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Abstract

Background: Mixed graphical models (MGMs) are graphical models learned over a combination of continuous and
discrete variables. Mixed variable types are common in biomedical datasets. MGMs consist of a parameterized joint
probability density, which implies a network structure over these heterogeneous variables. The network structure
reveals direct associations between the variables and the joint probability density allows one to ask arbitrary
probabilistic questions on the data. This information can be used for feature selection, classification and other
important tasks.

Results: We studied the properties of MGM learning and applications of MGMs to high-dimensional data
(biological and simulated). Our results show that MGMs reliably uncover the underlying graph structure, and
when used for classification, their performance is comparable to popular discriminative methods (lasso regression and
support vector machines). We also show that imposing separate sparsity penalties for edges connecting different types
of variables significantly improves edge recovery performance. To choose these sparsity parameters, we propose a new
efficient model selection method, named Stable Edge-specific Penalty Selection (StEPS). StEPS is an expansion of an
earlier method, StARS, to mixed variable types. In terms of edge recovery, StEPS selected MGMs outperform
those models selected using standard techniques, including AIC, BIC and cross-validation. In addition, we use
a heuristic search that is linear in size of the sparsity value search space as opposed to the cubic grid search
required by other model selection methods. We applied our method to clinical and mRNA expression data
from the Lung Genomics Research Consortium (LGRC) and the learned MGM correctly recovered connections
between the diagnosis of obstructive or interstitial lung disease, two diagnostic breathing tests, and cigarette
smoking history. Our model also suggested biologically relevant mRNA markers that are linked to these three
clinical variables.

Conclusions: MGMs are able to accurately recover dependencies between sets of continuous and discrete
variables in both simulated and biomedical datasets. Separation of sparsity penalties by edge type is essential
for accurate network edge recovery. Furthermore, our stability based method for model selection determines
sparsity parameters faster and more accurately (in terms of edge recovery) than other model selection methods. With
the ongoing availability of comprehensive clinical and biomedical datasets, MGMs are expected to become a valuable
tool for investigating disease mechanisms and answering an array of critical healthcare questions.
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Background
Integrating biomedical datasets from different data
streams (e.g., omics, clinical) and of different types (con-
tinuous, discrete) is of utmost importance and has be-
come an analysis bottleneck in biomedical research.
Ideally, one would like to be able to uncover all direct
associations between variables and/or perform feature
selection and classification tasks using all data. The first
task can reveal disease mechanisms and the second can
be used to select variables characteristic of disease sta-
tus, therapy outcome or any other variable of clinical
importance. Graphical models have been used in the
past for both of these tasks, but they are often limited to
datasets with discrete-only or continuous-only variables.
Traditional univariate approaches for feature selection
exist as well, but they also often operate on a single data
type. In addition, due to the high dimensionality and co-
linearity of biological data, markers selected by these
standard feature selection algorithms can be unstable
and lack biological relevance [2], a problem that has re-
cently been addressed directly [3]. Many existing models
that do integrate different data types make heavy use of
prior knowledge [4, 5] and as such are not easily extend-
able to clinical and other data that are not well studied.
As a result, although numerous biomedical data sets
exist with genomic, transcriptomic and epigenetic data
for each sample, a general framework for integrative
analysis of these heterogeneous data is lacking.
In this paper, we study several strategies for learning

the structure of graphical models over mixed data types
(discrete and continuous) to produce statistically and
biologically meaningful predictive models. We measure
the performance of these strategies in synthetic data (via
true edge recovery) and biological data (via functional
enrichment and performance on classification tasks).
The major contributions of this paper are threefold.

First, we apply an MGM, proposed by Lee and Hastie
[6], to simulated and biological datasets. These data-
sets have higher dimensionality and are derived from
more complicated network structures than datasets
used in previous work with this model. Second, we
propose the use of a separate sparsity penalty for
each edge type in the MGM, which significantly im-
proves performance. Third, to assist with setting the
sparsity parameters we use a heuristic search based
on an existing model selection method (stability ap-
proach to regularization selection – StARS) [1], that
outperforms standard methods.

Prior work
Graphical models are a natural tool for decoding the
complex structure of heterogeneous data and allow for
integration of many data types. They learn a network of
statistical dependencies subject to a joint probability

distribution over the data. Mixed graphical models
(MGMs) are graphical models learned over a mixture
of continuous and discrete features.
A fully specified conditional Gaussian MGM, as char-

acterized by Lauritzen & Wermuth [7] 26 years ago,
would require different continuous distribution param-
eters for every possible setting of the discrete variables.
Restricting ourselves to “homogeneous” models, which
use a common covariance matrix for continuous vari-
ables independent of the discrete variable values, is
therefore necessary to avoid trying to learn a parameter
space that is exponential in the number of variables.
Similar to pairwise Markov Random Fields over only
discrete variables, the main hurdle to the calculation of
likelihood in MGMs is calculation of the partition func-
tion. This computation is intractable with a large num-
ber of discrete variables because it requires summing
over all possible discrete variable settings. Two ap-
proaches to get around this partition function calcula-
tion are: (1) learn separate regressions of each variable
given all of the others [8–10], and (2) maximize a tract-
able pseudolikelihood function instead of the actual
likelihood [6].
Performing separate regressions is a common ap-

proach to the MGM learning problem. This class of
methods learns a conditional distribution for each
node given the rest. Examples of this strategy include
estimation of the sparse inverse covariance matrix of a
multivariate Gaussian by Meinshausen and Bühlmann
[11], and estimation of mixed variable networks via
random forests [8] or exponential families [9, 10]. Al-
ternatively, the pseudolikelihood, proposed by Brasg
[12], is a consistent estimator of the likelihood, and is
defined as the product of the conditional distributions
of each node given the rest. Both of these approaches
thus avoid calculation of the partition function for the
joint distribution by substituting the conditional distri-
butions of each node into the optimization problem.
Separate regressions offer flexibility and are easily par-
allelized, but in both the continuous [13] and mixed
cases [6] estimating the parameters by maximizing the
likelihood or pseudolikelihood, respectively, has the
advantage of better empirical performance. Because of
this we chose the focus our efforts on the MGM learn-
ing approach via pseudolikelihood, as proposed in Lee
and Hastie [6].
Although Lee and Hastie do not test their algorithm

on high-dimensional data, we find that their model is
well suited for high-dimensional learning due to their
inclusion of a sparsity penalty on the parameters. An
important issue that we ran into in our experiments
was that the model would often select too many
continuous-continuous edges and too few edges in-
volving discrete variables. This is likely a combination
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of the phenomenon observed in [9] where linear re-
gressions have better edge prediction performance
than logistic regression between the same nodes and
the fact that Lee and Hastie use the same sparsity
penalty on all edges regardless of the type(s) of
nodes they connect. Lee and Hastie use a weighting
scheme to take into account discrete variables with
differing numbers of categories, but this does not
solve this problem. Therefore, in this paper we intro-
duce a new regularization method for the Lee and
Hastie’s model that uses a different penalty for each
type of edge: continuous-continuous, continuous-
discrete, and discrete-discrete. In addition, because
this approach creates more parameters for the user
to set, we present an edge stability based method for
selecting the three sparsity parameters. We call the
combination of using separate sparsity penalties with
our heuristic search Stable Edge-specific Penalty Se-
lection (StEPS).

Methods
Mixed graphical models
Lee and Hastie [6] parameterize a mixed graphical
model over p Gaussian variables, x, and q categorical
variables, y, as a pairwise Markov Random Field. Here
we briefly summarize their model:

p x; y; Θð Þ∝ exp
�Xp

s¼1

Xp
t¼1

−
1
2
βstxsxt þ

Xp
s¼1

αsxs
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� �
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Xq
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In this model βst represents the interaction between
two continuous variables, xs and xt,ρsj(yj) is a vector
of parameters that correspond to the interaction be-
tween the continuous variable xs and the categorical
variable yj indexed by the levels (i.e., categories) of
the variable yj, and ϕrj(yr, yj), is a matrix of parameters
indexed by the levels of the categorical variables yj,
and yr. In the continuous only case, this model re-
duces to a multivariate Gaussian model where the βst
parameters are entries in the precision matrix. In the
categorical only case, this model is the popular pairwise
Markov random field with potentials given ϕrj(yr, yj); and it
could parameterize an Ising model as in the binary-only
case, for example,. Thus the model serves as a
generalization of two popular uni-modal models to the
multi-modal regime.
In order to avoid the computational expense of cal-

culating the partition function of this model, Lee and
Hastie optimize the negative log pseudolikelihood,
which is:
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Xp
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−
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To ensure a sparse model, ~l is minimized with respect
to a sparsity penalty, λ:

minimizeΘ ~l Θð Þ
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where Θ is a shorthand for all of the model parameters.
The parameter matrices β and ϕ are symmetric, so only
half of each matrix is penalized. Lee and Hastie use an
accelerated proximal gradient method to solve this
optimization problem.
A standard way of handling a categorical variable with

L levels is to convert the variable to L-1 indicator vari-
ables where the last level is encoded by setting all indica-
tors to zero, this is necessary to ensure the linear
independence of variables in the regression problem. Lee
and Hastie’s MGM approach, uses L indicator variables
(i.e., the elements of ρsj(yj) and ϕrj(yr, yj)) to improve in-
terpretability of the model, and enforces a group penalty
to ensure the indicator coefficients sum to zero.
To perform our experiments we adapted the Matlab

code provided by Lee and Hastie (available at http://
www.eecs.berkeley.edu/~jasondlee88/learningmgm.html).

Separate sparsity penalties
Our main modification to the Lee and Hastie model it-
self is that we use different sparsity penalties for the
three edge types: edges connecting two continuous
nodes (cc), edges connecting a continuous and discrete
node (cd) and edges connecting two discrete nodes (dd).
With these penalties, the new optimization problem
becomes:

minimizeΘ ~l Θð Þ þ λcc
X
t<s

βst
�� �� þ λcd

X
s;j

ρsj

			 			
2

þ λdd
X
r<j

ϕrj

			 			
F

Methods for model selection
K-fold cross-validation (CV) [14] splits the data into K
subsets and holds each set out once for validation while
training on the rest. We use K = 5 and average the nega-
tive log-pseudolikelihood of the test sets given the
trained models. The Akaike information criterion (AIC)
[15] and Bayes information criterion (BIC) [16] are
model selection methods that optimize the likelihood of
a model based on a penalty on the size of the model
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represented by degrees of freedom. To calculate the AIC
and BIC, we substitute the pseudolikelihood for the like-
lihood and we define the degrees of freedom of the
learned network as follows.
In the standard lasso problem, the degrees of free-

dom is simply the number of non-zero regression co-
efficients [17]. So, in the continuous case, the degrees
of freedom of a graphical lasso model is the number
of edges in the learned network. In the mixed case,
edges incident to discrete variables have additional
coefficients corresponding to each level of the vari-
able. Lee and Hastie’s MGM uses group penalties on
the edge vectors, ρ, and matrices, ϕ, to ensure that
all dimensions sum to zero. So, in the model, an edge
between two continuous variables adds one degree of
freedom, and edge between a continuous variable and
a categorical variable with L levels adds L-1 degrees
of freedom, and an edge between two discrete vari-
ables with Li and Lj levels adds (Li – 1)(Lj - 1) de-
grees of freedom.
We compare these model selection methods to an or-

acle selection method. For the oracle model, we select
the sparsity parameters that minimize the number of
false positives and false negatives between the estimated
graph and the true graph. While we do not know the
true graph in practice and none of the other methods
use the true graph, this method shows us the best pos-
sible model selection performance under our experimen-
tal conditions.
AIC, BIC, and CV all require calculating the pseu-

dolikelihood from a learned model so to optimize
over separate sparsity penalties for each edge type, we
perform a cubic grid search of λcc, λcd, and λdd over
{.64, .32, .16, .08, .04}.

Stability for model selection
Here we briefly present the StARS procedure [1] refor-
mulated in terms of λ rather than Λ = 1/λ as was origin-
ally described. Given a dataset with n samples, StARS
draws N subsamples of size b without replacement from

the set of
n
b

� �
possible subsamples. An MGM network

is learned for each subsample over a user specified set of
values and a single sparsity parameter, λ. The adjacency
matrices from these learned models are used to calcu-

late, θ̂ st λð Þ, the fraction of subsample networks that pre-
dict an edge from node s to node t. Using this value we

can then calculate edge instability, ξ̂ st λð Þ ¼ 2θ̂ st λð Þ
1− θ̂st λð Þ
� �

, which is the empirical probability of any

two subsample graphs disagreeing on each possible edge
at each value of λ. Liu et al. define total instability of the

graph, D̂ λð Þ , as the average of ξ̂ st λð Þ over all edges:

D̂ λð Þ ¼
X

s<t
ξ̂ st λð Þ

pþ q
2

� � . Very low values of λ will result in very

dense but stable graph, which is not desirable. To avoid
this, StARS monotonizes the instability: �D λð Þ ¼ supλ≤t
D̂ tð Þ and selects λ̂ ¼ inf λ : �D λð Þ≤γf g with γ being a
user defined threshold (called β in [1]). In other words,
starting with a large value of λ that produces an empty
graph, we reduce λ until the total instability hits the
given threshold.

Stable Edge-specific Penalty Selection (StEPS)
We modified the StARS procedure to accommodate se-
lection of separate λ for each edge type. We now define
the total instability over each edge type instead of the

entire graph: D̂ cc λð Þ ¼
X

cc
ξ̂ st λð Þ
p
2

� � , D̂ cd λð Þ ¼
X

cd
ξ̂ st λð Þ

pq ,

D̂dd λð Þ ¼
X

dd
ξ̂ st λð Þ

q
2

� � . Given these separate estimates of

total instability, we then perform the rest of the StARS
algorithm for each λ. This approach does not require
any additional model learning, the only extra computa-
tions in this approach compared to the standard, single
penalty StARS are the additional averages, which are
trivial to calculate. Because the subsample network
learning uses the single penalty MGM, this procedure is
linear in the size of the parameter search space.
Based on the suggestions in [1], and the default pa-
rameters in the R implementation of StARS [18], we
use N ¼ 20; b ¼ 10

ffiffiffi
n

p
, and γ = .05.

Simulated network data
We generated 20 scale-free networks of 100 variables
each, based on the framework of Bollobás et al. [19]
but ignoring edge direction. So, given a number of
nodes to connect, we start with an edge between two
nodes and the rest of the nodes unconnected, we it-
eratively add edges until all nodes are connected. At
each edge addition, we connect two non-zero degree
nodes with probability .3; and we connect a node i
with degree 0 to a node j with non-zero degree with
probability 0.7. In each case, the non-zero degree
nodes are selected randomly with probability propor-

tional to their degree: degree jð ÞX
k ∈V

degree kð Þ
.

For each network we simulated two datasets of 500
samples with 50 continuous and 50 categorical variables.
Each categorical variable had 4 levels. The parameters in
one dataset were set so that discrete-continuous and
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discrete-discrete edges had approximately linear interac-
tions, while the other dataset did not have this
constraint. Each edge, from node s to node t is given a
weight, wst, drawn uniformly from [.5, .8]. For
continuous-continuous edges we chose a sign with even
probability and set βst = wst or βst = −wst. To ensure the
β matrix is positive definite, we set the diagonal
elements the largest value of the sum of the absolute
value of the edge weights over each node. For
continuous-discrete edges, in the linear dataset we set
ρst = [−w, −.5w, .5w, w] and in the non-linear data we set
ρst = perm([−w, −.5w, .5w, w]), where perm is a random
permutation of the elements in the vector. For discrete-
discrete edges we set the diagonal of ϕrj(yr, yj) to wst and
the rest to -wst, while in the non-linear data we ran-
domly set one parameter in each column and row to wst

and the rest to -wst..

Lung chronic disease data
The Lung Genomics Research Consortium (LGRC) con-
tains multiple genomic datasets and clinical variables for
two chronic lung diseases: chronic obstructive pulmon-
ary disease (COPD) and interstitial lung disease (IDL).
We used two data types from LGRC: gene expression
profiles (15,261 probes) and clinical data for 457 patients
(COPD N = 215; ILD N = 242). To expedite the execu-
tion time and avoid sample size problems, we only used
the 530 most variant expression probes and 8 clinical
variables: age, height, weight, forced expiratory volume
in one second (FEV1), forced vital capacity (FVC), gen-
der, cigarette history, and diagnosis (COPD or ILD).
Age, height, weight and the spirometry variables (FEV1
and FVC) were divided into tertiles. Diagnosis was used
for classification experiments.

Graph estimation performance
Non-zero MGM edge parameters correspond to a pre-
diction of the presence of that edge. For edges with mul-
tiple parameters, (i.e., ρsj(yj) and ϕrj(yr, yj)) if any of the
parameters are non-zero we predict the edge is present.
We use accuracy, precision and recall to evaluate edge
recovery in our predicted graphs: precision is the ratio
of true edge predictions to all edge predictions; recall is
the ratio of true edge predictions to all edges in the true
graph; accuracy is the ratio of true predictions to all pre-
dictions (in this case true prediction includes the correct
predictions of the presence or absence of an edge); and
the F1 score is the harmonic mean of precision and re-
call. In addition we consider the Matthews’ correlation
coefficient (MCC) [20] which provides a correlation be-
tween the presence of edges in the true and predicted
graphs. MCC is formulation of Pearson’s correlation for
two binary variables so values of 1 correspond to
perfect agreement between the variables, −1 to all

disagreements, and 0 to random guessing. This meas-
ure is robust to unbalanced nature of the problem
where in the true, sparse graph edge absence is much
more frequent than edge presence.

Functional enrichment and classification
For evaluation of the performance of various MGMs
and other models on real data we used functional en-
richment analysis of external databases and classification
analysis over specific variables in the network, including
disease diagnosis (for clinical datasets).
Gene annotations were retrieved from the Gene

Ontology (GO) database [21] and we used the hypergeo-
metric test to determine if sets of selected genes were
overrepresented for any of these annotations (i.e., more
occurrences of a given annotation were observed than
we would expect from randomly selected genes).
Given the parameters learned from training data,

Θ̂ train , we make predictions on any categorical variable,
ytarget, in a testing dataset given the rest of the variables
by selecting the category minimizes the negative log
pseudolikelihood of the test data given the trained
model:

ŷ target ¼ argminLtarget ~l Θ̂train; xtest ; ytest ntarget ; ytarget ¼ Ltarget
� �

We use this approach to predict lung disease diagnosis
in a test dataset with an MGM trained with a training
dataset.
We used 8-fold cross validation to determine the opti-

mal classification settings of λ for MGM and Lasso, and
which kernel to use for support vector machines
(SVMs). We used the built-in Matlab implementations
of Lasso and SVMs for these experiments.

Results
Synthetic data
Separate sparsities versus single sparsity parameter
We applied Lee and Hastie’s method for learning an
MGM to datasets simulated from a scale-free network.
Initial experiments found that using a single sparsity
penalty for all edge types produced many false positive
continuous-continuous edge predictions, while missing
many true discrete-discrete edges. We first present an
example of this behavior on a single dataset of 500 sam-
ples over 50 four-level discrete variables and 50 continu-
ous variables generated from a scale free network
structure. Figure 1a shows the adjacency predictions of
the learned MGM compared to the true graph using a λ
selected by the oracle to minimize the number of edges
present in one graph but not the other. This observation
leads us to introduce separate sparsity penalties for each
edge type. Figure 1b shows the adjacencies learned by an
MGM with separate sparsity penalties for each edge
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type. For the sparsity parameters, the oracle searched
over a range of 13 values evenly spaced on a log scale
from .08 to .64.
Figure 2 shows the Matthews correlation of the edge

predictions over the range of sparsity parameters, both
overall and separated by edge type. For this example
dataset, edge recovery of discrete-discrete edges had the
highest MCC at λ = .13 while correlation of recovery of
continuous-discrete edges was maximized at λ = .19 and
continuous-continuous edges at λ = .64.
Selecting an optimal value for a single λ can be chal-

lenging, and the addition of two more sparsity parame-
ters made it necessary to develop an efficient selection
strategy. Other methods with multiple sparsity parame-
ters search over a grid of models learned on all possible
combinations of the parameters [22], but for our model
the complexity of this selection would be cubic in the
number of parameter values tested. Many model selec-
tion methods rely on calculating some likelihood over

the training data, and it is not clear how to divide up
this calculation by edge type. We do expect the presence
of edges to remain relatively constant for a given edge
sparsity parameter setting, so we extended a recent sub-
sampling technique for model selection, StARS [1], to
select three edge-type specific sparsity penalties by as-
suming independence between edge types. This assump-
tion allows for a linear rather than cubic search over
possible sparsity parameters. Thus, our method, StEPS,
selects three sparsity penalties for Lee and Hastie’s
MGM learning using a modified StARS approach for
subsampling over different edge types.

StEPS outperforms other methods for model selection
Table 1 Summarizes graph prediction results for MGMs
trained using sparsity penalties chosen with different
model selection procedures over the 20 simulated non-
linear datasets. Oracle, AIC, BIC, and CV evaluated
models over a three dimensional grid of all possible

Fig. 1 Example adjacency matrices predicted by an MGM, with sparsity selected using the oracle. a Single sparsity penalty λ = .19 b Split sparsity
penalties λcc = .64, λcd = .19, λdd = .13

Fig. 2 Matthews correlation between edge predictions and the true graph versus sparsity for the dataset from Fig. 1. Calculated for each edge
type, cc for continuous-continuous, cd for continuous-discrete, dd for discrete-discrete, and over all edge predictions
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combinations of λcc, λcd, λdd ∈ {.64, .32, .16, .08, .04}. For
StARS, models were trained using a single sparsity pen-
alty over the same range of values, and then either a sin-
gle λ was selected based on the average instability over
all edges or λcc, λcd and λdd were selected based on the
average instability of each edge type.
Our results show that AIC, BIC and CV produce

overly dense models in the high-dimensional setting.
Even when restricted to the single sparsity model, StARS
significantly outperforms these traditional model selec-
tion methods. These results agree with what Liu et al.
observed in their model selection experiments with the
graphical lasso [1]. In addition, our modification of
StARS with separate sparsities outperforms StARS with
a single sparsity. Neither StARS model selection with 3
penalties nor the oracle model selection output a model
where all three sparsities were equal in any of these ex-
periments. Both methods always set λdd = .16 while the
other parameters were always in the set { .64, .32, .16}.
These results confirm the effectiveness of separating the
MGM sparsity penalty into three λ values.
The original StARS procedure uses a subsampled data-

set to make final edge predictions because the instability
calculations are made on subsamples. We found, how-
ever, that in all cases the final edge prediction perform-
ance is higher if we use all samples compared to
predictions from a model using a subsampled dataset.
This improved performance is observed for all three
metrics: accuracy, MCC, and F1. So, for all results pre-
sented below we used all samples to learn the MGM and
make edge predictions with StARS selected sparsities.
It is important to note that because our method,

StEPS, selects each sparsity parameter independently, so
it incorrectly assumes that the instability of each edge
type is independent of parameters of the rest. Without
this assumption, we would have to perform stability ex-
periments on all combinations of the sparsity parame-
ters. To test if this assumption is reducing the edge
recovery performance of StEPS, we ran StARS on the
non-linear datasets using all 125 possible settings of λcc,
λcd, λdd ∈ {.64, .45, .32, .23, .16}. This search space was

chosen because all of the values selected by the Oracle
or either of the other StARS methods fell in the set
{.64,.32,.16} and additional intermediate values were
needed to compare the relative performance of these
methods. This experiment posed a new problem of how
to monotonize and select the total instability over three
dimensions rather than one. In addition, this experiment
showed that the number of predicted edges in the graph
does not always increase when one of the λ parameters
decreases, even when the other two are held constant.
We found that simply choosing the model with monoto-
nized total instability closest to the user-specified γ
threshold produced poor results. Taking into account
the number of edges predicted across all subsamples for
each parameter setting, as described below, was essential
to producing usable results.
We fist looked at the total instability of the whole graph

with all edge types pooled together, D̂all λcc; λcd; λddð Þ .
We monotonized this 3-dimensional matrix across
each dimension: �Dall λcc; λcd; λddð Þ ¼ supλcc;λcd;λdd≤t1; t2;t3
D̂ t1; t2; t3ð Þ and selected the setting of λcc, λcd, λdd that
produced subsampled networks with the most edges such
that �Dall λcc; λcd; λddð Þ≤γ ¼ :05 . Surprisingly, this ap-
proach performed worse than StEPS on all measures.
MCC, for example, was significantly worse (mean of .845
for the heuristic versus .718 for this method, t-test p =
1.4e-4). We found that the networks produced by this
method were too dense in the continuous-continuous
edges and too sparse in continuous-discrete edges (re-
sults not shown). This is the result of averaging the
instability of all edge types: the selected models were
too stable for some edge types and too unstable for
other types. To fix this, we separated the instability
as before into D̂ cc λcc; λcd; λddð Þ , D̂ cd λcc; λcd; λddð Þ and
D̂dd λcc; λcd; λddð Þ , and monotonized as before. Then
we choose λcc, λcd, λdd that produced networks with
the most edges such that max �Dcc λcc; λcd; λddð Þ; �Dcdð
λcc; λcd; λddð Þ; �Ddd λcc; λcd; λddð ÞÞ≤γ ¼ :05. On 17 of the
20 datasets tested, this approach selected the same
sparsity parameters as our proposed linear parameter

Table 1 Comparison of model selection methods

Methods Precision Recall F1-score Matthews CC Accuracy

AIC 0.1104 (0.002) 0.9698 (0.004) 0.1982 (0.003) 0.2882 (0.003) 0.7952 (0.003)

BIC 0.4588 (0.028) 0.8633 (0.007) 0.5890 (0.025) 0.6098 (0.022) 0.9652 (0.004)

CV 0.1530 (0.003) 0.9694 (0.004) 0.2640 (0.005) 0.3539 (0.004) 0.8587 (0.003)

Oracle 0.9149 (0.015) 0.7868 (0.021) 0.8397 (0.009) 0.8416 (0.008) 0.9923 (0.000)

StARS – 1 λ 0.8988 (0.018) 0.4993 (0.010) 0.6408 (0.011) 0.6632 (0.011) 0.9854 (0.001)

StEPS – 3 λ 0.9159 (0.014) 0.6720 (0.009) 0.7731 (0.007) 0.7787 (0.007) 0.9897 (0.000)

AIC akaike information criterion, BIC Bayesian information criterion, CV cross-validation, Oracle: best possible prediction performance (maximize accuracy using
true graph)
Mean (and standard error) of classification performance over 20 datasets simulated from scale-free networks
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search method. For the three runs where the two
methods selected different parameters, the cubic search
made better choices than the heuristic. Averaging over
all runs the cubic search performed better than the
heuristic but these results are not significant (e.g., mean
MCC for the cubic search was .850 versus .845 for
StEPS, p = 0.56). These results indicate that the inde-
pendence assumption made by our heuristic is reason-
able and that StEPS performs only slightly worse than a
more theoretically sound cubic search while requiring
much less computation.

Comparison to SCGGM
An important potential application of MGMs is in iden-
tifying expression quantitative trait loci (eQTLs) based
on the predicted dependencies between single nucleotide
polymorphisms (SNPs) and mRNA expression. The
sparse conditional Gaussian graphical model (SCGGM)
[22] is a method that addresses this problem specifically.
Like many methods for finding eQTLs, the SCGGM as-
sumes a linear relationship between the number of vari-
ant alleles and the mRNA expression level. Thus, the
SCGGM is not technically a mixed graphical model be-
cause it treats the SNP allele counts as continuous vari-
ables. Another difference is that SCGGM does not
predict discrete-discrete edges, which is also common
among methods for finding eQTLs. Like StEPS, SCGGM
also adopts a strategy of using a separate sparsity penalty
for each edge type. SCGGM uses cross-validation to
search over a two dimensional grid of parameter values
in order to optimize prediction of continuous values
given the discrete values.
First, we examined how our stability method can be

used in SCGGM parameter selection instead of cross

validation on our synthetic data and we found that
StEPS resulted in significantly higher MCC (p < .01) for
recovery of both continuous-continuous and
continuous-discrete edge types. To perform a compari-
son between MGM and SCGGM edge predictions we
used two sets of 20 mixed datasets generated from the
same set of 20 scale-free networks but with parameters
that resulted in either linear or non-linear interactions
between discrete and continuous variables. Figure 3
shows the results of this experiment with StEPS selected
sparsity parameters. As expected, MGM learning per-
formed similarly on the linear and non-linear datasets
because it does not assume linearity. The SCGGM had
similar performance on continuous-continuous edge re-
covery with both datasets, but significantly worse per-
formance on continuous-discrete edge recovery in the
data with non-linear cd interactions, which resulted in
worse overall performance in that setting.
For these tests we found that when allowing the selec-

tion of (different) edge type specific sparsity penalties,
SCGGM chose the same penalty for the cc and cd edges
in 36 out of the 40 datasets; and StEPS chose the same
penalty for the cc and cd edges in 38 out of the 40 data-
sets, but a different dd penalty in all 40 cases.

Performance of MGM on lung disease data
It is difficult to evaluate the edge recovery performance
of MGM in real clinical datasets since the ground truth
(all associations between variables) is not generally
known. Alternatively, we evaluate MGM performance
indirectly, by (1) recovering the small number of interac-
tions that are known, (2) using external datasets (GO
categories) to see if connected genes have similar

Fig. 3 Comparison of edge recovery performance of MGM and SCGGM on continuous-continuous (cc), continuous-discrete (cd) and both edge
types. Matthews correlation is averaged over 20 simulated datasets with linear continuous-discrete interactions and 20 datasets with non-linear
interactions with error bars ± one standard error. Sparsity parameters for both methods selected by StEPS
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function, (3) performing classification on a target vari-
able in the network (disease diagnosis).
We applied our MGM learning approach to the

LGRC biomedical data (described above). On this data
StEPS selected the same value of λcc, λcd = .2 for an
average instability threshold of γ = .05 and λcc, λcd = .1
for γ = .1. The selection of λdd proved more problem-
atic. Even with γ = .1, λdd was selected to be so high
that only one edge was selected (FEV1-FVC). This issue
is likely caused by the fact that there are only 28 pos-
sible edges between the 8 clinical variables, and we ex-
pect that many of these variables are connected.
Because of this and the fact that the experiments we
perform below depend more on the continuous-
discrete edges, we set all three penalties to the same
value for our parameter searches in this section.

Recovering known interactions
Figure 4 shows part of the network learned over the lung
(LGRC) dataset with λcc, λcd, λdd = .1. We only show the
nodes adjacent to the clinical variables most relevant for
lung disease: diagnosis, spirometry tests and cigarette
smoking are shown in this graph. This model found a
very strong connection between the FEV and FVC vari-
ables. A number of relevant gene expression variables
are linked to diagnosis in this network. IL13 is part of
the family of interleukin signaling molecules, which are
associated with inflammatory response to tissue damage,
and COPD is an inflammatory disease. We also see a
link between diagnosis and MMP7, a previously discov-
ered biomarker for idiopathic pulmonary fibrosis which
is categorized as ILD [23]. A link between diagnosis and
AZGP1, another previously studied marker for COPD

[25], was also recovered. FGG and CYP1A1 were found
to be linked to cigarette smoking history. CYP1A1 is
known to convert polycyclic aromatic hydrocarbons,
found in cigarette smoke, into carcinogens [26], and
FGG codes for fibrinogen, a marker for inflammation,
which is positively correlated with risk of mortality and
COPD severity [24].

Recovering functional relationships
We also compared the functional relevance of MGM
networks learned with StEPS and those learned by qp-
graphs [27] which is another method for learning net-
works over mixed data. Like SCGGM, qp-graphs do
not attempt to learn edges between two discrete vari-
ables, but qp-graphs do not make a linearity assump-
tion about the discrete variables. To assess the
biological relevance of networks learned at different
levels of sparsity, we performed enrichment analyses on
genes with expression variables linked to each clinical
variable. For each group of genes linked to each clinical
variable we counted GO terms with an uncorrected en-
richment p < .05. These counts are shown in Fig. 5.
Since each clinical variable represents a phenotype, we
would hope that genes linked to those variables share
similar biological function as measured by functional
enrichment. We would like to choose a value of λ that
maximizes the number of enriched GO terms.
The setting of λ = .1 recovers the most annotations

for diagnosis, FEV1 and FVC, and also corresponds to
an instability threshold of γ = .1. qp-graphs output a
“non-rejection rate” for each edge, which corresponds
to the number of different conditional independence
tests that rejected the presence of each edge. To predict

Fig. 4 Learned sub-network of gene expression and clinical features connected to lung disease diagnosis, lung tests and cigarette smoking.
Nodes are colored by data type, blue for gene expression, red for clinical variables. Edges were filtered by weight with a threshold of .05. Node
size is proportional to the diagonal of the β matrix for continuous variables and ϕyyF for each categorical variable, y
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edges, this output needed to be thresholded, so we
chose thresholds that produced similar numbers of
edge predictions to λ = .1. While qp-graphs perform
comparably well to MGMs in this test, we found the
learning procedure to be very computationally expen-
sive. On a quad-core laptop, learning a qp-graph with
q = 25 took over 3 h (running time scales linearly with q)
while learning an MGM took 4.4 min on average when
the iteration limit was reached.

Evaluating MGM in classification tasks
We also evaluated MGMs on how well a trained
model can predict the status of a given target variable
and we chose the lung disease diagnosis as a clinically
relevant target variable. The MGM was compared to
SVM and lasso. We optimized the settings of SVM,
lasso and our mixed models to maximize the 8-fold
cross-validation accuracy of predicting lung disease
diagnosis using the 530 expression variables and 7

clinical variables. For SVM, we found that a linear
kernel worked best on this data. For lasso and MGM,
the parameter scan found that λ = 0.05 maximized
this accuracy. Figure 6a shows a comparison between
the optimized classification accuracies of these three
methods. For MGM classification, we expected similar
results to lasso because the conditional distribution of
a discrete variable in the mixed model reduces to a
(multivariate) logistic regression. It is interesting to
see that the generative MGMs are not significantly
different from discriminative lasso and SVM models
in this experiment. While λ = .05 maximized the
cross-validation accuracy for MGMs, Fig. 6b shows
that the StARS selected sparsity values of λ = .1 and
.2 do not perform significantly worse than λ = .05. Ιn
addition, we ran experiments using StEPS with set-
tings of [λcc, λcd, λdd] = [.1, .1, .2] and [λcc, λcd, λdd]
= [.2, .2, .3] which correspond to instability thresholds
of γ = .1 and γ = .05, respectively, and found that

Fig. 5 Counts of GO terms with uncorrected p < .05 for groups of genes with expression variables linked to each discrete clinical variable in a
MGM networks at different values of λ and b qp-graphs at different values of q. Edge thresholds for qp-graphs were chosen to select similar
numbers of connected genes to an MGM network with λ = .1

Fig. 6 a 8-fold cross validation accuracies for COPD/ILD classification using different methods b Regularization effects on classification accuracy
(with error bars of 1 standard deviation)
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these changes did not significantly alter classification
performance.

Discussion
Learning graphical models over variables of mixed type
is very important for biomedical research. The most
widely used types of genomic data include continuous
(gene expression, methylation, and protein data) and
discrete (polymorphism and mutation data) variables.
Similarly, clinical variables can be either continuous or
discrete (numerical, categorical, boolean). We are inter-
ested in learning graphical models from these heteroge-
neous data to identify significant interactions between
variables and uncover important biological pathways. As
an added advantage, a learned network and joint prob-
ability can be used to ask an arbitrary number of classifi-
cation questions over the data without the need for
retraining each time [28]. These models would be
broadly applicable to biological network inference, bio-
marker selection and patient stratification. Although cal-
culating the MGM requires certain distributional
assumptions about the data, the two distributions that
make up the model in this work, a multivariate Gaussian
for the continuous variables and a pairwise Markov ran-
dom field for discrete variables, are well studied and
have been successfully applied to many types of data.
Additionally, using Gaussian copula methods [29] in
conjunction with MGM learning would allow users to
relax the normality assumption for the continuous data.
Our simulation study strongly supports the need for

separate sparsity penalty for each edge type when learn-
ing an MGM. In addition we show the effectiveness of
our extension of the StARS procedure, StEPS, to select
these penalty terms. By using instability estimates from
the single sparsity parameter model to select parameters
for the three parameter model, we are making the as-
sumption that each edge type set is independent from
the others. We showed that StEPS performance under
this independence assumption is comparable to a stabil-
ity selection procedure that does not make this assump-
tion. The payoff for StEPS is that we can select three
parameters in linear time (over the number of parameter
values searched) rather than cubic time. StEPS is a gen-
eral methodology, which can be applied to a variety of
mixed distribution settings, and will be especially useful
in problems with many different edge types.
One could argue that StEPS substitutes an arbitrary

setting of λ for an arbitrary setting of the instability
threshold, γ. As Liu et al. point out, γ has a more intui-
tive meaning than λ, and we feel that setting this thresh-
old compares to the common practice of setting an
arbitrary significance threshold for rejecting the null hy-
pothesis. Our results from applying StEPS to MGMs
highlights the fact that the same setting of γ applies well

to all edge types while different, edge type specific set-
tings of λ are required for accurate edge recovery. Al-
though it is possible to set the sparsity parameters based
on some prior knowledge of the expected number of
edges in the network, the data driven methods we
present here allow for wide application of MGMs to do-
mains where such knowledge is not available.
Furthermore, we show that our approach to MGM

learning is competitive with a state-of-the-art eQTL
learning method, SCGGMs. Although SCGGMs run fas-
ter that our MGMs due to the fact that it treats all vari-
ables as continuous, we showed that MGMs have a clear
advantage when the discrete variables have non-linear
relationships with the continuous variables. The assump-
tion of linearity is common in eQTL learning and it
makes sense in the haploid yeast datasets (e.g., [30]) used
in the SCGGM study. In more complex organisms, how-
ever, an MGM that can handle non-linear interactions
may be necessary.
While we had difficulty setting the discrete-discrete

edge penalty in the lung dataset, we were still able to
show the utility of MGM based analysis on biological
data. Also, results from our classification experiment
were robust to variation in the setting of this parameter.
We do not expect MGMs to perform better than stand-
ard classification methods because the latter minimize
the error of the classification problem (predicting the
target variable given the rest) directly. The pseudolikeli-
hood optimization in the MGM, however, must take into
account the relationships between all of the variables.
Despite this handicap, our results show, however, that
the MGM-based classification is comparable to standard
methods while offering two key advantages: (1) the same
trained MGM can be used to make predictions about
any variable without additional learning, and (2) the
graph structure allows us to look at the second neigh-
bors of the target variable and beyond for possible func-
tional significance.

Conclusions
Mixed graphical models are becoming popular in the
statistics and machine learning literature, and there is a
lot of potential for their application to high dimensional
biological data. We have broached that potential in this
study. We showed that MGMs can accurately learn un-
directed graphical models over a mixture of discrete and
continuous variables in a high dimensional setting. In
addition, we showed that using a separate sparsity par-
ameter for each edge type in a graph can significantly
improve edge recovery performance. These separate pa-
rameters can account for the differences in both the dif-
ficulty of learning such an edge and differences in the
sparsity of edge types in the true graph. Finally, we
showed that stability based methods are well suited for
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model selection in this setting and that our method
StEPS allow us to perform a search over the sparsity
penalties in linear time.
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