Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

eSTGt: a programming and simulation

BMC Bioinformatics

@ CrossMark

environment for population dynamics

Adam Spiro and Ehud Shapiro”

Abstract

Background: We have previously presented a formal language for describing population dynamics based on
environment-dependent Stochastic Tree Grammars (€STG). The language captures in broad terms the effect of the
changing environment while abstracting away details on interaction among individuals. An eSTG program consists
of a set of stochastic tree grammar transition rules that are context-free. Transition rule probabilities and rates,
however, can depend on global parameters such as population size, generation count and elapsed time. In
addition, each individual may have an internal state, which can change during transitions.

Results: This paper presents eSTGt (eSTG tool), an eSTG programming and simulation environment. When executing a
program, the tool generates the corresponding lineage trees as well as the internal states values, which can then be
analyzed either through the tool's GUI or using MATLAB's command-line environment.

Conclusions: The presented tool allows researchers to use existing biological knowledge in order to model the
dynamics of a developmental process and analyze its behavior throughout the historical events. Simulated lineage
trees can be used to validate various hypotheses in silico and to predict the behavior of dynamical systems under
various conditions. Written under MATLAB environment, the tool also enables to easily integrate the output data within

the user's downstream analysis.

Keywords: Stochastic simulation, Population dynamics, Lineage trees, Developmental modeling

Background

In recent years there has been a great interest in model-
ing and simulating various aspects of population dynam-
ics in biological and ecological systems [1-4]. The
increasing computational resources along with a deeper
understanding of biological and ecological phenomena
have led to the development of many languages for de-
scribing, analyzing and simulating concurrent stochastic
processes. Many such languages specify Markovian
dynamics and differ by level of abstraction, ease and
complexity of the description and execution efficiency
[5]. Many tools have been developed in order to allow
and simplify the use of mathematical modeling for the
life-science community, and each one has its strengths
and weaknesses [6—9]. There is no single tool that has
all the required features and choosing the appropriate
one depends on the specific goals and resources of the

* Correspondence: ehud.shapiro@weizmann.ac.il

Department of Computer Science and Applied Mathematics and
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot,
Israel

() BiolMed Central

user. Formalisms such as Chemical Reaction Networks
[10] and stochastic Process Algebras [11] have a great
descriptive power but are often too complex for the
average user. We have previously developed and formu-
lated a simpler and more practical language for model-
ing and simulating the behavior and interaction of
populations [12]. We did so by extending the notion of
Stochastic Tree Grammar (STG) [13] by incorporating
environment-dependent rates and probabilities to the
transition rules. These can be dynamically defined as
functions of the system’s state, which include global
values such as current population size, generation count
or elapsed time. Introducing both rates and probabilities
to the transition rules enables a more intuitive and flex-
ible description of biological phenomena and in many
cases it fits well to the way biologists think and observe
different dynamics. For example, a scenario where the
rate of reproduction stays constant but the probability of
generating different species changes can be easily de-
scribed using eSTG. In addition, we extended the lan-
guage by allowing each individual to have an internal

© 2016 Spiro and Shapiro. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1004-y&domain=pdf
mailto:ehud.shapiro@weizmann.ac.il
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

state that can change via transition rules. Here we
present eSTGt, a programming and simulation environ-
ment for eSTG. A prominent feature of the tool is that it
can stochastically produce lineage trees, each corre-
sponding to a different stochastic program execution.
These lineage trees record the entire execution history
of the process, including the dynamics that led to exist-
ing as well as to extinct individuals. Unlike previous
systems that produce only population size dynamics
[14—17], our tool also outputs the corresponding lineage
trees, which can be used to analyze the evolutionary and
developmental history of the process.

Implementation

eSTGt was developed using MATLAB R2013a (The
MathWorks, Inc., Natick, MA, USA) and it can be exe-
cuted either as a GUI program or through MATLAB’s
command-line, allowing easier batch processing and
parallelization. If needed, the tool can automatically per-
form multiple executions of a program with different
random seeds, producing a stochastic sample of in-
stances from the space of possible outcomes. Written as
an open-source program under MATLAB environment,
the tool also enables to easily integrate the output data
within the user’s downstream analysis.

Program definition

The program definition is encoded using an XML file
along with accompanied MATLAB functions. The XML
file encodes the transition rules along with the species
names, initial rates and probabilities, initial population
size, internal states names and initial values, simulation
time, random seed, and conditional transitions, as ex-
plained below. The XML text also encodes the names of
the accompanied MATLAB functions, which consist of
the global updating functions of the rates and probabil-
ities as well as the updating functions of the internal
states. XML is a widely used format [4, 8] that enables a
succinct and human-readable description and also allows
easy editing, parsing and future extensions. The use of
MATLAB code for writing the updating functions enables
a simple and expressive way to describe the dependency
of the global parameters on the system’s state.

An eSTGt modeling and simulation experiment may
be based on previous experimental observations. These
can be formulated into transition rules and estimated
parameters, including transition rates and events prob-
abilities and how they depend on global values (such as
population size and time). The model can then be simu-
lated and the results can be used both for model valid-
ation and predictions. Validation involves testing the in
silico reproducibility of experimental observations and a
validated model can be used to predict the behavior of
the system under new conditions that have not been yet

Page 2 of 10

performed experimentally. These predictions can then
be experimentally validated and the results can be again
used to validate or adjust the model.

Stochastic simulation
An eSTG transition rule has the following general
form [12]:

AL {Sl}Pl ‘{52}172 ""{Sn—l} Pt {S"}Pn

where r is the transition rate, p; are the transition
probabilities such that X/_1p;=1, and each §; is either
an empty group (indicating termination) or a group of
either one or two species that are the targets of the tran-
sition. A program can have multiple transition rules and
the rates and probabilities can depend on the system’s
state. Each species contains at most one transition rule
in which it occurs on the left side of the transition but
can occur on the right side of the different transitions as
many times as needed. Each species can also include in-
ternal states, which can be updated and inherited
through transition execution.

An eSTG program can be stochastically simulated
using the Gillespie algorithm [18]. To do so, each eSTG
transition rule of the form above is translated into n
chemical reaction rules [12]:

Ci .
A > S, c=rp, i=1l.n

where ¢; is the reaction rate. The propensity functions
are then calculated by taking the product of the popula-
tion reaction rate with the size of the corresponding
population. In our implementation we used the Gilles-
pie’s Direct Method algorithm in order to calculate both
the time to the next reaction and the reaction’s identity.

eSTG program examples

The following examples depict the usage of the different
eSTGt features, including regulated interaction between
different species, the use of internal states and condi-
tional transitions. The examples include the input using
an XML format and the corresponding MATLAB files
that describe the updating functions.

Prey/Predator
The prey/predator model of Lotka-Volterra [19] is usu-
ally defined using the following ODEs:

dP
e _ Prey(c1—cyPredator)
dt
dPredat
WTW = —Predator(c3—cyPrey)

These ODEs can be translated into the following
eSTGs [12]:

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

Prey = {Prey, Prey}, |{¢},,
Predator = { Predator, Predator} 2, {Pow

with the following updating of the rates and

probabilities:
r1 = ¢1 + ¢3-|Predator|

ry = ca-|Prey| + c3

b = "
_ x| Prey]
2T T

These rules are encoded using the following XML and
MATLAB code:

<Program>
<ExecParams>
<SimTime>
10
</SimTime>
<Seed>
0
</Seed>
</ExecParams>

<FunHandleName> updating_LotkaVolterra </FunHandleName>
<Rule>
<Prod>
Prey -> 1 {Prey,Prey} 0.5 | {0}_0.5
</Prod>
<InitPop>
900
</InitPop>
</Rule>
<Rule>
<Prod>
Predator -> 1 {Predator,Predator}_0.5 | {0}_0.5
</Prod>
<InitPop>
900
</InitPop>
</Rule>
</Program>

The ExecParams XML element consists of specific
execution parameters such as the simulation time and
the random seed. The FunHandleName element con-
sists of a handle to a MATLAB function that encodes
the global updating of the rates and probabilities as
function of the system’s state (see below). Each species is
described using a Rule element that defines the transi-
tion rule along with initial values of the rate, probabil-
ities and initial population size. In the above example
there are two transition rules for each of the species with
simulation time of 10 units and initial population size of
900 for both the Prey and the Predator. We note, that
the initial indicated values of the rates and probabilities
(1 and 0.5 respectively in the prod XML element) are
arbitrary since they are updated to their appropriate
values immediately upon the first transition execution
(see the updating function below). The MATLAB code
for the updating function updating LotkaVol-
terra is defined as follows:

Page 3 of 10

function [Rules] = updating LotkaVolterra (Rules,T, X)
cl=2; c2=0.01; c3=5;

plNew = cl/(cl+c2*X(2));

p2New = 1-c3/(c3+c2*X (1)) ;

rlNew = cl+c2*X(2);

r2New = c3+c2*X(1);
Rules.Prod{l}.Probs(l) = plNew;
Rules.Prod{l}.Probs(2) = l-plNew;
Rules.Prod{2}.Probs (1) = p2New;
Rules.Prod{2}.Probs (2) = 1-p2New;
Rules.Prod{1l}.Rate = rlNew;
Rules.Prod{2}.Rate = r2New;

end

The updating function updates the rates and the prob-
abilities according to the definition using specific values
for ¢y, ¢y, 3.

Internal states
In this example we simulate stem cell differentiation. SC
(stem cells) divide symmetrically with rate 0.1, while self-
renewing or differentiating with the same probability (50 %),
and Diff (differentiated cells) can either proliferate (with
probability 49 %) or die (with probability 51 %) at rate 1.
We define two internal states called MS, which simu-
lates somatic mutations of Microsatellites (MS) [20] and
Gen, which counts the number of generations since each
differentiation.
MS Internal state: We define a vector of n variables

MS= (MSy, ...MS,,), which correspond to the number of
repeats in 7 MS loci in the DNA. In every cell division, the
number of MS repeats for each locus changes according to
the stochastic function fy;s, which can cause either a de-
crease or an increase of one repeat with probability p [21]:
x + 1 with probability £

Sus(x) = x-1 with probability £

x otherwise

We define the following transition rules:
sc(ﬁs: EMS) o4 {sc (AZS: Furs (E’Ms)),
(5]}, o 5.
oo (5= (5},

Diﬁ(ﬁs: EMS) L{Dlﬁ(ﬁs: Furs (ZJMS»,

Diﬁ‘(/\ZS:fMS (§MS>> } H{o}os

0.49

This model can be used for example to simulate cell
lineage reconstruction using MS somatic mutations [22].

Gen internal state: The following transition rules in-
clude the internal state Gen, which counts the number
of generations since each differentiation event:

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

SCS{SC, SC}y5|{Diff (Gen = 1), Diff (Gen = 1)} 5

Diff (Gen = x) - {Diff (Gen = x + 1), Diff (Gen = x + 1)} 19 [{}o51

The following XML represents the above transition
rules and internal states (the symbol ow stands for other-
wise and equals one minus the sum of the other prob-
abilities):

<Program>
<ExecParams>
<SimTime>
50
</SimTime>
<Seed>
0
</Seed>
</ExecParams>

<FunHandleName> updating Empty </FunHandleName>
<Rule>
<Prod>
SC -> 0.1 {sC,sC}_0.5 | {Diff,Diff} ow
</Prod>
<InternalState>
<Name> MS </Name>
<InitVal> 0 </Initval>
<FuncHandleName> FuncUpdateMS </FuncHandleName>
<DuplicateNum> 100 </DuplicateNum>
</InternalState>
<InitPop>
5
</InitPop>
</Rule>
<Rule>
<Prod>
Diff -> 1 {Diff,Diff} 0.49 | {0}_ow
</Prod>
<InternalState>
<Name> MS </Name>
<InitVal> 0 </InitVal>
<FuncHandleName> FuncUpdateMS </FuncHandleName>
<DuplicateNum> 100 </DuplicateNum>
</InternalState>
<InternalState>
<Name> Gen </Name>
<Initval> 0 </Initval>
<FuncHandleName> FuncUpdateGen </FuncHandleName>
</InternalState>
<InitPop>
5
</InitPop>
</Rule>
</Program>

The InternalState element includes the in-
ternal state’s names, initial value, updating function
name and duplication number, which indicates how
many instances of that internal state are simulated.
Note, that in this example the rates and probabilities
are not updated and so the updating function is
empty:

function [Rules] = updating Empty(Rules, T, X)
$Empty
end

However, we now have to define an updating function
for the internal states MS and Gen, namely:

Page 4 of 10

function [newMS] = FuncUpdateMS(MS)
%$FuncUpdateMS updates the MS values according to the stepwise model
Mu = 1/10000; % the mutation rate (10%-4)

n = length (MS) ;

MutateVector = binornd(l,Mu,l,n);
MutDirection = binornd(MutateVector,1/2);
newMS = MS + (2*MutDirection - MutateVector) ;
end

function [newGen] = FuncUpdateGen(Gen)
%$FuncUpdateGen updates the generation

newGen = Gen + 1;

end

The input of an internal state updating function is the
current value of the internal state and the output is the
updated value.

Conditional transitions

Conditional transitions enable to transform each individ-
ual instance into another species or to termination (death)
if a certain condition on its internal states is met. Each in-
dividual instance is examined upon each transition event
and if its internal state follows the defined condition that
individual is transformed to the defined target.

The following toy example shows three species, two
types of “stem-cells” where one divides symmetrically
and another one divides asymmetrically and a differenti-
ated cell, which divides symmetrically or die. The asym-
metric stem cells and the differentiated cells contain an
internal state counter, which increases its value stochas-
tically. The asymmetric stem cell includes a conditional
transition that causes it to transform into a differentiated
cell when the counter reaches a certain threshold, and
the differentiated cells include a conditional transition
that causes it to die when the counter reaches a second
threshold. This is described by the following rules:

SCASym %> {SCASym, SCSym},
SCSym(CounterStoch) REY {SCSym, SCSym },

Diff (CounterStoch) EN {Diff, Diff }o51{ P} o

with the internal state updating:
CounterStoch = CounterStoch + normrnd(1,0.1)

and the conditional transitions:
(CounterStoch>5)
SCSym Diff
. (CounterStoch>10)
Diff

where normrnd(1,0.1) is a random sampling from a
normal distribution with mean 1 and std of 0.1.

The following XML represents the above transition
rules, internal states and conditional transitions:

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

<Program>
<ExecParams>
<SimTime>
100
</SimTime>
<Seed>
0
</Seed>
</ExecParams>
<FunHandleName> updating Empty </FunHandleName>
<Rule>
<Prod>
SCASym -> 0.1 {SCASym,SCSym}_1
</Prod>
<InitPop>
1
</InitPop>
</Rule>
<Rule>
<Prod>
SCSym -> 0.1 {SCSym,SCSym}_1
</Prod>
<InternalState>
<Name> CounterStoch </Name>
<InitVal> 0 </InitVal>
<FuncHandleName> FuncUpdateCounterStoch </FuncHandleName>
</InternalState>
<ConditionalTransition>
<Condition> CounterStoch > 5 </Condition>
<Transition> Diff </Transition>
</ConditionalTransition>
<InitPop>
0
</InitPop>
</Rule>
<Rule>
<Prod>
Diff -> 1 {Diff,Diff} 0.5 | {0}_ow
</Prod>
<InternalState>
<Name> CounterStoch </Name>
<InitvVal> 0 </InitVal>
<FuncHandleName> FuncUpdateCounterStoch </FuncHandleName>
</InternalState>
<ConditionalTransition>
<Condition> CounterStoch > 10 </Condition>
<Transition> {0} </Transition>
</ConditionalTransition>
<InitPop>
0
</InitPop>
</Rule>
</Program>

The structure of the conditional transition is such that
the ConditionalTransition element includes any
condition on the internal states of that species using
MATLAB code syntax and the Transition element
includes the name of the target species (to which the
species is transformed into) or {0} for termination
(death).

The updating function of the internal state Counter-
Stoch is as follows:
function [newCounterStoch] = FuncUpdateCounterStoch(CounterStoch)
%FuncUpdateCounterStoch updates the stochastic counter
newCounterStoch = CounterStoch + normrnd(1,0.1);

end

The CounterStoch internal state increases stochas-
tically each time a transition event is executed.

Results and discussion

In our previous paper [12] we presented the usability
of eSTG by presenting a variety of examples that
can be modeled and simulated using this approach,
including complex stem-cell dynamics, different strategies
for feedback regulation, prey/predator, Luria-Delbriick,
accumulation of somatic mutations and others. The
simulation results of these scenarios were all defined
and executed using eSTGt, and the corresponding

Page 5 of 10

code for these programs and the programs described
in this paper can be found in the project’s homepage
(see Availability and requirements Section).

For example, Fig. 1 shows the results of an example
execution of the Prey/Predator program depicted be-
fore. Figure la shows the characteristic population
size dynamics as a function of time and Figs. 1b,c
show example lineage trees originated from one of
the originating species (prey and predator respect-
ively). The lineage tree in Fig. 1b visually reveals an
interesting bottleneck phenomenon where most sub-
lineages get extinct during the stage of population
size decrease and only a single sub-lineage survives.
This sub-lineage corresponds to a sub clone of the
population, which can explain events such as genetic
drift or fixation.

Use case example: In silico assessment of phylogenetic
reconstruction algorithms

A prominent feature of eSTGt is its inherent ability
to generate lineage trees that capture the entire evo-
lutionary dynamics from the earliest ancestor down to
the extant and extinct individuals. This makes it a
very convenient tool for the analysis of phylogenetic
trees, and specifically for in silico evaluation of tree
reconstruction accuracy using genomic data. As we
showed, eSTGt can be conveniently used to simulate
different scenarios of evolutionary phylogenetics in-
cluding the modeling of genomic mutations, which
accumulate through divisions. Extracting this muta-
tional data from the leaves of the tree (corresponding
to extant individuals) and feeding it into tree recon-
struction algorithms enables to easily evaluate the tree
reconstruction accuracy by comparing the recon-
structed tree to the real tree by using one of the
many methods for phylogenetic trees comparison
[23]. In our lab we conducted an experiment where
we generated an ex vivo cell lineage tree by repeat-
edly sampling single cells that went through clonal
expansion. This process generated an ex vivo cell
lineage tree with a known topology in which each
single-cell clone is represented by a node in the tree.
We then sampled single cells from each clone and se-
quenced their DNA in order to discover somatic mu-
tations. These mutations were used to evaluate the
tree reconstruction accuracy by comparing the recon-
structed tree with the true one. Using eSTGt we sim-
ulated the ex vivo experiment along with the somatic
mutations and analyzed the results in order to valid-
ate the experimental data and to predict the impact
of different mutation rates and future single-cell
genotyping enhancements on the tree reconstruction
accuracy (manuscript submitted). Figure 2 shows the

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

Page 6 of 10

1800

Population size

= Prey
1600

— Predath 1

-

S

[=3

o
T

1200

ion size

1000

Populat

Time

=

Fig. 1 An output example of the Lotka-Volterra program execution. An output example of the executed program described in the main text
(adapted from [12]). a Population size as a function of time. b A lineage tree of one of the 900 originating Preys. ¢ A lineage tree of one of the
900 originating Predators. Both (b) and (c) exhibit the characteristic bottleneck phenomenon, where most lineages get extinct

result of a simulated lineage tree. The full eSTG pro-
gram can be found in the project’s homepage.

The GUI interface

The main window of the GUI interface is presented
in Fig. 3. The GUI enables to load an eSTG program,
run it using various random seeds and analyze the
results.

After loading an XML file the program details are
presented. The GUI allows to execute either a single
simulation or a batch of consecutive simulations using
different random seeds. Each simulation is then dis-
played separately in a list box, which allows the user
to select single or multiple simulation results for fur-
ther analysis. Each initiating species acts as a root of
a lineage tree, which can be visualized by selecting

the tree from the list box of generated trees and
pressing the “Plot Selected Trees” button. It is also
possible to merge multiple trees by marking the ap-
propriate check box.

The GUI also displays and allows editing the global
updating function, which is written in MATLAB code
and can access the population size of all species as well
as the current time.

During an execution of a program the population
size of all species is displayed in real-time, allowing
the user to observe the advancement of the execution.
After the execution is completed the details of all the
simulations, including the initiating species and the
generated trees are displayed. When selecting a spe-
cific simulation execution the population size of the
selected species is displayed.

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

Page 7 of 10

Population size

1000 —

0
(=3
£

600 / |

400-

Population size

200~ | |

100

Time

Fig. 2 Results of the ex vivo simulation. Simulation result of the ex vivo scenario. Each clone consists of 1000 single cells from which several single
cells are selected to initiate new clones. Total of 58 clones were generated from 9 different seeding time points. a Population size dynamics of
the simulated tree. Once a clone reaches the size of 1000 several single cells are selected to initiate new clones and the other cells stop dividing.
b The resulted cell lineage tree on which the accuracy of reconstruction algorithms is examined

The GUI also allows the user to save the current ses-
sion into a ".mat" file (MATLAB’s binary format for stor-
ing workspace variables) for future loading either
through the GUI or through regular MATLAB environ-
ment for further downstream analysis. It is also possible
to save the generated trees into the corresponding text
files in Newick format, and the internal states values,
which are saved into tab-separated files.

Summary Statistics

The “Summary Statistics” window presents various sta-
tistics over all simulation runs and enables to scroll over
the simulation time in order to get snapshots of the sta-
tistics for each historical time point. Figure 4 shows an
example of an output window where the left panel pre-
sents the average population size over all simulation
runs and the right panel can present three different

types of statistics according to the selected option in the
dropdown menu. The options are:

“Clones Histogram” A clone is defined as all individ-
uals that are descendants of a single founder. The clone
size is the number of living individuals of that clone.
The histogram presents the percentage of clone sizes
over all runs. The user can select the originating species
types and the species types of the resulting individuals
within the clone.

“Rules Histogram”: Displays a histogram of the num-
ber of times each rule has been executed over all simula-
tion runs.

“Internal States Histogram”: Displays a histogram of
the Internal States values over all runs.

The command-line interface
The command-line interface enables to run the simula-
tions directly from MATLAB’s command-line. It makes

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

Page 8 of 10

u — Prog
Single Run | L gF | ing_Empty Edit
Multi = =
vl fn Species Name Rule l Initial Size Internal States
(f‘;:ndom ZajsC SC->0.1{SC,SC}_0.5{Diff,Diff}_ow 5 MS(100)
C [2 _|Diff Diff->1{Diff,Diff}_0.491{0}_ow 5 MS(100), Gen(1)
Simulation Time-:
50
— Analy
Runs Population Size of Run1
- Runi_SC_Tree1 i Y : . ; : ! : : .
Run2 Runi_SC_Tree2
Run3 Runi_SC_Tree3
Runs Run1_SC_Trees 30
Runs Runi_SC_Trees
Runé Runi_Diff_Treet
Run7 Runi_Diff_Tree2 25
Rung Runi_Diff_Tree3
Run$ Runi_Diff_Trees -
Run10 N
» 20
[
)
=
2 15
o
o
=l
10
Plot Selected Runs
5
0
Time
Total# of nodes. 287

be displayed and analyzed

Fig. 3 The main window of the GUI. The window is divided into 3 panels, namely “Program”, “Run” and “Analysis". The “Program”
panel includes the transition rules and the internal states details as parsed from the input XML file. The “Run” panel enables to
execute a single or multiple simulations using different random seeds and set the simulation run time. The “Analysis” panel includes
the output of the executions. For each run the corresponding population size graph is presented and the generated lineage trees can

it possible to execute programs without GUI support
directly from a Linux system prompt, allowing easy
batching and parallelization on a computer cluster. The
following commands execute an example program 10
times using different random seeds (example input files
are provided as part of the eSTGt source code):
ProgramFile = '../Programs/Examplel/Program LogisticVerhulst.xml';
Seeds = [1:10];

Rules = ParseeSTGProgram(ProgramFile) ;
[Runs, RunsData] = RunSim(Rules, Seeds, Rules.SimTime) ;

The function ParseeSTGProgram receives as in-
put an XML file containing the eSTG program and
returns a struct that contains the corresponding rules.
This struct is then passed to the second function
RunSim, which receives as input the rules, an array

of random seeds and the simulation time span. The
output is a structure array of the runs for each seed
and a common data structure for all runs. The output
includes the entire data history of the simulations, in-
cluding events time points, historical population size,
executed transition rules, and a struct array that in-
cludes detailed information on all the generated
nodes, including their creation time, their parents and
children relationships, and internal states values. This
data enables to easily access the entire historical data,
which led to the final system’s state.

Conclusions
Translating biological knowledge into a well-defined
formalism with which one can easily describe,

Spiro and Shapiro BMC Bioinformatics 2016, 16: Page 9 of 10
http://www.biomedcentral.com/1471-2105/16/1/
P
ey Saate =[Ol x]
5 Hist P: ters —
Choose species to plot: ﬂ Time: 3:047Jz LI Originating Clones Types ,;;g‘:;:‘a::me ers.
[V Show time ne Diff Diff #ofbins-]x10
[~ Draw Min/Max Bars Choose data to display: Xmin] 1 Xmax 17
LI lones Histogram ~ ~ L] LI Yrmi 70 ymax/ 07
Average Population Size Clones Histogram lones Histogram (total of 1000 runs)
20 T T T T T T T T 0.7 Rules Histogram T T T T T T
—S8C Internal States Histogram
18f —— Diff 4
161 /’ M d
14t . 1
e 12t =
[2) o 7
< =3
S 10f 19
o —
= o
2 ® d
c st .
6 T J
4 - -
2t d
0 .)) . L . . . —— L . .
0 5 10 15 20 25 30 35 40 45 50 8 10 12 14 16
Ti Clone Si
Plot Figure s Plot Figure e
Fig. 4 The GUI windows of the Summary Statistics. Summary statistics over all the simulation runs. The presented data is the result of 1000
stochastic simulations of the “Internal states” program described in the main text

simulate and analyze the system in mind is not an
easy task. Formalisms that are too complex can turn
this task into a great burden, and simple ones may
just not have enough descriptive power. Population
dynamics that involve individual interactions can be
captured using directed acyclic graphs, which can be
extremely complicated, not intuitive, and require
enormous computational resources to simulate and
analyze. On the other hand, ignoring the interactions
between the different species is not realistic. Although
the eSTG formalism does not allow direct interaction
between different species, we believe that it presents
an elegant compromise between a high descriptive
power and a simple formalism. Abstracting away
individual interactions makes a single rule for each
species sufficient and enables the recording of the en-
tire dynamical history of the population using a
lineage tree representation. This tree captures all past
events and includes, in addition to the living popula-
tion at every time point, the death of individuals, ex-
tinct lineages and historical transition events (e.g.
differentiation, symmetrical/asymmetrical divisions).

We believe that eSTGt can contribute to the mod-
eling and simulation approach of developmental
dynamics and thus facilitate research in systems
biology.

Availability and requirements

Project name: eSTGt

Project home page: https://github.com/shapirolab/eSTGt
Operating system(s): Platform independent
Programming language: MATLAB

Other requirements: MATLAB R2013a or higher
License: GNU GPL

Any restrictions to use by non-academics: None

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AS and ES conceived the project. AS wrote the code. AS and ES wrote the
manuscript. Both authors read and approved the final manuscript.

Acknowledgements

We thank Tamir Biezuner for performing the ex vivo experiment and helping
to calibrate the simulation parameters. We also thank Shalev Itzkovitz for
raising potential simulation scenarios, Yoni Herzog for user feedback and
beta testing, and our various collaborators for useful discussions regarding
possible biological scenarios. We would also like to thank the anonymous
reviewers for their constructive comments.

Received: 9 November 2015 Accepted: 29 March 2016
Published online: 27 April 2016

References
1. Wilkinson DJ. Stochastic Modelling for Systems Biology. Boca Raton: CRC
Press; 2011.

https://github.com/shapirolab/eSTGt

Spiro and Shapiro BMC Bioinformatics 2016, 16:
http://www.biomedcentral.com/1471-2105/16/1/

20.

21,

22.

23.

Wilkinson DJ. Stochastic modelling for quantitative description of
heterogeneous biological systems. Nat Rev Genet. 2009;10(2):122-33.
Black AJ, McKane AJ. Stochastic formulation of ecological models and their
applications. Trends Ecol Evol. 2012,27(6):337-45.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The
systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics. 2003;19(4):524-31.
Henzinger T, Jobstmann B, Wolf V. Formalisms for Specifying Markovian
Population Models. Int J Found Comput Sci. 2011,22(04):823-41.

Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H. Software for systems biology:
from tools to integrated platforms. Nat Rev Genet. 2011;12(12):821-32.
Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I. Modeling
formalisms in Systems Biology. AMB Express. 2011;1:45.

Vaughan TG, Drummond AJ. A stochastic simulator of birth-death master
equations with application to phylodynamics. Mol Biol Evol. 2013;30(6):1480-93.
O'Fallon B. TreesimJ: a flexible, forward time population genetic simulator.
Bioinformatics. 2010;26(17):2200-1.

Gillespie DT. Stochastic Simulation of Chemical Kinetics. Annu Rev Phys
Chem. 2007;58(1):35-55.

Regev A, Silverman W, Shapiro E. Representation and simulation of
biochemical processes using the n-calculus process algebra. Pac Symp
Biocomput. 2001;6:459-70.

Spiro A, Cardelli L, Shapiro E. Lineage grammars: describing, simulating and
analyzing population dynamics. BMC Bioinformatics. 2014;15:249.

Gonzalez RC, Thomason MG. Syntactic pattern recognition: An introduction. 1978.

Ribeiro AS, Lloyd-Price J. SGN Sim, a stochastic genetic networks simulator.
Bioinformatics. 2007;23(6):777-9.

Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG.
RuleMonkey: software for stochastic simulation of rule-based models. BMC
Bioinformatics. 2010;11:404.

Ramsey S, Orrell D, Bolouri H. Dizzy: stochastic simulation of large-scale
genetic regulatory networks. J Bioinform Comput Biol. 2005;3(2):415-36.
MathWorks: SimBiology. Available online at http://www.mathworks.com/
products/simbiology/.

Gillespie DT. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J Comput Phys. 1976,22(4):403-34.
Fujii T, Rondelez Y. Predator-prey molecular ecosystems. ACS Nano.
2012;7(1):27-34.

Weber JL, Wong C. Mutation of human short tandem repeats. Hum Mol
Genet. 1993,2(8):1123-8.

Valdes AM, Slatkin M, Freimer N. Allele frequencies at microsatellite loci: the
stepwise mutation model revisited. Genetics. 1993;133(3):737-49.

Frumkin D, Wasserstrom A, Kaplan S, Feige U, Shapiro E. Genomic variability
within an organism exposes its cell lineage tree. PLoS Comput Biol. 2005;
1(5):€50.

Bogdanowicz D, Giaro K, Wrdbel B. TreeCmp: Comparison of trees in
polynomial time. Evol Bioinformatics Online. 2012,8:475.

doi:10.1186/512859-016-1004-y

Cite this article as: Spiro and Shapiro: eSTGt: a programming and
simulation environment for population dynamics. BMC Bioinformatics
2016 16

Page 10 of 10

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central

http://www.mathworkscom/products/simbiology/
http://www.mathworkscom/products/simbiology/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Program definition
	Stochastic simulation
	eSTG program examples
	Prey/Predator
	Internal states
	Conditional transitions

	Results and discussion
	Use case example: In silico assessment of phylogenetic reconstruction algorithms
	The GUI interface
	Summary Statistics
	The command-line interface

	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

