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Abstract

Background: The immune system is multifaceted, structured by diverse components that interconnect using
multilayered dynamic cellular processes. Genomic technologies provide a means for investigating, at the molecular
level, the adaptations of the immune system in host defense and its dysregulation in pathological conditions. A critical
aspect of intersecting and investigating complex datasets is determining how to best integrate genomic data
from diverse platforms and heterogeneous sample populations to capture immunological signatures in health

and disease.

Result: We focus on gene signatures, representing highly enriched genes of immune cell subsets from both
diseased and healthy tissues. From these, we construct a series of biomaps that illustrate the molecular linkages
between cell subsets from different lineages, the connectivity between different immunological diseases, and the
enrichment of cell subset signatures in diseased tissues. Finally, we overlay the downstream genes of drug targets
with disease gene signatures to display the potential therapeutic applications for these approaches.

Conclusion: An in silico approach has been developed to characterize immune cell subsets and diseases based
on the gene signatures that most differentiate them from other biological states. This modular ‘biomap’ reveals
the linkages between different diseases and immune subtypes, and provides evidence for the presence of specific
immunocyte subsets in mixed tissues. The over-represented genes in disease signatures of interest can be further
investigated for their functions in both host defense and disease.
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Background

The immune system has evolved to confer effective
host defense in diverse environmental conditions, but
it can also be diverted to mediate inflammatory dis-
eases when the system is dysregulated [1]. The com-
plexity of this system is reflected in the multiple
immunocyte subsets that co-regulate each other and
perform distinct functions at different developmental
states, in various tissue microenvironments, and in re-
sponse to different stimuli [1]. Advances in genomics
technology have facilitated the generation of large-
scale data sets, including many that provide open ac-
cess. A major challenge is how to leverage informatics
approaches to achieve integrative analyses of multi-

* Correspondence: hong.liu@sanoficom

'Bio-Innovation, Sanofi Global Biotherapeutics, 38 Sidney Street, Cambridge,
MA 02139, USA

Full list of author information is available at the end of the article

( BioMed Central

scale genomics data in the synthesis of meaningful
biological hypotheses and insights [2].

Gene signatures are gene sets that are defined as
groups of genes linked by biological relationships that
could reflect their common downstream biological pro-
grams or functions, as well as their co-regulation based
on common inductive networks or chromosomal loca-
tions [3]. In the present study, we focus on gene sets
that are coordinately regulated under specific biological
conditions or across multiple biological states. In con-
trast to conventional analysis approaches, the use of
gene set improves tolerance to non-specific noise and
variability between samples, batches, or platforms, and
can lead to novel interpretations of large-scale genomic
data.

One purpose of developing gene signatures is for the
use of GSEA (Gene Set Enrichment Analysis), which
evaluates ranked gene lists from genomic profiles for
identifying statistically enriched gene sets with defined
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biological annotation [3]. The Molecular Signatures
Database (MSigDB) from the Broad Institute was devel-
oped for this purpose, and now contains thousands of
gene sets that were analyzed from transcriptional pro-
files [4]. While single-gene analysis finds little similarity
across independent studies; GSEA reveals many bio-
logical pathways in common [3]. Chaussabel et al. have
focused on co-clustered gene sets, also called modules,
in the mining and interpretation of large-scale genomic
data through a reductionist approach. They have shown
that the use of coordinately expressed gene sets (mod-
ules) improves robustness when comparing results
across platforms and studies [5, 6].

In an effort to distinguish specific inflammatory mech-
anisms that are unique or common among different
chronic inflammatory or autoimmune diseases, we ap-
plied a gene signature approach to develop an integrative
immunogenetic biomap. First, we selected from GEO
and ArrayExpress databases the genomic studies docu-
menting immune cell lineages, as well as inflammatory
or autoimmune disease states. We then enriched for
transcriptional signatures associated with each of the cell
subtypes and disease states. By clustering and integrating
these gene signatures, we uncovered novel connections
between diverse inflammatory and autoimmune states
and revealed common nodal points for potential thera-
peutic intervention.

Results

Immune cell type gene signatures

Shay et al. [7] evaluated the conservation of genome-
wide expression profiles of human vs. mouse cell types
through correlation analysis, assessing the relatedness of
matched lineages across species. A recent study by
Godec et al. suggests that the lineage specific differences
in human and mouse hematopoietic cells can be recapit-
ulated by gene sets [8]. We sought to extend those ap-
proaches to formulate cell lineage- and subtype-specific
gene sets that could serve as highly enriched ‘signatures’
in additional multivariate analyses. Two methods were
evaluated to select these ‘signature’ gene sets, the first
collecting the 2 % of genes with the highest expression
values in a given subtype, and the second representing
the 2 % of genes with the highest specific expression
across all subtypes [9]. Gene sets generated from specific
subtypes show high similarity across different cell line-
ages, but less conservation between human and mouse
(data not shown). In contrast, gene sets generated across
all subtypes are more conserved between species while
showing more restricted similarity within the same cell
lineage (Fig. 1 and Additional file 1: Figure S1). Since we
were most interested in gene signatures with the cap-
acity to discriminate between immune cell lineages, we
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focused our subsequent studies on gene sets generated
across all subtypes.

We examined the cell surface (CD, cluster of differen-
tiation) molecules and cytokine receptors common
among at least half of the gene modules associated with
a specific cell lineage. As shown in Table 1, we could
identify ‘signature’ molecules of particular lineages, in-
cluding CD300LB and CD44 in granulocyte; CD300A,
IL10RA, CD68, and CX3CR1 in monocyte; CD19, CD37,
CD38, CD72, IL21R, and CD79B in B cell; CD2 in T cell;
CD74 and XCR1 in dendritic cell; and CD244 in natural
killer cell, among others [10]. However, a few of them
need to be further investigated for their potential func-
tions in the related cell lineages. For example: CD101
and CD14 in granulocyte; CD55 and CD200 in B cell;
and CD97 in NK cell could not be identified by publica-
tions as known markers for these cell types.

Immune disease gene signatures

In order to understand the connectivity of different
immune diseases, we investigated the similarity of dysreg-
ulated genes between chronic inflammatory and auto-
immune conditions. To accomplish this, we constructed
155 gene signatures derived from independent studies on
nine different immune-related diseases (Table 2) that rep-
resent collections of genes which are upregulated in dis-
ease samples compared to normal controls.

The similarity matrix derived from these disease gene
signatures illustrates that gene signatures from the same
disease tend to cluster with one another (Fig. 2). In
addition, gene signatures from the same tissue origin, for
instance dermatitis and psoriasis, showed higher similar-
ity to each other than to those from other tissues. Most
lupus gene signatures were from studies based on blood
samples. They show high similarity among themselves,
cluster closely with those from synovial fluid (arthritis),
and also show cross-similarity to some of the gene signa-
tures generated from colon mucosal biopsies (IBD). In
contrast, gene signatures for sclerosis and T1D are dis-
tinct from those of other diseases. Those derived from
different tissue samples are very different from each
other although they represent the same disease (Add-
itional file 1: Figure S2).

We next investigated the over-represented genes in these
immune disease signatures. For each disease category, we
identified genes common to at least five different gene sets
and generated from at least two different studies. We classi-
fied these as ‘signature’ disease genes, which are presented
in Table 2 for each disease category. Consistent with what
we observed from the disease similarity matrix, more ‘signa-
ture’ disease genes were found for COPD, psoriasis, lupus,
and IBD than for sclerosis, asthma and T1D. Despite the
smallest total number of gene sets for psoriasis, the number
of signature disease genes is quite large compared to other
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Fig. 1 Similarity matrix of immune cell type gene signatures from human and mouse. Seventy-eight immune cell type gene signatures (20 human
and 58 mouse) were paired against each other. Similarity was calculated by Fisher's exact test of overlapping genes for each pair. Gene signatures
were positioned according to their common cell lineage. Color represents the —log (P value of Fisher's exact test), with red color indicating high
similarity, and blue color indicating less/no similarity. Solid line black boxes group the gene signatures from the same lineage in either
human or mouse, while dotted line black boxes group those from the same lineage between human and mouse. HSC hematopoietic stem
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diseases. This may reflect consistency in disease biology be-
tween patients, but could also be due to less heterogeneity
at the level of skin tissue samples relative to biopsies involv-
ing other tissue types.

Figure 3 shows genes common to three or more of the
signature disease gene lists. Of particular note, SI00A9
is associated with most diseases, including arthritis,
lupus, IBD, psoriasis, and dermatitis. This implies that it
is up-regulated in a high percentage of samples associ-
ated with those diseases. The second most highly repre-
sented gene is CCL2, which links with four diseases:
lupus, IBD, COPD, and dermatitis. None of the genes in
Fig. 3 are common to asthma, sclerosis, or T1D, which
is consistent with the smaller overall numbers of associ-
ated signature disease genes for these diseases.

To further evaluate the network-based relationships of
signature disease genes, we mapped them to an interac-
tome. To reduce noise and avoid over-linkage, only
genes with direct links were retained. In Fig. 4, disease
genes from dermatitis and psoriasis were revealed to
share common genes, as well as linked genes, while
COPD and asthma do not share common genes.

Furthermore, genes unique to COPD or asthma contain
fewer connections, and are distinct from each other. To
quantify and assess the network-based separation of dis-
ease genes from different disease categories, we per-
formed pair-wise analysis to calculate the network-based
separation score [11] for each pair of disease genes. In
Table 3, negative scores indicate that disease genes share
overlapping ‘neighborhoods’. These results agree with
what we observed in Fig. 2. There are more molecular
commonalities between dermatitis, psoriasis, lupus, IBD,
and possibly arthritis, than that of other diseases studied.
We mapped signature disease genes from all disease cat-
egories to a single interactome and represented the
number of interactions by gene label size, and the num-
ber of diseases it belongs to by node size (Fig. 5). We ob-
served that, in Fig. 5I, many genes shared by multiple
diseases (shown in yellow) contain more interactions
with other genes, such as STAT1, EGR1, TLR2, CCL2,
etc. However, it’'s worth noting that genes unique to a
disease can also hold a lot of interactions with other sig-
nature disease genes, such as STAT3, IL1B, CEBPB,
IL10, MMP9, TLR4, EGE, etc. In Fig. 5II, we limited the
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Table 1 Over-represented CD molecules and cytokine receptors
in immune cell type gene signatures (Continued)

Table 1 Over-represented CD molecules and cytokine receptors
in immune cell type gene signatures

Cell type Symbol Entrez gene name #of geneset g CD798 CD79b molecule 9 out of 10
HSPC CD34 CD34 molecule 4 out of 5 immunoglobulin-associated
beta
GN CD300LB  CD300 molecule-like 6 out of 6
family member b B CD22 CD22 molecule 8 out of 10
GN CD300LF  CD300 molecule-like 6 out of 6 B CD55 CD55 molecule, decay 8 out of 10
family member f accelerating factor
for complement
GN CD33 CD33 molecule 6 out of 6 (Cromer blood group)
GN CXCR2 chemokine (C-X-C motif) 6 out of 6 B D72 CD72 molecule 8 out of 10
receptor 2
) ) B CcD74 CD74 molecule, major 8 out of 10
GN CCR1 chemokine (C-C motif) 5out of 6 histocompatibility complex
receptor 1 class Il invariant chain
GN cbro1 CD101 molecule 5outof 6 B CXCR5 chemokine (C-X-C motif) 8 out of 10
GN CD300LD  CD300 molecule-like family 4 out of 6 receptor 5
member d B TNFRSF13B  tumor necrosis factor receptor 8 out of 10
GN CXCR1 chemokine (C-X-C motif) 4 out of 6 superfamily, member 138
receptor 1 B TNFRSF13C  tumor necrosis factor receptor 8 out of 10
GN IFNLR1 interferon, lambda receptor 1 4 out of 6 superfamily, member 13C
GN IL13RA1 interleukin 13 receptor, alpha 1 4 out of 6 B (D180 CD180 molecule 7 out of 10
GN D14 CD14 molecule 3 out of 6 B CCR6 chemokine (C-C motif) 6 out of 10
receptor 6
GN CD44 CD44 molecule 3outof 6
(indian blood group) B CD200 CD200 molecule 5 out of 10
GN TNFRSFIA  tumor necrosis factor receptor 3 out of 6 B IL21R interleukin 21 receptor 5outof 10
superfamily, member 1A B IL9R interleukin 9 receptor 5 out of 10
MO CD300A CD300a molecule 7 out of 8 NK IL2RB interleukin 2 receptor, beta 10 out of 10
MO TNFRSF1B  tumor necrosis factor receptor 7 out of 8 NK IL12RB2 interleukin 12 receptor, beta 2 9 out of 10
superfamily, member 1B
) . NK CCR5 chemokine (C-C motif) 6 out of 10
MO ILTORA interleukin 10 receptor, alpha 7 out of 8 receptor 5
MO IL17RA interleukin 17 receptor A 6 out of 8 (gene/pseudogene)
MO TNFRSF1A  tumor necrosis factor receptor 5 out of 8 NK (D244 D244 molecule, natural killer 6 out of 10
superfamily, member 1A cell receptor 284
MO ILT3RA1 interleukin 13 receptor, alpha 1 5 out of 8 NK D97 CD97 molecule 6 out of 10
MO D68 CD63 molecule 5 out of 8 NK IL12RB1 interleukin 12 receptor, beta 1 6 out of 10
MO TNFRSF21  tumor necrosis factor receptor 5 out of 8 NK ILT8RAP interleukin 18 receptor 6 out of 10
superfamily, member 21 accessory protein
MO CX3CR1 chemokine (C-X3-C motif) 5 out of 8 NK CMKLR1 chemokine-like receptor 1 5outof 10
receptor 1 NK IL18R1 interleukin 18 receptor 1 5 out of 10
MO CD244 (D244 molecule, natural killer cell 4 out of 8 T IL27RA interleukin 27 receptor, alpha 9 out of 10
receptor 2B4
) T [@é CD6 molecule 8 out of 10
DC CD74 CD74 molecule, major 9 out of 9
h]gtocompatib“ity complex, T cD2 CD2 molecule 7 out of 10
class Il invariant chain T [@D5) CD5 molecule 7 out of 10
DC ILTORA interleukin 10 receptor, alpha 8 out of 9 T IL21R interleukin 21 receptor 7 out of 10
DC XCR1 chemokine (C motif) 5out of 9 T D4 CD4 molecule 6 out of 10
receptor
B D19 D19 molecule 9 out of 10 T CD28 CD28 molecule 5 out of 10
T CD3D CD3d molecule, delt 5out of 10
B CDb37 CD37 molecule 9 out of 10 (CD3»TH8F(; i(c)krjnialles a outoe
B D38 CD38 molecule 9 outof 10 T CD3E CD3e molecule, epsilon 5out of 10
B CD79A CD79% molecule, 9 out of 10 (CD3-TCR complex)
immunoglobulin-associated T TNFRSF25  tumor necrosis factor receptor 5 out of 10

alpha

superfamily, member 25
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Table 2 Immune disease gene signatures

Disease category # of gene set # of study # of signature
disease gene

COPD 20 13 169

Asthma 20 10 11

Dermatitis 12 8 51

Psoriasis 7 5 161

IBD 19 8 100

Lupus 25 17 154

Arthritis 20 11 55

Sclerosis 13 7 1

T1D 19 8 15

“# of Gene set” indicates the number of gene sets for each disease category;
“# of Study” indicates the number of independent studies that were analyzed
to generate the gene sets; “# of Signature Disease Gene” indicates the number
of genes existing in more than five gene sets from at least two different
studies. COPD chronic obstructive pulmonary disease, IBD inflammatory bowel
disease, T1D type 1 diabetes

signature disease genes to three indications: psoriasis,
dermatitis, and COPD, which clearly shows their interac-
tions across indications. For example, IL1B, a gene target
of multiple drugs targeting different autoimmune dis-
eases, is a signature disease gene for COPD. However, it
does not only interact with multiple signature disease
genes of COPD, but also directly interacts with many
signature disease genes of psoriasis and dermatitis.
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With the availability of disease gene signatures, we fur-
ther evaluated the expression level changes of genetically
linked genes identified by GWAS (Genome Wide Asso-
ciation Studies). In order to do so, we extracted genetic-
ally linked immune disease genes reported in the GWAS
catalog [12], and examined their presence in the related
disease gene sets. Table 4 shows the number of common
genes between GWAS identified genes and genes that
are included in disease gene signatures. However, except
for psoriasis, the overlap is not significant for most of
the disease categories.

Immune cell type signatures vs. Imnmune disease
signatures

Autoimmune diseases involve immune cell activation
and recruitment to the disease tissue. With the avail-
ability of both immune cell type signatures and disease
signatures, we evaluated their similarity, for the
purpose of elucidating the enrichment of cell type sig-
natures in disease tissue. Among all the cell type sig-
natures, some from the myeloid lineage show the most
enrichment with different diseases (Fig. 6). In addition,
subsets of cell type signatures are more enriched a
subpopulation of disease signatures (Additional file 1:
Figure S3). For example, some signatures from either
T cell or B cell lineages show enrichment in signatures
obtained from dermatitis, psoriasis, asthma and arthritis.

Dermatitis
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Dermatitis
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1BD
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Arthritis

Sclerosis

TiD

Psoriasis

N
Arthritis - T1D

Fig. 2 Similarity matrix of immune disease gene signatures. One hundred fifty-five Immune disease gene signatures were paired against each
other. Similarity was calculated by Fisher's exact test of overlapping genes for each pair. Gene signatures from the same disease category were
positioned together. Color represents the —log (P value of Fisher's exact test), with red color indicating high similarity, and blue color indicating
less/no similarity. Black boxes group the gene signatures that represent the same disease category
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Fig. 3 Over-represented genes in immune disease modules. Twenty-two upregulated genes, found to be common to more than three signature
disease gene lists, are illustrated. STO0A9 is common to 5 diseases while CCL2 is common among 4 different diseases
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Fig. 4 Topological localization of pair of disease genes. Signature disease genes representing two different disease categories and with direct
links on the interactome were plotted. (I) Topological locations of dermatitis and psoriasis genes. Orange color: genes unique to dermatitis; green
color. genes unique to psoriasis; yellow color: genes shared by dermatitis and psoriasis. (Il) Topological locations of COPD and asthma genes. Blue

color: genes unique to COPD; rose color: genes unique to asthma
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Table 3 Network-based separation of signature disease genes
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COPD Asthma Dermatitis

Psoriasis IBD Lupus Arthritis T1D

COPD
Asthma
Dermatitis
Psoriasis
IBD

Lupus
Arthritis
T1D

0.064

0.023 -0.057 0.065 0.095 0.186
0.128 0.073 0.159 0.039 0.029
-0.185 -0.053 -0.002 0.002 0.091
-0.01 -0.299 0.003 0.251
-0.005 -0.069 0.171

-0.092 0.26

0.179

Network-based separation analysis was used to calculate the separation score for each pair of signature disease genes. Red color highlights the separation score

of a pair with itself. Pink color highlights the negative separation score.

Some signatures from the myeloid lineage are enriched in
IBD and certain populations of lupus. Stromal modules,
however, are enriched mainly in IBD signatures. This find-
ing supports previous observation [13].

Immune drug target gene sets vs. Immune disease gene
signatures

We are able to utilize the immune disease gene signa-
tures to investigate whether the current autoimmune or
inflammation related disease drugs or drugs at develop-
ment are targeting these disease gene signatures. Hence,
we built target gene sets with the down-stream genes of
those drug targets, and evaluated their overlap with dis-
ease gene signatures. The heatmap in Fig. 7I shows the
clustering of drug target gene sets vs. disease gene signa-
tures. Both drug target gene set cluster C1 and C2 sig-
nificantly overlap with disease signature cluster A, which
mainly represents diseases of psoriasis, dermatitis, IBD,
arthritis, and lupus. This is in agreement with the dis-
ease indications for most drugs in both C1 and C2 lists
(Fig. 71I). However, drug target gene set, cluster C1, also
shows significant overlap with the disease signature clus-
ter B, which are enriched with asthma gene signatures.
To ensure the validity of our gene signatures, we plotted
the targets, which are either approved drugs or drugs
under development, with their linked diseases. Drugs
linked with more diseases also had more significant
overlap with different disease signatures (Fig. 7I), sug-
gesting that our gene signatures represent the gene
structure of the disease. For drug target gene sets that
are less significantly overlapped with disease signatures,
most of them distributed at the left quarter side of the
heatmap, their drugs are most likely linked with fewer
diseases, and the majority of them are specifically target-
ing MS. In the bottom bar showing the number of

disease indications associated with each target gene,
annexin Al, associated with glucocorticoid’s downstream
pathway, has the highest number of linked diseases. This
gene may play a general role towards the function of
these diseases through this steroid pathway; however, we
did not find it useful in identifying specific immuno-
logical disease manifestations.

In addition to evaluating the direct gene overlap be-
tween drug target and disease signatures, we can also as-
sess the topological distribution of drug target genes and
signature disease genes on the interactome. As an ex-
ample, we calculated the network-based separation score
of IL17A target genes and signature disease genes of dif-
ferent disease categories. IL17A plays a pivotal role in
psoriasis pathogenesis, and its antagonists show great ef-
ficacy in moderate-severe psoriasis patients. Shown in
Fig. 8I, the negative separation score indicates that
IL17A target genes and psoriasis signature disease genes
share overlapping ‘neighborhoods’ and are positioned
closely on the interactome. In addition to psoriasis,
IL17A target genes also show close relatedness with sig-
nature disease genes of other indications, such as IBD,
COPD, dermatitis, lupus, and arthritis. To explore the
connection between IL17A target genes and IBD signa-
ture disease genes, the pair with the lowest separation
score, we depict the direct links between the two gene
sets on the interactome (Fig. 8II). A total of 148 IL17A
target genes and 79 IBD signature disease genes can be
mapped to the interactome, including 19 genes in com-
mon. Out of the 129 IL17A target-specific genes, 87
have a direct connection with at least one signature dis-
ease gene of IBD. Among these, 11 genes (circled in red)
have connections with more than six signature disease
genes. The close connection of target genes and signa-
ture disease genes suggests that the alteration of target
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Fig. 5 The interactions of signature disease genes. (I) Signature disease genes representing all nine disease categories with direct links on the
interactome were plotted. The size of the gene name label is proportional to the number of interactions (degrees). Different colors represent
different disease categories, while yellow represents genes shared by multiple diseases. The size of the yellow circle is proportional to the number
of diseases to which that common gene belongs. () Signature disease genes representing three disease categories and with direct links on
interactome were plotted. The size of the gene name is proportional to the number of interactions. The thick lines depict the direct
IL1B interactions
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Table 4 Immune disease gene signatures and genetic linked

genes
Disease category  # of GWAS gene  # of DEG  # of overlapped gene
COPD 113 3137 [

Asthma 195 1783 13

Dermatitis 53 2314 5

Psoriasis 56 1144 9%

IBD 525 4095 116

Lupus 181 3696 33

Arthritis 301 5227 83

Sclerosis 343 2041 28

TID 166 3144 20

“# of GWAS Gene” indicates the number of genes reported in GWAS Catalog
that are linked to the related disease category; “# of DEG” indicates the
number of Differentially Expressed Genes present in any related disease gene
sets; “# of Overlapped Gene” indicates the number of genes existing in both
“GWAS Gene” and “DEG". * indicates that the overlapping is significant based
on Chi-square test

genes with drug intervention may potentially have a dir-
ect impact on those signature disease genes.

Discussion

In this study, we utilize specifically expressed gene sets
to represent the signatures for immune cell subsets, im-
mune related diseases, as well as downstream genes for
drug targets. For those gene signatures, we would like to
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capture the most relevant gene sets without introducing
too much noise. For immune cell subsets, we focus on
those genes with high specificity scores that rank in the
top two percentile. For immune disease signatures, we
require genes show significant up-regulation in disease
vs. control samples. For a gene set with more than 500
genes, the top 500 genes (~2 % of the genome) with the
most significant fold change were selected. In order to
evaluate the validity of different cutoffs, we built two
additional sets of immune disease signatures by selecting
the top 250 genes and 50 genes. Unsupervised hierarch-
ical clustering analyses of immune disease signatures
show that the main patterns of co-clustering of different
disease categories retain. However, by focusing on a
smaller number of gene sets, some of the gene sets fall
off from the cluster which may imply that they lose the
disease signature (Additional file 1: Figures S2 and S4).
It is critical to understand the role of immune cell sub-
sets in a given disease. The knowledge will help investi-
gators derive relevant cellular models with focused
functional studies [9]. However, it’s a daunting task to
manage the number of immune cell types with their di-
verse cellular states and dynamic scale of immune re-
sponses [1]. Due to the resource constraints, it’s also not
always feasible to sort the interested cell population and
profile their transcripts [2]. We applied a computational
method to estimate the enrichment of cell specific gene

-
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Fig. 6 Similarity matrix of immune cell type signatures vs. immune disease signatures. Two-hundred-eighty-seven human and mouse immune cell
type signatures were paired against 155 immune disease signatures. Similarity was calculated by Fisher's exact test of overlapping genes for each
pair. Cell type signatures were positioned according to their common cell lineage, and disease signatures were positioned according to their
disease category. Color represents the —log (P value of Fisher's exact test), with red color indicating high similarity, and blue color indicating
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Cc1
Target Linked Disease # of Downstream Gene|
L4 Asthma 535
VDR  Psoriasis 910
IL6 Dermatitis, Allergic Contact| | MS 499
TGFB1 MS 1189
IFNG Dermatitis, Allergic Contact| | Psoriasis| | CD 937
ILIB  Dermatitis, Allergic Contact| | Arthritis, Juvenile | |[RA| | T1D| | Cryopyrin-Associated Periodic Syndromes 921
TNF  Dermatitis, Allergic Contact| | Psoriasis| |UC| | CD| | Arthritis, Juvenile | | Arthritis, Psoriatic| |[RA| | MS| |Sjogren's Syndrome 1457
RELA Dermatitis, Allergic Contact 2547
REL  CD||RA 2024
Cc2
Target Linked Disease # of Downstream Gene
ILIR1  RA||Sjogren's Syndrome 57
CD40LG Psoriasis| |CD| |MS 89
TLR4 Sepsis 251
IL1A Dermatitis, Atopic| | RA 273
IL17A  Psoriasis| | MS, Relapsing-Remitting 151
I8 COPD| | Psoriasis| |[RA 88
IL13 Asthma| | Dermatitis, Atopic| |UC 276

Fig. 7 (See lege

nd on next page.)
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(See figure on previous page.)

Fig. 7 Clustering of immune drug target gene sets vs. immune disease signatures. One-hundred-twenty-six immune drug target gene sets were
paired against 155 immune disease signatures. Hierarchical clustering was performed based on the similarity that was calculated by Fisher's exact
test of the overlapping genes for each pair. (I) Heatmap shows the clustering of drug target gene sets (columns) vs. the disease signatures (rows).
A, B lists the diseases that are represented by disease signatures showing similarity with drug target gene sets indicated by C7 and C2. Bottom bar
chart indicates the number of linked diseases for each drug target shown in the same order as the above heatmap. (Il) C7, C2 tables list the details
of drug targets and their linked diseases for drug target gene set clusters shown in (I)

signatures in mixed tissue, with the goal to characterize
the recruitment or activation of immune cells in the dis-
ease tissues. The similarity matrix along with the un-
supervised hierarchical clustering analysis suggests that
those specifically expressed gene sets do carry lineage
specific signatures, and they retain between human and
mouse. However, caution should be used when we inter-
pret the enrichment of immune cell signatures in disease.
Depending on the percentage of immune cell subsets in

the tissue, the signal can only be captured if the cell type
signature is strong enough. Because of this, attention
needs to be paid to the positive result. Further validation
is required to determine whether the positive result truly
came from cell type specific signal. The negative result
does not necessarily suggest the missing cell type. It may
simply be due to the low percentage of cell type in the
whole mixed tissue. It is also worth noting that the cell
type gene signatures were constructed based on the

(1)
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Fig. 8 Topological localization of drug target genes and signature disease genes. (I) Network-based separation scores of IL17A target genes and
signature disease genes of different disease categories. (Il) Network connection of IL17A target genes and IBD signature disease genes. Line
represents the direct link between the two groups. Green color: IL17A target gene; blue color: IBD signature disease gene; orange color: common

gene. Green color with red outline: target genes have direct connection with more than six signature disease genes
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expression specificity score [9]. This method identifies up-
regulated cell type specific, but not necessary uniquely sin-
gle cell expressed genes in each cell type. Therefore, a
gene may show in multiple cell types, such as CD74,
present in both DC and B cell, and CD244, present in
both NK cell and monocyte (Table 1).

Some common genetic risk factors were reported to
be shared in different autoimmune diseases [14]. Pleio-
tropic module was found to be associated with a wide
variety of immune mediated diseases [15]. Understand-
ing the common disease mechanistic basis will help us
to identify druggable targets for a broader indication.
Systematic analysis of the relatedness of disease gene sig-
natures will shed light on the shared pathways across
different diseases.

Autoimmune and inflammatory diseases can be either
systematic or organ-specific. Psoriasis is an organ-
specific autoimmune disease and it is a chronic inflam-
matory condition characterized by hyperproliferation of
keratinocytes, dermal infiltration of activated CD4+ T
cells, and lesional production of proinflammatory cyto-
kines [16]. Atopic dermatitis is an idiosyncratic cell-
mediated immunologic acute or chronic reaction to an
environmental allergen that comes in contact with the
skin [17]. It is an organ-specific manifestation of a sys-
temic disorder [18]. All gene signatures representing
both psoriasis and dermatitis were from skin tissues, and
they demonstrate high similarities between each other.

Intriguingly, gene signatures from COPD and asthma,
two diseases mainly involving lung tissue, do not share
high similarity with each other despite being from simi-
lar tissue sources. COPD is characterized by airflow limi-
tation that is not fully reversible [19]. All signatures
were generated from lung related tissues. Asthma is
characterized by variable airflow obstruction, airway in-
flammation and hyper responsiveness [20]. The majority
of the asthma signatures were generated from bronchial
brushings or lung biopsies, some from blood, and few
from asthmatic chronic rhinosinusitis nasal mucosa.
Nevertheless, COPD signatures share limited similarities
with signatures from skin (psoriasis/dermatitis), and
some other tissues.

Most signatures for sclerosis and T1D are from blood
samples even though their diseases are organ-specific.
All sclerosis signatures except one are from multiple
sclerosis. Multiple sclerosis is a chronic autoimmune
disease characterized by demyelination of the white mat-
ter of central nervous system [21]. However, the signa-
tures were generated from microarray studies that
profiled on samples from blood. Diabetes is also an
organ-specific autoimmune disease, the corresponding
signatures were derived from blood samples; patient
sera, plasma transduced PBMC, or cell lines. The signa-
tures of these two diseases do not share similarity across
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different studies, even within the same disease. We
speculate that the disease gene signatures of organ-
specific diseases, such as sclerosis and T1D, may not be
accurately represented in blood samples.

For the other three diseases, (1) IBD is a group of in-
flammatory conditions of the gastrointestinal tract. The
major forms include Crohn’s disease and ulcerative col-
itis [22]. All signatures were from intestine related tis-
sues. (2) Lupus ranges from solely skin involvement to
systemic disease. Most of its signatures were from blood
samples, fewer from skin and kidney tissues. (3) Arthritis
is an inflammation of one or more joints of the body.
There are more than 100 different forms of arthritis.
The signatures were generated mainly from studies of
patients with osteoarthritis, rheumatoid arthritis, and ju-
venile idiopathic arthritis, with samples from either syn-
ovial tissues or blood. Most of the signatures from those
diseases share similarity with each other, as well as with
signatures from psoriasis and dermatitis. It further im-
plies that blood samples from systemic diseases (i.e.
lupus and arthritis) are most likely to carry the gene sig-
natures of the disease.

Most of the autoimmune or inflammatory diseases are
complex diseases, resulting from a combination of gen-
etic and environmental factors [12]. GWAS have identi-
fied susceptible loci which may lead to insight of disease
etiology [23]. One approach to prioritize SNPs is to an-
notate candidate SNPs with desired genomic features,
such as eQTL (expression Quantitative Trait Loci), etc.
[23]. The present analysis evaluated only the potential
linkage of genetic variation with expression change of
directly linked genes, which does not show significant
correlation. However, the genetic variation can affect
other genes that are either located near the affected gene
(cis-eQTL) or in the other part of the genome (trans-
eQTL) [24]. In addition, there are limitations of our ana-
lysis since we only focus on the highest and most signifi-
cantly regulated genes. For example, IL23R was reported
to be associated with psoriasis by several GWAS studies.
Despite that it showed up-regulations in several of the
studies we analyzed; it was not selected and included in
any of the psoriasis gene signatures due to our selection
criteria. The current analysis missed genes with
moderate transcriptional level changes. An alternative
approach, such as performing the analysis with all regu-
lated genes, could reflect the real eQTL present.

The mapping of drug target gene set vs. disease signa-
ture has revealed not only the closeness of different drugs
in terms of their targeting disease, but also the potential
additional indications. For example, drug target gene sets
in Fig. 7IIA and B show high similarity with disease signa-
tures from IBD, psoriasis, dermatitis, arthritis, and lupus,
etc. These drugs may have potential indications in those
diseases if they have not yet been targeted.
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Network based analysis of signature disease genes as
well as their topological locations with drug target genes
provide us with additional insights to their associations
based on the interactome. In addition to shared com-
mon genes, we found that some diseases are highly asso-
ciated with each other by showing direct connections of
their signature disease genes. Moreover, some signature
disease genes are highly connected with other signature
disease genes. This suggests they are the potential
central nodal points of the diseases. With better under-
standing and completion of the interactome, network-
based topological analysis of genes and signatures will
help to delineate the molecular basis of phenotypical
similarity or difference of diseases [9], as well as to iden-
tify the targetable nodal points of the diseases.

Conclusions

Gene signatures representing transcriptional signals for
immune cell type and disease were built based on tran-
scriptomic profiles. Signatures were mapped against each
other to illustrate conservations of cell subsets within
the same lineage, and across human and mouse. The
disease signature map indicates the heterogeneity of
populations within the disease, as well as connectivity
across different diseases. Gene signatures were mapped
against each other, cell type vs. disease and drug target
vs. disease to build bio-maps based on direct overlap
and/or network-based connection. These bio-maps pro-
vide insight into disease mechanisms to identify poten-
tial targets and develop drugs for broader indications.

Methods

Cell type gene signature

Two data sets were used for generating the cell type
gene signature. The D-MAP compendium consists of 38
distinct human hematopoietic cells (GSE24759) [25]
obtained from blood. The Immunological Genome
Project (ImmGen) consists of expression profiles of
249 mouse sorted cells obtained from immunological
tissues and blood (GSE15907) [26]. For each data set,
data was preprocessed, normalized and sorted based
on method in Hu et al. [9]. For each cell type, a
nonparametric-expression specificity score was gener-
ated for each gene; and genes ranked in the top two
percentile were collected in a gene set to represent the
gene signature for the cell type. Mouse genes were
mapped to human homologs based on HomoloGene.
Twenty human and 58 mouse cell type gene signatures
(Additional file 2: Table S4) were included in the analysis
for Fig. 1 based on the selection of Shay’s paper [7] to rep-
resent different cell lineages with matching human and
mouse cell types. Detailed gene set information can be
found in Additional file 2: Table S1.
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Disease gene signature

One hundred fifty-five gene signatures were generated
from 87 studies that involve nine different immune dis-
eases. Disease samples were compared to normal con-
trols. Disease gene signatures were constructed by DEG
(Differentially Expressed Genes) with FDR< = 0.05. If
there were less than 10 genes, P value < = 0.05, and fold
change > = 2 were used as cutoffs to choose DEG. For
gene sets with more than 500 genes, the top 500 genes
with the most significant fold change were selected.
Detailed gene signature information can be found in
Additional file 2: Table S2.

Immune drug target gene sets

Drugs with disease indication in autoimmune diseases or
diseases involving inflammation were retrieved from
Metabase (Thompson Reuters). Those drugs are either
EDA approved, or in preclinical or clinical trials. Gene
sets were generated by retrieving the direct down-stream
genes of the drug target, and those with more than 10
genes were retained. Total 126 drug target gene sets
were collected. Detailed module information can be
found in Additional file 2: Table S3.

Network topology of disease genes

The human interactome was downloaded from Meta-
base (Thompson Reuters). It contains 15,186 genes, with
150,069 interactions. Disease genes were mapped to the
interactome, and genes with direct links were retained
and visualized using Cytoscape.

Relationship between gene sets

Fisher’s exact test and Chi-square test were applied to
assess the similarity of two gene sets by evaluating the
significance of the overlapping genes. Network-based
separation analysis was used to evaluate the separation
of two gene sets on the interactome according to the
method by Menche et al. [11].

< dAA >+ < dBB >
2

SAB =< dAB > -

Network-based separation SAB of two gene sets A and
B is quantified by comparing the mean of the shortest
distance <dAA> and <dBB> within the respective gene
set, to the mean of the shortest distance <dAB> between
two gene sets.

Additional files

Additional file 1: Figure S1. Hierarchical clustering of immune cell
gene signatures from human and mouse. Seventy-eight immune cell
gene signatures were paired against each other. Hierarchical clustering
was performed based on the P value of the Fisher's exact test. The X-axis
color bars represent the cell lineage, and species from which the cell
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gene signatures were derived. Dotted lines separate the cell type clusters
which show the lineage conservation of cell gene signatures between
human and mouse. In each cluster, cell gene signature tends to clus-

ter more with gene signatures from the same cell subset and the same
species, than groups with those from the other species. HSC:
Hematopoietic Stem Cell; GN: Granulocyte; MO: Monocyte. Figure S2.
Hierarchical clustering of immune disease gene signatures. One-hundred-
fifty-five Immune disease gene signatures were paired against each other.
Hierarchical clustering was performed based on the P value of the Fisher's
exact test. The X-axis color bars represent the disease category. Dotted
boxes show the clustering of disease gene signatures from different disease
categories. Figure S3. Hierarchical clustering of immune cell signatures vs.
immune disease signatures. Two-hundred-eighty-seven human and mouse
immune cell signatures were paired against 155 immune disease signatures.
Hierarchical clustering was performed based on the similarity that was
calculated by Fisher's exact test of the overlapping genes for each pair. The
heatmap shows clustering of disease gene signatures (columns) vs. the cell
type signatures (rows). Figure S4. Hierarchical clustering of immune disease
gene signatures with different cutoffs. One-hundred-fifty-five Immune dis-
ease gene signatures with cutoff of either 250 genes (I) or 50 genes (1)
were paired against each other. Hierarchical clustering was performed
based on the P value of the Fisher's exact test. The X-axis color bars
represent the disease category. Dotted boxes show the clustering of
disease gene signatures from different disease categories.

Additional file 2: Table S1. Human and mouse cell type gene
signatures. Table S2. Immune disease gene signatures. Table S3.
Immune drug target gene sets. Table S4. Cell type gene signatures used
in Fig. 1.
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