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Abstract

Background: Network visualization and analysis tools aid in better understanding of complex biological systems.
Furthermore, to understand the differences in behaviour of system(s) under various environmental conditions
(e.g. stress, infection), comparing multiple networks becomes necessary. Such comparisons between multiple
networks may help in asserting causation and in identifying key components of the studied biological system(s).
Although many available network comparison methods exist, which employ techniques like network alignment and
querying to compute pair-wise similarity between selected networks, most of them have limited features with respect
to interactive visual comparison of multiple networks.

Results: In this paper, we present CompNet - a graphical user interface based network comparison tool, which allows
visual comparison of multiple networks based on various network metrics. CompNet allows interactive visualization of
the union, intersection and/or complement regions of a selected set of networks. Different visualization features
(e.g. pie-nodes, edge-pie matrix, etc) aid in easy identification of the key nodes/interactions and their significance
across the compared networks. The tool also allows one to perform network comparisons on the basis of
neighbourhood architecture of constituent nodes and community compositions, a feature particularly useful
while analyzing biological networks. To demonstrate the utility of CompNet, we have compared a (time-series)
human gene-expression dataset, post-infection by two strains of Mycobacterium tuberculosis, overlaid on the
human protein-protein interaction network. Using various functionalities of CompNet not only allowed us to

comprehend changes in interaction patterns over the course of infection, but also helped in inferring the
probable fates of the host cells upon infection by the two strains.

Conclusions: CompNet is expected to be a valuable visual data mining tool and is freely available for
academic use from http://metagenomics.atc.tcs.com/compnet/ or http://121.241.184.233/compnet/

Background

Interaction networks are a convenient way of repre-
senting the complex nature of multi-component sys-
tems. Examples of such complex systems include
biological pathways, social interactions, financial mar-
kets, management systems, multiple modules in a
programming language, etc. Recent emergence of sys-
tems biology has brought biological networks into
focus. Such biological networks can be of various
types, ranging from protein-protein interactions, gene
regulatory networks, metabolic networks, microbe
co-occurrence and co-inhibitory networks, etc., and
can be investigated wusing appropriate network
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analysis methods [1-10]. Depending on the type of
the network, variations may arise due to several
internal/external factors like inheritance/evolution,
environmental stress, infection, etc. Identification and
interpretation of these variations are therefore crucial
in understanding the respective biological system.

In addition to comparison of graph properties/metrics
in form of tables or charts, identifying and comprehend-
ing the patterns of variations across different networks
becomes several folds easier if provisions exist for visual
comparisons, such as creation of graph layouts, overlay-
ing of multiple networks, and interactive analysis of
graph components. Several currently available methods/
tools allow comparison of multiple interaction networks,
the majority of which focuses on network alignment,
querying, and sub-graph matching [11-14]. With

© 2016 Kuntal et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1013-x&domain=pdf
http://metagenomics.atc.tcs.com/compnet/
http://121.241.184.233/compnet/
mailto:sharmila.mande@tcs.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kuntal et al. BMC Bioinformatics (2016) 17:185

increasing interests in systems biology, tools specialized
for analysis of complex metabolic networks (represented
in information rich graph formats like SBML) has also
been developed [15]. These tools employ different
algorithms to compute pair wise similarity between
selected networks/paths. Although some of these tools
like MIMO [15], have options for graphical visualization
of outputs, in general, the network alignment and query-
ing methods do not provide any dedicated module/
options for visual comparison of multiple networks
on a single canvas. On the other hand, there are several
network visualization tools available to researchers, which
enable easy computation and analysis of graph properties
for any given network [16, 17]. However, these network
visualization tools also have limitations pertaining to com-
parative visualization of multiple networks. Cytoscape
[18], the most popular visual platform for studying bio-
logical networks, has a limited number of plugins that
focus on comparing properties of multiple input networks
[19-22]. Although these tools/plugins are useful in their
own context, most of them have limitations with respect
to visual comparison of more than two input networks.
For example, although ‘network analyzer’ [16] provides
tabular summaries and charts/plots depicting the graph
properties of input networks, it does not allow draw-
ing or overlaying of multiple networks/graphs on a
canvas. Similarly, ‘Venn and Euler diagrams’ [23] and
‘Venndiagramgenerator’ [21] provide a comparison of dif-
ferent input networks in terms of constituent nodes, and
by definition have limitations pertaining to the number of
sets (networks) that can be visualized using such dia-
grams. Another Cytoscape plugin, ‘Pinadms’ [24], though
enables comparison/overlay of multiple interaction net-
works, is not designed for generic use. This plugin only
allows comparison of a few predefined sets (or subsets) of
protein-protein interactions. Other plugins of Cytoscape
pertaining to network comparison are also mostly de-
signed for network alignment and querying [25-27]. The
above observations make it apparent that despite the avail-
ability of quite a few popular and comprehensive network/
graph analysis tools, there remains a need for a software
tool/platform that allows interactive visual comparison
and analysis of multiple biological networks at the same
time. In addition, the necessity for such a tool/platform
can be further justified considering that biological
networks exhibit certain characteristic features [28],
and may occasionally require appropriate specialized
comparison approaches apart from commonly used
network metrics.

In this paper we present CompNet - a user-friendly
GUI-based tool, which enables comparison of multiple
interaction networks that are provided in the form of
edge-lists, node-lists (to be overlaid on a background
network), or path-lists. The tool can be used for
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overlaying and subsequent comparative visualization
(and analysis) of multiple networks. CompNet helps to
elucidate similarities/differences between the compared
networks using different network metrics and visualiza-
tions, appropriately designed to highlight the topology of
connections between the constituent nodes, differential
shortest paths, and community distributions. CompNet
intends to complement existing network analysis tools/
platforms and incorporates the methods/metrics/options
which would be used most frequently during multiple-
network comparisons. Any further analysis with other
user-preferred network analysis tools also becomes easy,
given the provisions of exporting the results and net-
works diagrams created using CompNet into user-
friendly output formats.

Implementation

CompNet has been developed using PerlTk and includes
several graph analysis functions from the R ‘igraph’ pack-
age (http://igraph.sourceforge.net). The tool allows easy
visualization of the union, intersection and/or comple-
ment regions of any selected set of networks. Different
visualization features (e.g. ‘pie-nodes’, ‘edge-pie’ matrix,
‘chart summary’, etc.) aid in easy identification of the
key nodes/interactions and their significance across the
compared networks. The option for hierarchical cluster-
ing of networks (trees) based on constituent nodes/
edges, using Jaccard similarity index, helps one to find the
relative similarity between selected networks. CompNet
neighbor similarity index (CNSI), a new metric for net-
work similarity, can be used for capturing the neighbor-
hood architecture of constituent nodes. Based on generic
network properties, community composition, and shortest
paths, a visual comparison of multiple networks using
CompNet enables one to obtain deeper biological insights.
Figure 1 provides a snapshot of the CompNet GUI and
highlights few of the salient features of this tool.

Networks may be imported in CompNet by providing
either (a) egde-lists, (b) path-lists or (c) a set of nodes to
be overlaid on a ‘background’ network (Additional file 1:
Figure S1). ‘Edge-list’ refers to a text file containing a list
of node pairs (each line containing a pair of nodes). An
edge is drawn in the displayed network between every
set of nodes forming a pair. Path-lists are similar input
files, where each of the lines in the input file contains
multiple nodes in a specific order (a path). Edges are
drawn in the network between every consecutive node
in a given path. The third option of overlaying nodes on
a background network essentially involves constructing a
network by selecting only the interconnections between
nodes of interest (‘overlaid nodes’) from a larger user
provide network (‘background network’).

CompNet allows identification of the union, intersec-
tion and exclusive edges amongst a selected set of
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Fig. 1 (@) CompNet canvas displaying the union of eight protein-protein interaction networks. The names of nodes belonging to different
communities are marked with different colors. (b) The ‘pie-nodes’ representation enables to identify presence/absence of individual nodes across the
compared networks. (c) The cumulative community distribution plot (d) Bubble chart representing similarity between networks (e) Hierarchical tree

networks using simple GUI operations. The ‘union’ op-
eration identifies (and displays) all the nodes and edges
which are included in any of the loaded/selected net-
works. In contrast, the ‘intersection’ operation compares
two or more selected graphs/networks to identify (and
display) only those nodes and edges which are com-
monly present in each of the selected networks. The
‘exclusive’ feature identifies and displays the nodes and
edges which are specific/exclusive to the selected net-
works. While rendering multiple networks on the canvas
each node is represented as a ‘pie’ with differently
coloured pie-slices corresponding to the source net-
works (Additional file 1: Figure S2). Hence, with a first
glance at the canvas, a user can easily ascertain the affili-
ations of the nodes to any of the depicted networks. An
array of other user friendly visualization options in
CompNet enables the user to study the distribution of
nodes/ edges across selected networks, communities and
sub-graphs (Additional file 1: Figures S3 and S4).
CompNet makes the comparison of multiple networks
convenient by providing a distribution of global graph prop-
erties like total nodes, total edges, density, clustering coeffi-
cient, average path length and diameter of the loaded
networks (Additional file 1: Figure S5). These metrics allow
to better understand how well connected are the compo-
nents of the analysed network and enable assessment of its

robustness and modularity [29]. A more detailed and flex-
ible comparison can be made on the basis of node-
specific properties like degree, centrality, betweenness,
closeness, eccentricity and coreness, with options to map
these specific graph properties as node sizes (proportion-
ally to the selected metric) (Additional file 1: Figures S6,
§7, S8, S9 and S10). Centrality measures are important in
understanding the key components of any network. Very
well connected nodes (which have a high degree values) in
a biological network are often functionally more import-
ant [30-32]. High betweenness, on the other hand, char-
acterizes nodes which lie in a significant number of paths
connecting different parts of the network [30-32].

For a similar set of networks, like those representing
time-series data or protein interactions from healthy ver-
sus diseased tissues/cells, the changes in shortest paths
might provide valuable insights in understanding the
biological mechanism [33]. CompNet allows the user to
identify such shortest paths from multiple networks with
ease, and visually trace/compare these paths (Additional
file 1: Figure S11). An unweighted breadth-first search is
used to calculated the shortest path between the source
and target nodes using the ‘igraph’ library [34]. Add-
itionally, shortest paths between multiple sets of sources
and targets can also be computed with CompNet by pro-
viding it with two separate files containing lists of sources
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and targets. This feature can be utilized to perform short-
est path based analyses, similar to the ‘express path’ ana-
lyses study by Karim and coworkers [33].

CompNet allows assessment of statistical significance
of the network properties calculated for any network/
sub-network displayed on the CompNet canvas. Users
can evaluate whether the global network properties,
namely network diameter, network density, clustering
coefficient and average path length, are significantly dif-
ferent from background network. The background net-
work can either be the union of the networks under
comparison, or a user defined network. CompNet draws
a large number of random sub-networks from the speci-
fied background network, the sizes of each of these
random networks being equivalent to the size of the net-
work being assessed (query network). The size and the
number of random networks to be generated can also be
specified by the user. The graph properties for all these
‘similar sized’ random networks are then calculated and
properties of the query networks varying significantly
from these ‘background’ distributions are assessed with a
Z-test [35]. The results are displayed graphically with
associated p-values depicting the significance of any ob-
served variation(s). All the values can also be exported
as text files for further analysis.

CompNet detects ‘communities’ in the union network
(using standard ‘igraph’ library methods [34]) and colors
them distinctly, and lists them in the ‘Community’ tab in
a descending order of their size (Additional file 1:
Figures S12, S13 and S14). CompNet also incorporates
different methods to compute (and visualize) similarities
between multiple networks. Pairwise Jaccard similarities
[36] can be computed by considering the distribution of
nodes (Eq. 1) and edges (Eq. 2) in the compared net-
works. A greater number of shared nodes or edges be-
tween two networks will result in higher Jaccard index
values and imply a greater extent of similarity.

Nodes® n Nodes®
Nodes® U Nodes®

Jaccard Node similarity =

(1)

Edges® n Edges®

Jaccard Edge similarity =
& 4 Edges™ U Edges®

(2)

Where ‘A’ and ‘B’ are the compared networks and the
similarity values are computed based on the set of
nodes/edges present in A and B.

CompNet incorporates a method for comparison of
neighborhood similarities of the constituent nodes
between the compared networks. CompNet neighbor
similarity index (CNSI) (Eq. 3) can be used for capturing
the neighborhood architecture of constituent nodes.
Two nodes (from two compared networks) are deemed
to be more similar if the lists of their immediate
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neighbors overlap. An overall similarity score, cumulated
for all constituent nodes, is finally used to designate the
similarity between two compared networks.

A . 7B
N fn,' nf}’l,‘

CNSI = ZizlfA o/ (3)
n; n

Where n; is the ‘I'th node in the union of compared
networks A and B (consisting of a total of N nodes), and
f.* and f,;® are the first neighbors of n; in the networks
A and B respectively.

Based on the similarities computed between compared
networks, CompNet enables generating hierarchical clus-
tering diagrams (dendograms) [37] and bubble charts
(Additional file 1: Figure S15).

Results and discussions

Insights into Mycobacterium tuberculosis infection through
comparison of multiple biological interaction networks
using CompNet

Tuberculosis is currently a global health problem and
nearly a third of the world’s population is feared infected
with the causative Mycobacterium tuberculosis (Mtb).
However, active disease is not expressed in all infected
individuals. The choice between the alternate outcomes
(latent-infection/active-disease) is dictated by a complex
network of interactions in the host and the pathogen.
Moreover, different strains of Mtb have been observed
to elicit different types of responses in the human host.
Considering the multi-component nature of the human
immune response, adoption of a network comparison
based approach is expected to provide better insights
while analyzing different infection types/conditions. In a
previous study [33], a network based approach (using
shortest-path comparisons) was used for identifying key
regulatory nodes controlling host response during tuber-
culosis infection. We have used CompNet to re-analyze
the time-series micro-array datasets used in this study.
These datasets pertain to gene-expression of human
macrophages infected with two strains (H37Ra and
H37Rv) of M. tuberculosis. While the strain H37Rv is
known to avoid the host defensive mechanisms, thereby
causing persistent infection, the other strain H37Ra is an
attenuated avirulent strain. Various network comparison
approaches, implemented in CompNet, have been used
to identify key genes and biological processes that are
likely to play crucial roles during host response to Mtb
infection.

In the present analysis, the gene expression data of
human macrophages infected with H37Ra and H37Rv at
5 infection time-points (0, 8, 16, 48 and 90 h) were
downloaded from the supplementary material provided
by Karim and co-workers [33]. For every time-point,
only the significantly perturbed nodes (having |expression
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values| > =3, i.e. showing both highly positive as well as
negative perturbations) were filtered and obtained as ‘node
lists. The human STRING (version 9.0) interaction net-
work [38], filtered with a stringent cut-off score of >900
(ie. retaining only high confidence interactions), was
loaded as a background PPI network in CompNet. Upon
overlaying the node lists on this background, eight net-
works were obtained (the 0 h time-point was excluded
since it had no significantly perturbed genes). These net-
works depicted the progression of host cell responses
against infections by H37Ra and H37Rv strains of Mtb.

Overlaying differentially expressed genes on the host
protein-protein interaction network reveals a well
coordinated host-response mechanism

To build the host-response network(s) of infection by
the two strains H37Ra and H37Rv (abbreviated as ‘RA’
and RV’ respectively), relevant human gene expression
data [33] corresponding to four post-infection (8, 16, 48
and 90 h) time-points were considered. The sets of
differentially expressed genes were identified for each
time-point. The host (human) protein-protein inter-
action (PPI) network was suitably modified to represent
a background network for overlaying the differentially
expressed genes. Individual interaction networks (RAS,
RA16, RA48, RA90, RVS8, RV16, RV48 and RV90), repre-
senting only the most significantly perturbed interac-
tions (involving both up-regulated and down-regulated
genes), were thereby generated for each infection time-
point (Additional file 1: Figure S1). This was done to
ensure that the focus of the analysis was restricted to
highly ‘perturbed’” but ‘connected’ components in the
network, rather than the whole set of differentially regu-
lated genes. It is imperative that the connected nodes/
proteins in the PPI networks represent some biological
function brought about by the coordinated effort of mul-
tiple genes/proteins. It also needs to be considered here
that host response is not instantaneous, but a prolonged
and well orchestrated event. Genes/proteins perturbed at
one time-point can affect its neigbouring genes/proteins
(in the interaction network) at subsequent time-point(s).
Therefore a union of all the individual time-point and
infection-type specific networks consisting of perturbed
nodes (and their known inter-connections) was con-
structed to obtain an overall view of the host cell ma-
chinery responding to the infection. It may be noted
here, that although creation of such a ‘union’ network,
and subsequently drawing any inferences from its
analysis, may seem inappropriate (given the different
types of infections), it needs to be considered that each
of the connections in this ‘union’ network represent
‘known’ protein-protein interactions (high confidence in-
teractions from STRING) in the host cell. Creating a
‘union’ therefore allows not only to obtain an overall
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view of the host response (independent of the infection-
type), but also to identify the sets of nodes/interactions
which lie in the interface of the two types of infection-
specific responses. Furthermore, finding communities/
modules and attributing potential functional roles to
them seems more appropriate in an expectedly ‘larger’
and ‘dense’ union network than in relatively ‘smaller’
infection-type/time-point specific networks. The contri-
bution of such communities/modules in host response
against/at a specific infection-type/time-point can subse-
quently be investigated by checking the affiliations of the
constituent nodes/edges to any of the ‘smaller networks’.

When the significantly up-regulated/down-regulated
genes were considered, a total of 358 nodes (representing
genes/proteins) connected by 609 edges (representing in-
teractions between the genes/proteins) were observed in
the union of all the networks (Additional file 1: Figure S2).
A closer look into the network statistics using CompNet
(see Methods) revealed that the union network had a sig-
nificantly (p <0.05) higher network density (0.010) and
clustering coefficient (0.501) as compared to random net-
works of similar sizes (mean network density =0.001,
mean clustering coefficient = 0.263 computed for 10,000
random networks), drawn from the same background net-
work. The average path length of the union network was
further observed to have a significantly high value of 5.808
(p <0.05), in contrast to what could be expected for a net-
work having similar size (mean of average path lengths of
10,000 random networks = 2.867). These results suggest
that the genes exhibiting perturbed expression during in-
fection are more densely connected to each other, than
any randomly chosen set of genes/proteins in the back-
ground (human) PPI network, thereby suggesting a well
coordinated host response mechanism during infection. A
detailed analysis of network properties, while cumulating
the infection type specific networks (across all time
points) into separate ‘union’ networks, was also per-
formed. These results also echoed the earlier observations
pertaining to significantly higher network density and
clustering co-efficient as compared to random networks
of similar sizes (Additional file 1: Table S1).

Indication of central nodes (genes) to be involved in

immune-regulation, cell proliferation and cell death

Additional file 1: Figures S6 and S7 shows the top 10
nodes, in terms of betweenness and degree, in the over-
all union network (containing both up-regulated and
down-regulated genes across four infection time-points
by the two Mtb strains). The colored stacks in the bar-
plots represent the qualitative presence of a gene/node
in the individual networks. The height of individual
stacks in the plot indicates the value of the selected
graph property (e.g., betweenness, degree, etc.). As evi-
dent from the figure, the BIRC5 gene was seen to have
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the highest betweenness as well as the highest degree
and was observed to be present in the networks corre-
sponding to 48 and 90 h post infection by both H37Ra
and H37Rv (i.e, RA48, RA90, RV48 and RV90). KCNJ11
and BUB1B were identified as the nodes having the sec-
ond highest values of betweenness and degree respect-
ively, and were found to be present in the networks
corresponding to the late infection time-point (90 h) for
both H37Ra and H37Rv infections. While the gene
KCNJ11 codes for a membrane protein, BIRC5 and
BUBIB are known to play active roles in promoting cell
proliferation, progression of mitosis and prevention of
apoptosis [39—-43]. Interestingly, both BIRC5 and BUB1B
were observed to be significantly down-regulated during
the late infection stages (48th and 90th hour time-
points) in both H37Ra and H37Rv infected macro-
phages. This observation leads to the question as to
whether apoptosis could be the probable fate of both
types of infected cells. Results obtained during a subse-
quent community analysis (see next section) however in-
dicate that a higher rate of apoptosis is induced in case
of infection with H37Ra cells. When the H37Ra and
H37Rv infection specific host response networks were
separately analysed (i.e. one union network consisting
RAS8, RA16, RA48, RA90, and another union network
consisting of RV8, RV16, RV48, RV90, respectively),
similar sets of central nodes (Additional file 1: Figure S8),
as compared to those found in the overall union network,
were identified. Genes like BIRC5, KCNJ11, INS-IGF,
SOCS3 and FOXA2 were observed to have high between-
ness in the union of host response networks against
H37Ra infection, and were present exclusively in the net-
works corresponding to later time points of infection.
These genes have been reported earlier to be associated in
inducing apoptosis [39-41, 44—46]. Furthermore, except
BIRCS5, all of these genes were found to be upregulated
during H37Ra infection. BIRC5, as mentioned earlier, is a
negative regulator of apoptosis, and based on these obser-
vations it may be expected that a higher rate of apoptosis
is induced in case of infection with H37Ra cells. In con-
trast, a majority of central nodes identified in the union of
host response networks against H37Rv infection, which
includes CCNA2, BIRC5, CHEK1, CDC6 and E2F1, were
found to be downregulated during late infection time-
points. Given that these genes also have reported roles in
regulating apoptosis [39, 42, 47-50], the observations are
indicative of an alternate outcome of infection with
H37Rv as compared to H37Ra infection.

While analyzing the distribution of up-regulated and
down-regulated genes (nodes) in different host response
networks, up-regulation of 231 genes were found to be
exclusive to either H37Ra or H37Rv infected cells. In
contrast, only 25 of the down-regulated genes were
found to be exclusively present in either H37Ra or
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H37Rv infected host response networks. Subsequently
host response networks consisting of significantly up-
regulated and down-regulated genes were separately
constructed and analysed. As expected (from the distri-
bution patterns of up-/down-regulated genes), the net-
works consisting of up-regulated host genes could
discriminate better between response to H37Rv and
H37Ra infections. Additional file 1: Figure S9 depict the
union of the ‘up-regulated’ host response networks (for
different time-points), highlighting the degree and be-
tweenness of individual nodes. The ‘pie-nodes’ represen-
tations also depict the association of each of the genes to
different infection time-points, thereby allowing easy
identification of time-point specific mediators (genes) of
host response. In contrast to the observation mentioned
in the previous paragraph, a new set of nodes having
high values of degree and betweenness were identified
(Additional file 1: Figure S10 represents the top 10 per-
turbed nodes). These genes included INS-IGF2 (an auto
antigen that causes auto immunity and cell death [44]),
SOCS3 (a suppressor of cytokine signaling [45]), CCR5
(known to be an important co-receptor for macrophage-
tropic virus, including HIV, facilitating entry into host
cells [51]), IFNG (having antiviral, immunoregulatory
and anti-tumor properties and a potent activator of mac-
rophages [52]) and IL17A (a pro-inflammatory cytokine
produced by activated T cells [53]). The stacks in the bar
plots (Additional file 1: Figure S10) and the coloured
slices of the pie-nodes (Additional file 1: Figure S9) fur-
ther indicate that most of the nodes from this new set
are exclusive to networks corresponding to infection by
the H37Ra strain. The genes INS-IGF2, SOCS3, CCR5,
IFNG and IL17A, known to be involved in immune re-
sponse, are found to be specific to the networks corre-
sponding to H37Ra infected cells. This observation
indicates stronger host response to infection by H37Ra
as compared to that by the H37Rv strain.

Community analysis reflects differences in host response
during progression of infection by virulent and avirulent
strains

Inferring the fate of infection from the expression levels
and connections between individual nodes in the net-
work may not be sufficient for a complete understanding
of the complex biological system. To get a deeper
insight, the analysis was further extended to detect
closely connected communities/modules in the union
network and subsequently analyze their functional par-
ticipation. A total of 65 such modules were identified
from the union network (consisting of both up-regulated
and down-regulated genes) using the ‘fast-greedy’ com-
munity detection algorithm (default option in CompNet)
[54]. The 3 largest communities, referred to as ‘C1’, ‘C2’
and ‘C3 (Fig. 2), constituted of 142 nodes densely
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connected with 412 edges. Closely knit communities of
genes are expected to contribute to related biological
processes/pathways [55]. To investigate such functional
aspects of the identified communities, the constituent
nodes of C1, C2 and C3 were selected from the Comp-
Net canvas for performing an ontology enrichment study
(GO enrichment) using the DAVID tool [56, 57]. A for-
matted output showing the biological processes associ-
ated to the three communities is shown in (Additional
file 1: Table S2). While the nodes constituting commu-
nity C1 are mostly involved in regulation of cell cycle
and cell division, the other two communities (C2 and
C3) participate in various cellular signaling processes,
inflammation and chemotaxis (Fig. 2). Interestingly,
members of the community C3, in addition to cell sig-
naling, are also involved in processes like secretion, cell
death and apoptosis.

The cumulative community distribution profile, plot-
ted using CompNet, indicated some interesting results
(Additional file 1: Figure S12). For example, the number
of nodes/edges present in these communities varied sig-
nificantly across the individual networks (representing
the different time-points post-infection). The number of
‘differentially regulated’ nodes, constituting these
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communities, steadily increased till the 48th hour time-
point for both H37Ra and H37Rv infected cells. For both
types of infection, the maximum perturbation at the
48th hour time-point was observed in community Cl1,
which was the largest community in the union network.
Additional file 1: Figure S13 depicts the intersecting
edges between the networks RA48 and RV48. As one
would expect, it was observed that a majority of the
intersecting edges belonged to the community C1. The
members of the community C1, when visualized as an
‘edge-pie’ matrix plot (depicting the edge distribution
across the networks), further revealed that almost all of
the interactions from community C1 for the 48th hour
time-point were common for both H37Ra and H37Rv
infected cells (Additional file 1: Figure S14). This obser-
vation can probably be attributed to some defense mech-
anism commonly employed by the human cell against
both H37Ra and H37Rv infection.

It was also interesting to note that the total number of
interactions involving differentially regulated genes sig-
nificantly reduced in H37Rv infected cells at the 90th
hour time-point. Only a slight increase in the number of
perturbed nodes in community C2 could be spotted for
H37Rv infected cells. In contrast, for the H37Ra infected
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cells, the total number of interactions involving per-
turbed genes further increased at this late time-point
post-infection. Additional perturbations in the latter case
could also be identified in communities C2 and C3.

Increase in perturbations in the community C2, ex-
pected to be associated with enhanced activity of the cell
signaling and inflammation pathways, could be noticed
for infections by both H37Ra and H37Rv. However,
increased number of differentially regulated genes in com-
munity C3 was found to be exclusive to H37Ra infection.
As mentioned earlier, GO enrichment analysis indicated
that regulatory paths for several biological processes like
programmed cell death, apoptosis, and secretion were as-
sociated to this community. This observation seems to be
consistent with earlier studies which indicated that H37Ra
infection induces apoptosis to a much higher degree than
infection by the H37Rv strain [58—60].

The gradually increasing perturbations in case of
H37Ra infection probably pertains to the continued ef-
forts of the host cell towards neutralizing the avirulent
strain. On the other hand, the initial increase and subse-
quent reduction in the number of differentially regulated
genes, observed in case of H37Rv infection, probably
points at the pathogen evading the host defense systems,
thereby proceeding towards a persistent infection.

Inferring similarity between host response networks by
comparing node-neighbourhoods

CompNet incorporates a method for comparison of
multiple interaction networks on the basis of neighbour-
hood similarities of the constituent nodes. Two nodes
(from two compared networks) are deemed to be more
similar if the lists of their immediate neighbours overlap.
An overall similarity score (called CNSI or CompNet
neighbour similarity index), cumulated for all constitu-
ent nodes, is finally used to designate the overall similar-
ity between any two compared networks. The eight
networks corresponding to the different infection time-
points by H37Ra and H37Rv were compared using this
method. The results of the comparison, in the form
of a bubble chart and a dendogram (Additional file 1:
Figure S15), depicted grouping of the different networks
according to their similarities. At a first glance, the bubble
plot of ‘similarity profile’ between the networks showed
that the networks corresponding to the 48th hour time-
point post infection by both H37Ra and H37Rv had the
highest CNSI (represented by the largest bubble on the
chart). The dendogram placed the networks correspond-
ing to the late infection time-points (48 and 90 h post
infection) in a single separate cluster, indicating their
similarity as compared to the early infection time-points
(8 and 48 h). A closer look into this clustering also
revealed that while the host response at the 48th hour
time-point was similar for both types of infection, the
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response for H37Ra infection at the 90th hour time-point
was well separated from other late infection time-points.
This observation could probably be attributed to the ag-
gravated host response to H37Ra infection at the 90th
hour time-point and is in line with the expected outcome.
In summary, a clear grouping of networks during early
and late infections is evident from the CNSI-based group-
ing of networks. Also, the distinct nature of the network
corresponding to 90th hour time-point post H37Ra infec-
tion probably pertains to the relatively intense host re-
sponse against the avirulent H37Ra strain.

The dataset used for the current case study had been
originally analysed by Karim and co-workers, using
‘express-path analysis’ [33], which essentially involved
identifying ‘shortest paths’ (in a gene-/protein-interaction
network) enriched with nodes (genes) showing the
most-perturbed gene-expression values. These paths
can be expected to control the alternate outcomes of
virulent/avirulent infections through gene-regulation/
protein-protein interaction events. This previous study
had identified the ‘Tyrosine kinase SRC regulon’ to play
an important role during Mycobacterial infections. The
shortest path finding/analysis feature of CompNet can be
used to easily replicate the ‘express-path analysis’ on the
chosen dataset. The current case-study aimed at analysing
the data from a different perspective, and to highlight how
different network characteristics (e.g. centralities, commu-
nity structures and neighbour similarities) when viewed in
combination with the gene-/protein-functions, can help
understand the infection outcomes. Since the perspectives
and approaches adopted in the current case-study differ
from the original ‘express-path’ analysis, the scope of
comparing results is limited. However, it may be
noted that the alternate outcomes of infection by
H37Ra and H37Rv strains could be successfully inferred
using both the earlier and the current approach. Further-
more, genes/proteins identified to be involved in host
response, using the two different approaches, were
observed to have similar functional profiles. For ex-
ample, Karim et al. [33] identified ‘immune responses’
and ‘gene regulation’ to be the major functional clas-
ses of genes showing discrete regulation between
H37Ra- and H37Rv-infected cells. In the current
case-study using CompNet, communities in the union
(host response) network, associated to ‘inflamation
pathways’, ‘cell signalling’, ‘secretion’, and ‘programmed
cell death’, were observed to be differentially contrib-
uting to the late time-point specific networks corre-
sponding to H37Ra and H37Rv infections.

Conclusions

The varying numbers of ‘connected perturbations
identified by CompNet, helped in ascertaining the key
components involved in host response against the
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avirulent H37Ra and the virulent H37Rv strains of M.
tuberculosis. The gradually increasing perturbations in
case of H37Ra infection probably pertains to the contin-
ued efforts of the host cell towards neutralizing the
avirulent strain. On the other hand, the initial increase
and subsequent reduction in the number of differentially
regulated genes, observed in case of H37Rv infection,
probably points at the pathogen evading the host
defense systems, thereby proceeding towards a persistent
infection. However, the observations made in this case
study pertain to only a selected subset of significantly
perturbed genes/interactions, and therefore require cau-
tious interpretation. The primary objective of the present
study was to demonstrate the ease with which multiple
network comparison (in this case pertaining to host re-
sponse at different infection time points against different
strains of M. tuberculosis) can be performed with Comp-
Net in order to draw biologically relevant inferences. In-
clusion of experimental data at more time-points as well
as with additional strains of Mtb (including MDR and
XDR strains) will be useful in similar network based
studies and likely to help in unraveling of newer per-
spectives on Mycobacterial infection.

CompNet is a user-friendly tool which allows
simultaneous visualization and comparison of multiple
networks. In addition to computing generic graph prop-
erties for individual networks, the tool allows multi-
graph comparisons and similarity based grouping of
networks. CompNet also allows visual identification and
selection of sub-graphs/communities of interest, enab-
ling a general user to work with and compare between
sufficiently complex and large networks. In this work we
have demonstrated how CompNet can be used to per-
form different analyses with multiple biological networks
in order to obtain meaningful insights. Inspite of having
several generic, as well as, specialized plug-ins for net-
work analysis, the popular network analysis platforms
like Cytoscape have limited user friendly options per-
taining to comparison/visualization of multiple networks
on the same canvas. CompNet intends to fill in this par-
ticular gap and make ‘multiple network comparisons’
easy. It may however be noted that the network analysis/
comparison operations, and most of the metrics com-
puted by CompNet, comprise only a subset of all pos-
sible network analysis methods. Encompassing all of
these methods/techniques into a single platform, being a
Herculean task, can be best addressed by community
supported development e.g. Cytoscape plugins. Given this,
CompNet only includes the methods/metrics/options
which would be used most frequently during multiple-
network comparisons, while keeping options open for the
user to export the networks/data from CompNet into
other user-preferred tools (like Cytoscape) for further ana-
lysis. It may be noted here that designing CompNet as a
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Cytoscape-plugin has not been considered in order to
avoid dependency and portability issues associated with
Cytoscape (and Java) versions [61]. However we ac-
knowledge the ample number of visualization options
in Cytoscape along with its different useful plugins.
In view of this, CompNet provides options for easy
export of networks to Cytoscape compatible formats
(GML and edge-lists). CompNet is expected to be a valu-
able tool for biologists and other researchers working in
the field of visual data mining.
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