity
matrices generated by SoftPanel over those generated by
existing methods.

Table 2 AUCs using different similarity matrices and two
benchmark datasets

SoftPanel MeSHTree MimMiner

Phenotypic Series 0.995 0.988 0.972

Linked OMIM Record Pairs 0.981 0.961 0.944

SoftPanel: our similarity matrix. MeSHTree: a similarity matrix constructed as
MimMiner using the newest OMIM database. MimMiner: data was downloaded
from the MimMiner website. Prior to calibration, the matrices were restricted
to those with identical dimensions in order to enable a consistent comparison.
Hence, the results of SoftPanel in Tables 1 and 2 are different
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There have been several open-source tools designed to
collect and analyze phenotypic information for patients
with genetic disorders. One of these is PhenoTips, which
is a well-developed method and has an intuitive user
interface [7]. PhenoTips allows for the collection, classi-
fication, and analysis of phenotypic information and uses
the Human Phenotype Ontology. One of the intentions
of grouping disorders using phenotypic information in
SoftPanel is to output seed gene lists for the purpose of
gene prioritization, something that complements rather
than replicates the capabilities of PhenoTips. PhenoTips
may be used to help clinicians make accurate diagnoses
but it does not delve deep enough into the genetic or
molecular basis of disorders. SoftPanel, however, is able
to provide a list of both known and unknown potential
disease-causing genes that can then be used by clinicians
to customize a panel for gene screening or identifying
rare driver genes. Thus, SoftPanel differs from tools like
PhenoTips in its purpose, design, and user orientation.
More importantly, SoftPanel offers great convenience

for researchers who wish to evaluate genes that have
been identified from microarray or RNA-sequencing
data as being differentially expressed in their phenotype
or condition of interest as compared with healthy tissue
or some other reference condition. Not infrequently, the
list of differentially expressed genes is quite long, making
it difficult to experimentally validate the correlations
between key genes and human disease phenotypes.
SoftPanel, however, allows users to identify a set of
core genes that contribute to a condition by using
gene set enrichment analysis and the supporting ma-
chine vector approaches. The output genes are ranked
according to their significance, and users can then
compare them with a list of genes ordered by signifi-
cance of differential expression or any other metric of
interest. SoftPanel thus enables in silico validation, filter-
ing and prioritization of gene lists that have been acquired
through alternative approaches such as differential gene
expression analysis.
In summary, we propose that combining PhenoTips’

specific capabilities with SoftPanel’s capabilities would
greatly broaden the scope of investigation, improve user
experience, and produce specific information relevant to
examining the relationship between genotypes and dis-
ease phenotypes in humans.

Conclusions
SoftPanel is capable of generating convenient and high-
utility customized gene panels, oriented towards clinical
practice and in silico validation of candidate genes for
researchers. The availability of multiple retrieval
methods gives researchers and clinicians great flexibility
and eliminates the requirement for prior genetic know-
ledge. With its breadth of function and ease of use, this

website will be a useful resource to both the clinical and
biomedical research communities.

Availability and requirements
Project name: SoftPanel
Project home page: http://www.isb.pku.edu.cn/SoftPanel/
Operating system(s): Platform independent
Programming language(s): HTML, JavaScript, R
Other requirements: none
License: GNU GPL
Any restrictions to use by non-academics: no.
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Additional file 1: Figure S1. ROC curves of phenotype similarity
matrices constructed with or without title portions. ROC analysis with the
two benchmark datasets (A: Phenotypic Series, B: Linked OMIM Record
Pairs) suggested that the similarity matrix constructed with both the text
and title portions of OMIM records outperformed the matrix constructed
with the text portion only. The range of false positive rates was restricted to
(0, 0.1) in order to highlight the differences between each curve. (PDF 270 kb)

Additional file 2: In additional to the ROC curve noted in the
“Implementation” section, we also calculated ROC curves in an alternative
way in order to compare the differences between different similarity
matrices. (PDF 73 kb)

Additional file 3: Figure S2. Fraction of record pairs that overlap with
the two benchmark datasets. All phenotypically overlapping record pairs
in our similarity matrix were divided into 10 intervals according to their
similarity scores. For each interval, we calculated the fraction of record
pairs that overlapped with a given benchmark dataset (A: Phenotypic
Series, B: Linked OMIM Record Pairs). This analysis indicated that the
similarity score is a useful and reliable measure of phenotypic overlap
between two disorder records. (PDF 260 kb)
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