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Abstract

Background: Next-generation sequencing has been used by investigators to address a diverse range of biological
problems through, for example, polymorphism and mutation discovery and microRNA profiling. However,
compared to conventional sequencing, the error rates for next-generation sequencing are often higher, which
impacts the downstream genomic analysis. Recently, Wang et al. (BMC Bioinformatics 13:185, 2012) proposed a
shadow regression approach to estimate the error rates for next-generation sequencing data based on the
assumption of a linear relationship between the number of reads sequenced and the number of reads containing
errors (denoted as shadows). However, this linear read-shadow relationship may not be appropriate for all types of
sequence data. Therefore, it is necessary to estimate the error rates in a more reliable way without assuming
linearity. We proposed an empirical error rate estimation approach that employs cubic and robust smoothing
splines to model the relationship between the number of reads sequenced and the number of shadows.

Results: We performed simulation studies using a frequency-based approach to generate the read and shadow
counts directly, which can mimic the real sequence counts data structure. Using simulation, we investigated the
performance of the proposed approach and compared it to that of shadow linear regression. The proposed
approach provided more accurate error rate estimations than the shadow linear regression approach for all the
scenarios tested. We also applied the proposed approach to assess the error rates for the sequence data from the
MicroArray Quality Control project, a mutation screening study, the Encyclopedia of DNA Elements project, and
bacteriophage PhiX DNA samples.

Conclusions: The proposed empirical error rate estimation approach does not assume a linear relationship
between the error-free read and shadow counts and provides more accurate estimations of error rates for
next-generation, short-read sequencing data.
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Background
Next-generation sequencing usually refers to massively
parallel high-throughput DNA sequencing technologies
that can sequence millions of small DNA fragments at
the same time [1, 2]. Next-generation sequencing has devel-
oped rapidly and is used in a diverse range of biological in-
vestigations, such as quantification of gene expression,
polymorphism and mutation discovery, microRNA profil-
ing, and genome-wide mapping of protein-DNA interaction
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[3–8]. Next-generation sequencing costs much less than
conventional Sanger sequencing techniques because its
high-throughput capacity enables a much higher degree of
parallelism and much smaller reaction volumes [7, 9]. On
the other hand, next-generation sequencing produces large
numbers of short-read-length sequences [10, 11], which are
difficult to correctly and fully assemble [12]. In addition,
the error rates for next-generation sequencing are often
higher than those for conventional Sanger sequencing,
which negatively impacts downstream genomic analyses
that use next-generation sequencing data [7, 9, 13, 14].
Therefore, before genomic analyses can be performed, qual-
ity assessment of the next-generation sequencing reads is
essential [15]. These assessments include measuring in-
trinsic quality metrics (FastQC) [16], sequence coverage,
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sequence error rates, and paired-end, fragment-size distri-
butions [15, 17].
Different approaches to estimating sequence error

rates have been proposed, with or without the use of a
reference genome. Bullard et al. [18] aligned the sequen-
cing reads to a reference genome to obtain the numbers
of uniquely mapped reads with 0, 1, or 2 mismatches,
and the per-read sequencing error rate was calculated as
the proportion of reads with at least one error. This mis-
match counting approach assumed that reads with 0
mismatch had no errors and reads with 1 or 2 mis-
matches were errors but not polyphorphisms [7]. Also,
this approach depends on a well-established reference,
which might not be available when sequencing a new
genome [17]. The error correction tools based on k-mer
[15, 19–25] can also provide estimations for sequencing
error rates. These approaches are reference free and less
sensitive to errors that occur due to polymorphisms
[26]. However, since the k-mer-based approaches usually
involve computing the frequencies of all distinct sub-
strings of length k appearing in the sequence, these ap-
proaches are computationally demanding and require a
large amount of computer memory, making it difficult
for them to process reads from large genomes [27–29].
Recently, Wang et al. [7] developed a novel approach

called shadow regression to estimate short sequencing
read error rates without a reference genome. These
authors observed that the number of shadows due to
sequencing errors increases linearly with the number of
reads sequenced. The per-read error rate was defined as
the proportion of reads containing sequencing errors
among all the reads in a sample. A linear regression
model was employed to assess the error rates (details
will be reviewed in the Method section). However, in
practice, the linear assumption for the relationship be-
tween the number of reads sequenced and the number
of reads that contain errors might not be appropriate for
all types of sequence data (see the sample data from [7],
Additional file 1). In these situations, the shadow regres-
sion based on a linear assumption might lead to a biased
estimation of the sequencing error rates.
Therefore, in this study, we proposed an empirical ap-

proach to estimate the sequencing error rates that uses
cubic smoothing spline and robust smoothing spline
methods to model the relationship between the number
of reads sequenced and the number of reads that contain
errors. We took the per-read error rate used by Wang
et al. [7] and redefined it as a function of the read counts.
We also defined a sample per-read error rate as the me-
dian of the per-read error rates obtained using different
numbers of read counts and corresponding fitted counts
of reads containing errors. To better investigate the
performance of the proposed approach, we developed
a frequency-based simulation approach based on the
sequencing reads from real data sets that mimics the non-
linear relationship between the numbers of reads se-
quenced and the numbers of reads that contain errors
more realistically than the Wang et al.’s simulation
approch. We performed the simulation studies using
sequence sample data from the MicroArray Quality Con-
trol (MAQC) project [30], a mutation screening study
[31], the Encyclopedia of DNA Elements (ENCODE) pro-
ject [32], and bacteriophage PhiX 174RF1 DNA samples
[7] and compared the results with those obtained by using
shadow linear regression. The proposed empirical ap-
proach provided more accurate error rate estimations
than shadow linear regression for all the scenarios in
which the assumption of linearity was not valid and pro-
vided similar error rates when the assumption of linearity
was valid. We also applied the empirical error rate estima-
tion approach to assess the sequencing error rates for real
sample data from MAQC, mutation screening, ENCODE,
and PhiX DNA samples.

Methods
Shadow regression overview
Wang et al. [7] made the important observation that the
number of shadows due to sequencing errors increases
linearly with the number of reads sequenced, whereas
the number of true shadows is independent of the number
of reads sequenced. In the current study, we employed
and modified the definitions and notations from the Wang
et al. [7] study.
Specifically, given a sequence t in a sample, the total

number of reads can be given as rt = nt + et, where, rt is
the total number of reads with sequence t, nt is the
number of reads that are error free with sequence t, and
et is the number of reads that contain sequencing errors
with sequence t. In practice, one would not know the
true error-free sequence reads. Wang et al. first con-
verted a sequence file (i.e., FASTQ format with equal
length for all reads) from a sample into a read counts
file. The number of reads for each sequence was counted
over the sample, and then the authors ranked all the
sequences according to the read counts (see an example
of read counts in Additional file 2). The top 1000 reads
with the highest frequencies in a sample were selected
as the error-free sequences and used to calculate nt and
et in a different sequence t. The shadows of a given se-
quence t were defined as the reads differing from the
error-free reads by up to two bases, which was deemed
by Wang et al. [7] to be sufficiently similar to the given
error-free sequence t to estimate substitution errors.
Finally, the top 1000 reads with the highest frequencies
in a sample were excluded from the assessment of the
shadow counts.
The per-read error rate was defined as the proportion

of reads containing sequencing errors over all the reads
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in a given sample [7], or ER ¼
X

t
etX
t
rt
¼ Δet

Δrt
: Based on

the observation that the number of shadows due to the
sequencing errors increases linearly with the number of
reads, Wang et al. proposed a linear model as st = α + βnt
+ ϵ, where st is the number of shadows of sequence t
and ϵ is the independent error that follows approxi-
mately Gaussian distribution. Robust linear regression
was used to estimate the coefficients α and β because
shadows can come from legitimate error-free reads. In this
situation, the per-read error rate can be estimated by the

slope of the linear model as ER ¼ Δet
Δrt

¼ Δet
ΔntþΔet

¼ β
1þβ ;

which was denoted as the shadow regression error rate
(SRER) in the current study.
Empirical per-read error rate with smoothing splines
The error rates assessed by shadow linear regression
were based on the assumption of a linear relationship
between the error-free read counts and shadow counts.
However, the real data examples in Wang et al.’s paper
(e.g., Additional file 1) show that for many types of se-
quencing data the relationship between error-free read
counts and shadow counts does not follow a linear
trend. In these situations, shadow regression based on a
linear assumption might lead to a biased estimation of
the sequence error rate. Therefore, in this study, we
employed the cubic smoothing spline and robust
smoothing spline methods to model the relationship be-
tween the error-free read counts and the shadow counts;
the piecewise curve resulting from these spline methods
is capable of capturing relationships of widely varying
form and tends to avoid erratic behavior near the
extremes of the data [33]. Based on the empirical
read-shadow relationship, we proposed the error rate
estimation as a function of error-free read counts,
which we hypothesized would be more useful in prac-
tice than the shadow regression approach for estimat-
ing error rates.
We first used the cubic smoothing spline method [34,

35] to model the shadow counts (st) as a function of the
error-free read counts (nt). The cubic smoothing spline
method fits a smooth curve to a set of observations
using a cubic function [35, 36]. Specifically, given a set
of observations of error-free read counts and shadow
counts, (n1, s1), (n2, s2), …, (nm, sm), n1 < n2 <… < nm, we
modeled the relationship between ni and si as a function
si ¼ U nið Þ; with two continuous derivatives, where ni is
the number of error-free read counts with sequence i, si
is the number of shadow counts with sequence i, i = 1,
…, m, and m is the total number of sequences. Among
all such functions with two continuous derivatives, the
purpose of the smoothing spline is to find the estimated
function minimizing the penalized residual sum of

squares Σm
1 si−Û nið Þ� �2 þ λ

Z nm

n1

Û 00 nð Þ2dn; where λ is a

smoothing parameter [35]. We used the cubic smooth-
ing spline implemented in the R function “smooth.s-
pline” in the “stats” package. To improve the robustness
of the spline, we used a robust smoothing spline ap-
proach to model the relationship between shadow
counts (st) and error-free read counts (nt). This approach
uses an iterative re-weighted smoothing spline algorithm
with the inverse of the absolute value of the residuals as
the weights. We used the robust smoothing spline im-
plemented in the R function “robustSmoothspline” in
the package “aroma.light” [37, 38].
Based on the fitted model of shadow counts as a spline

function of error-free read counts, we used the definition
of the per-read error rate used by Wang et al. [7]. Let n1,
n2, …, nm be the read counts of m sequences, where
n1 < n2, …, nm-1 < nm, and let Ŝ1, Ŝ2, …, Ŝm be the
corresponding fitted values of shadow counts using the
smoothing spline approaches described above. Given a
sequence t with read count nt and fitted shadow count Ŝt,
we defined the per-read error rate as

ER ntð Þ ¼
Xt

j¼1
Ŝ jXt

j¼1
Ŝ j þ

Xt

j¼1
nj
:

Estimation of error rates using this definition also
assumes the increasing number of shadows with the
increasing number of read counts in the presence of
sequencing errors, but this definition allows error rates
to vary by read counts, whereas the Wang et al. [7] ap-
proach assumes the error rate to be a constant irrespect-
ive of the number of reads. For the purpose of
comparison with the Wang et al. [7] approach, we also
defined a sample per-read empirical error rate. Given a
sample with m sequences, we randomly sampled 1000
numbers of read counts from n1 to nm and calculated
the per-read error rates for each of these read counts
using the fitted spline. The median of these per-read
error rates was reported as a sample per-read empirical
error rate (henceforth denoted as EER).

Next-generation sequencing data
We used next-generation sequencing data from four pro-
jects–the MicroArray Quality Control (MAQC) project
(mRNA-seq) [30], a mutation screening study (re-sequen-
cing) [31], the Encyclopedia of DNA Elements (ENCODE)
project (mRNA-seq) [32], and bacteriophage PhiX 174RF1
(PhiX) DNA samples [7]–to perform the simulations and
demonstrate the accuracy of the proposed empirical error
rate estimation approach. PhiX DNA data in FASTQ
format were generated by the Center for Cancer
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Computational Biology at Dana-Farber Cancer Insti-
tute and provided by Wang et al. [7]. The other three
data sets are publicly available from the National
Center for Biotechnology Information Sequence Read
Archive [39] in FASTQ format with equal read lengths in
each sample. All the data were converted to read counts
using the shadow regression program provided by Wang
et al. [7].

MAQC brain experiment 2 data
The MAQC project was initiated to address concerns
about the reliability of microarray technology [30]. This
project provided gene expression levels measured from
two RNA samples, including a Universal Human Refer-
ence RNA from Stratagene and a Human Brain Reference
RNA from Ambion, in four titration pools on seven
microarray platforms with three expression methodo-
logies. In this study, we used the sequence data from
the MAQC brain experiment 2 (Sequence Read Archive
[SRA]010153), including 14 samples on two flowcells
(SRX016366 and SRX016368) run on the Illumina 1G
Genome Analyzer with each sample containing ~12 mil-
lion reads.

Mutation screening resequencing data
The mutation screening study provided re-sequencing
data (SRA010105) from 24 patients with X-linked men-
tal retardation (XLMR) for mutations in 86 previously
identified XLMR genes, using a method that combined a
novel droplet-based multiplex PCR method and next-
generation sequencing [31]. An Illumina/Solexa Genome
Analzer II platform was used to perform the sequencing,
and each sample contained ~12 million reads.

ENCODE transcriptome data
The ENCODE project used high-throughput approaches
to provide a biologically more informative representation
of the human genome [32]. The ENCODE pilot phase
included more than 200 experimental and computational
data sets from 35 groups [32]. In this study, we used the
ENCODE human mRNA sequence data (SRA001150),
including 5 samples of human cell line K562 (SRX000570)
run on the Illumina 1G Genome Analyzer; each sample
contained ~12 million reads.

PhiX DNA data
The bacteriophage PhiX 174 is an icosahedral virus. It
contains a closed circular single-stranded DNA molecule
with 5386 nucleotide bases [40]. PhiX 174 was the first
DNA-based genome for which the complete nucleotide
sequence was successfully determined [40–42]. In this
study, we used two PhiX DNA samples provided by
Wang et al., which were generated from the Center for
Cancer Computational Biology at Dana-Farber [7]. The
PhiX DNA samples were sequenced using Illumina. One
sample contained ~14.6 million reads, and the other con-
tained ~25.7 million reads.

Simulation approaches
We performed simulation studies to investigate the per-
formance of the proposed EER and compare it with the
SRER. We used two approaches to perform the simula-
tion: (1) Wang et al.’s simulation approach and (2) a new
frequency-based simulation approach described below.

Wang et al. simulation approach
In the Wang et al. study [7], the simulation was conducted
based on a sample from the MAQC brain experiment 2
(SRR037440) using calibration. The authors considered
reads uniquely mapped to the reference genome with no
mismatches as error-free reads and then added substitu-
tion errors based on pre-specified base-specific error rates,
which were estimated from the sample SRR037440 by
counting the number of mismatches to the reference gen-
ome at each base. To mimic the Wang et al. simulation
procedure, we used the same sample (SRR037440) to re-
trieve the error-free reads and estimate the pre-specified
base-specific error rates. In particular, we retrieved ~4.4
million perfectly matched reads from the SRR037440 sam-
ple, which originally had ~12 million reads. We used sev-
eral approaches to estimate the pre-specified base-specific
error rates. In our first approach, we aligned the reads to
the reference genome, marked the mismatch locations,
and then calculated base-specific error rates as a per-
centage of the mismatch nucleotides at each location
(Additional file 3(C)). In our second approach, we located
all unprocessed reads for each sequence, recorded loca-
tions and numbers of mismatch nucleotides, and calcu-
lated the base-specific error rates from the total number
of mismatch nucleotides at each location (Additional file
3(D)). However, we found that neither of these approaches
could obtain the same base-specific error rates shown in
the Wang et al. study. Thus, we included the pre-specified
base-specific error rates used in their study, which we
extracted approximately from the figures in the article [7]
(Additional file 3(E)). In addition, we used the base-
specific error rates for sample SRR037440 obtained from
the shadow regression software developed by Wang et al.
[7] as another set of pre-specified base-specific error rates
(Additional file 3(F)).
The Wang et al. simulation approach assumed an

underlying linear relationship between the error-free
read counts and shadow counts, no matter which base-
specific error rate was used. Therefore, the data simulated
by using the Wang et al. simulation approach would not
reflect the non-linear relationships between error-free
read counts and shadow counts (Additional file 3(A)). For
example, in some samples, when the number of error-free
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read counts is low, the shadow counts may decrease as
the error-free read counts increase. Therefore, we pro-
posed a frequency-based simulation approach to generate
the error-free read counts and shadow counts directly,
which can mimic the real sequence counts of the data
structure.

Frequency-based simulation approach
Given the counts of all sequence reads in a real sample,
we followed the same procedure described in Wang
et al. to obtain the error-free read counts (ni) and
shadow counts (si) for N sequence reads, i = 1, 2, … N
and n1 < n2, …, nN-1 < nN. We selected the top N reads
with the highest frequencies to be the error-free reads
and obtained the corresponding read counts (ni); we
then mapped all the rest of the sequences in the sample
to the error-free reads to identify the corresponding
shadow counts (si). We used N = 1000, as suggested in
Wang et al. Based on the read counts and shadow
counts in the real sample, we first constructed a fre-
quency table for the error-free read counts (ni) using
pre-specified bin widths. Because in most of the samples
we investigated, the error-free read counts became very
sparse when they were large, we used unequal bin
widths to avoid having almost empty bins. Within each
bin of the error-free read counts, we then constructed a
frequency table for the shadow counts (si) using pre-
specified equal bin widths. Given M bins for error-free
read counts and L bins for shadow counts within each of
the error-free read count bins, the frequencies can be
written as pj, j = 1, 2, …, M, for error-free read counts
and qkj, k = 1, 2, …., L and j = 1, 2, …, M, for shadow
counts. To sample a pair of observations (nnew, snew), we
first sampled two independent random numbers, U ~ uni-
form(0, 1) and V ~ uniform(0,1). If U ∈ [∑i = 1

j pi, ∑i = 1
j + 1pi),

we sampled nnew~ uniform(nj, nj+1), where nj and nj+1 are
the endpoints for the corresponding bin j of read counts.
Further, within the read counts bin j, if V ∈ [∑i = 1

k qij, ∑i = 1
k + 1

qij), we sampled snew ~ uniform(sk, sk+1), where sk and sk+1
are the endpoints for the corresponding bin k of shadow
counts. With this approach, we can generate more pairs of
error-free read and shadow counts (i.e., > 1000).
A comparison between the Wang et al. simulation ap-

proach and our proposed frequency-based simulation
approach, using the SRR037440 sample, showed that un-
like the frequency-based approach, the Wang et al.
simulation approach does not mimic the observed non-
linear data relationship between error-free read and
shadow counts (Additional files 3 and 4). Therefore, we
applied only the proposed frequency-based simulation
approach in the simulation studies. We generated data
based on the information from samples from the four
data sets described above. For each sample, the median
EER was calculated based on 1000 replicates and
compared with the median SRER. For all the simula-
tions, we considered the top 1000 reads of the sample of
interest with the highest frequencies as the error-free
reads and then determined the shadow counts accord-
ingly, which were then used to generate the frequency
tables for the simulations. Based on the frequency tables,
we generated 1000 pairs of error-free reads and shadow
counts for each replicate. For the simulation data sets,
we also defined an expected per-read error rate as ∑isi/
(∑isi + ∑ini), where si and ni are the shadow count and
error-free read count, respectively, for sequence i, i = 1,
…, M. Note that M = 1000 in the simulation studies, as
we generated 1000 pairs of error-free read and shadow
counts.
Results
Simulation results
As shown in Additional files 3 and 4, using the
frequency-based simulation approach can better capture
the relationship between error-free read and shadow
counts, therefore, we used this simulation approach to
perform further simulations based on next-generation
sequencing data from the MAQC, mutation screening,
ENCODE, and PhiX DNA sample data sets. We com-
pared the performance of our proposed EER approach
using the cubic or robust smoothing spline method
(EER_CS or EER_RS, respectively) with that of the SRER
approach.
Simulation results for MAQC data
Table 1 shows the median error rates (based on 1000
replicates) obtained using the shadow linear regression
approach and the proposed smoothing spline approaches,
based on the next-generation sequencing data from the
MAQC study. We have also reported the expected error
rates (calculated as described above) and the estimation
biases, which were calculated as the absolute differences
between the estimated error rates and the expected error
rates. For all 14 samples of MAQC data, both smoothing
spline approaches provided more accurate estimations of
the error rates with less bias than the shadow linear
regression approach. Both smoothing spline approaches
performed very similarly. For example, for sample SRR
037452, the median expected error rate in the simulation
was 0.3305. Using SRER, the median estimated error rate
was 0.2578, with a bias of 0.0727 compared to the expec-
ted error rate. In contrast, EER_CS and EER_RS had
median estimated error rates of 0.3104 and 0.3096, re-
spectively, with biases of 0.0201 and 0.0209, respectively.
From these results, we can observe that the SRER ap-
proach underestimated the error rates, while the smooth-
ing spline approaches provided more accurate estimated
error rates.



Table 1 Median error rates in MAQC data using shadow linear regression and smoothing spline approachesa

Samples Expected ER SRER SRER Bias EER_CS EER_CS Bias EER_RS EER_RS Bias

SRR037452 0.3305 0.2578 0.0727 0.3104 0.0201 0.3096 0.0209

SRR037453 0.1917 0.1584 0.0333 0.1824 0.0093 0.1818 0.0099

SRR037454 0.2354 0.1515 0.0839 0.2060 0.0294 0.2059 0.0295

SRR037455 0.1759 0.1448 0.0311 0.1675 0.0084 0.1668 0.0091

SRR037456 0.2312 0.1622 0.0690 0.2037 0.0275 0.2035 0.0277

SRR037457 0.1841 0.1480 0.0361 0.1777 0.0064 0.1771 0.0070

SRR037458 0.2653 0.2321 0.0332 0.2582 0.0071 0.2575 0.0078

SRR037459 0.2371 0.1943 0.0428 0.2202 0.0169 0.2203 0.0168

SRR037460 0.2530 0.2018 0.0512 0.2503 0.0027 0.2490 0.0040

SRR037461 0.2180 0.1704 0.0476 0.2105 0.0075 0.2104 0.0076

SRR037462 0.2443 0.1734 0.0709 0.2322 0.0121 0.2308 0.0135

SRR037463 0.2154 0.1654 0.0500 0.2023 0.0131 0.2045 0.0109

SRR037464 0.2624 0.1666 0.0958 0.2392 0.0232 0.2403 0.0221

SRR037465 0.2145 0.1742 0.0403 0.2038 0.0107 0.2037 0.0108
aBased on 1000 replicates. The frequency-based simulation approach was applied. For each replicate, we considered the top 1000 reads with the highest frequencies as
the error-free reads and generated 1000 pairs of error-free read counts and shadow counts
Expected ER expected error rate in simulation studies
SRER error rate estimated using shadow regression
SRER Bias the absolute value of the difference between SRER and Expected ER
EER_CS empirical error rate estimated using cubic smoothing spline
EER_CS Bias the absolute value of the difference between EER_CS and Expected ER
EER_RS empirical error rate estimated using robust smoothing spline
EER_RS Bias the absolute value of the difference between EER_RS and Expected ER
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Simulation results for mutation screening resequencing
data
Table 2 reports the median error rates obtained using
the SRER approach and the two EER approaches, based
on next-generation sequencing data from a mutation
screening study. Similar to the results from the MAQC
samples, all 24 mutation screening resequencing samples
yielded error rates for the smoothing spline approaches
that were more accurate than or comparable to the esti-
mations of error rates for SRER. For example, in sample
SRR032566, the median of the expected error rate in the
simulation was 0.0734. Using SRER, the median of the
estimated error rate was 0.0412, with a bias of 0.0323
compared with the expected error rate. Using the
smoothing spline approaches, the median of the esti-
mated error rate was 0.0705 for both approaches, with a
very small bias of 0.0029.

Simulation results for ENCODE transcriptome data
Table 3 reports the median error rates obtained using
different approaches based on next-generation sequen-
cing data from the ENCODE study. The five samples
from the ENCODE study had higher expected error
rates than the samples in the MAQC and mutation
screening studies, which might have been due to relatively
large shadow counts that corresponded with smaller
error-free read counts Additional file 1(C). In this situ-
ation, the smoothing spline approaches still performed
better than shadow linear regression. For example, in sam-
ple SRR002056, the expected error rate was 0.3646, and
the estimated error rates were 0.2906, 0.3270, and 0.3233
for SRER, EER_CS, and EER_RS, respectively, with biases
of 0.0740, 0.0376, and 0.0413, respectively.

Simulation results for PhiX DNA data
Table 4 reports the median error rates obtained using
different approaches based on the next-generation se-
quencing data from two PhiX DNA samples. For both
samples, the smoothing spline approaches provided
more accurate estimations of the error rates than did
shadow linear regression. For example, in sample 100217,
the median of the expected error rate in the simulation
was 0.0323. Using SRER, the median of the estimated
error rate was 0.0250, with a bias of 0.0073 compared to
the expected error rate. The median estimated error rate
for EER_CS and EER_RS was 0.0315, resulting in a much
smaller bias of 0.0008 for both approaches.

Next-generation sequencing data analysis results
We applied our smoothing spline approaches to evaluate
the error rates for the next-generation sequencing data
from MAQC, mutation screening, ENCODE and PhiX
DNA samples, and compared error rates using our
smoothing spline approaches and shadow linear regres-
sion. The estimated error rates are reported in Tables 5, 6,
7 and 8, respectively, for samples from the MAQC,



Table 2 Median error rates in mutation screening data using shadow linear regression and smoothing spline approachesa

Samples Expected ER SRER SRER Bias EER_CS EER_CS Bias EER_RS EER_RS Bias

SRR032565 0.1991 0.0493 0.1498 0.1080 0.0911 0.1082 0.0910

SRR032566 0.0734 0.0412 0.0323 0.0705 0.0029 0.0705 0.0029

SRR032567 0.2003 0.0542 0.1461 0.1111 0.0892 0.1111 0.0893

SRR032568 0.2040 0.0437 0.1603 0.1057 0.0984 0.1072 0.0968

SRR032569 0.1598 0.0509 0.1089 0.1018 0.0580 0.1014 0.0585

SRR032570 0.0985 0.0641 0.0345 0.0959 0.0026 0.0954 0.0032

SRR032571 0.1236 0.0575 0.0661 0.1406 0.0170 0.1406 0.0170

SRR032572 0.1495 0.0530 0.0965 0.1181 0.0314 0.1173 0.0323

SRR032573 0.1779 0.0912 0.0867 0.1518 0.0261 0.1506 0.0273

SRR032574 0.0986 0.0384 0.0602 0.0626 0.0361 0.0618 0.0368

SRR032575 0.1169 0.0839 0.0330 0.1228 0.0059 0.1227 0.0058

SRR032576 0.1554 0.0945 0.0609 0.1887 0.0333 0.1880 0.0326

SRR032577 0.1052 0.0694 0.0359 0.1054 0.0002 0.1055 0.0002

SRR032578 0.1143 0.0448 0.0695 0.1077 0.0067 0.1076 0.0067

SRR032580 0.0870 0.0619 0.0251 0.1169 0.0298 0.1163 0.0292

SRR032581 0.0770 0.0347 0.0424 0.0752 0.0018 0.0751 0.0019

SRR032582 0.0400 0.0041 0.0359 0.0309 0.0091 0.0310 0.0090

SRR032583 0.1224 0.0707 0.0517 0.1279 0.0055 0.1280 0.0056

SRR032584 0.1290 0.0540 0.0750 0.1052 0.0238 0.1032 0.0259

SRR032586 0.0445 0.0102 0.0343 0.0287 0.0158 0.0287 0.0159

SRR032587 0.1486 0.0786 0.0700 0.1562 0.0076 0.1552 0.0066

SRR032588 0.1240 0.0470 0.0770 0.1024 0.0216 0.1021 0.0220

SRR033543 0.1151 0.0587 0.0564 0.0828 0.0323 0.0832 0.0318

SRR033544 0.1267 0.0524 0.0743 0.1086 0.0181 0.1085 0.0182
aBased on 1000 replicates. The frequency-based simulation approach was applied. For each replicate, we considered the top 1000 reads with the highest frequencies
as the error-free reads and generated 1000 pairs of error-free read counts and shadow counts
Expected ER expected error rate in simulation studies
SRER error rate estimated using shadow regression
SRER Bias the absolute value of the difference between SRER and Expected ER
EER_CS empirical error rate estimated using cubic smoothing spline
EER_CS Bias the absolute value of the difference between EER_CS and Expected ER
EER_RS empirical error rate estimated using robust smoothing spline
EER_RS Bias the absolute value of the difference between EER_RS and Expected ER

Table 3 Median error rates in ENCODE data using shadow linear regression and smoothing spline approachesa

Samples Expected ER SRER SRER Bias EER_CS EER_CS Bias EER_RS EER_RS Bias

SRR002053 0.5548 0.4153 0.1395 0.4609 0.0939 0.4565 0.0983

SRR002056 0.3646 0.2906 0.0740 0.3270 0.0376 0.3233 0.0413

SRR002065 0.4578 0.3371 0.1207 0.3740 0.0838 0.3701 0.0877

SRR005092 0.6300 0.4047 0.2253 0.4797 0.1503 0.4727 0.1573

SRR005093 0.4839 0.3928 0.0911 0.4221 0.0618 0.4173 0.0666
aBased on 1000 replicates. The frequency-based simulation approach was applied. For each replicate, we considered the top 1000 reads with the highest frequencies
as the error-free reads and generated 1000 pairs of error-free read counts and shadow counts
Expected ER expected error rate in simulation studies
SRER error rate estimated using shadow regression
SRER Bias the absolute value of the difference between SRER and Expected ER
EER_CS empirical error rate estimated using cubic smoothing spline
EER_CS Bias the absolute value of the difference between EER_CS and Expected ER
EER_RS empirical error rate estimated using robust smoothing spline
EER_RS Bias the absolute value of the difference between EER_RS and Expected ER
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Table 4 Median error rates in PhiX DNA data using shadow linear regression and smoothing spline approachesa

Samples Expected ER SRER SRER Bias EER_CS EER_CS Bias EER_RS EER_RS Bias

100217 0.0323 0.0250 0.0073 0.0315 0.0008 0.0315 0.0008

100514 0.0152 0.0143 0.0009 0.0152 0.0000 0.0152 0.0000
aBased on 1000 replicates. The frequency-based simulation approach was applied. For each replicate, we considered the top 1000 reads with the highest frequencies
as the error-free reads and generated 1000 pairs of error-free read counts and shadow counts
Expected ER expected error rate in simulation studies
SRER error rate estimated using shadow regression
SRER Bias the absolute value of the difference between SRER and Expected ER
EER_CS empirical error rate estimated using cubic smoothing spline
EER_CS Bias the absolute value of the difference between EER_CS and Expected ER
EER_RS empirical error rate estimated using robust smoothing spline
EER_RS Bias the absolute value of the difference between EER_RS and Expected ER

Table 6 Error rates in real mutation screening data using
shadow linear regression and smoothing spline approaches

Samples SRER EER_CS EER_RS

SRR032565 0.0753 0.1167 0.1206

SRR032566 0.0584 0.0746 0.0745

SRR032567 0.0846 0.1420 0.1446

SRR032568 0.0686 0.1566 0.1566

SRR032569 0.0597 0.1015 0.1020

SRR032570 0.0691 0.0973 0.0954
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mutation screening, ENCODE, and PhiX DNA data sets.
From the results we can observe that the smoothing spline
approaches always provided relatively higher estimates of
the error rates. For example, in sample SRR037454 from
MAQC (Table 5), the estimated error rates were 0.1596,
0.2041, and 0.2196, respectively, for SRER, EER_CS, and
EER_RS. This was expected given that shadow linear re-
gression tended to underestimate the error rates in the
simulation results.

Discussion
Due to its high-throughput capacity and low cost, next-
generation sequencing has been widely used to address a
diverse range of biological problems. However, because
the higher error rates in next-generation short-read
sequencing data can impact the downstream genomic
analyses, it is critical to accurately assess these error
rates before genomic analyses are performed. We have
proposed an empirical approach that more accurately
Table 5 Error rates in real MAQC data using shadow linear
regression and smoothing spline approaches

Samples SRER EER_CS EER_RS

SRR037452 0.2695 0.3124 0.3362

SRR037453 0.1598 0.1819 0.1822

SRR037454 0.1596 0.2041 0.2196

SRR037455 0.1482 0.1694 0.1700

SRR037456 0.1657 0.2062 0.2162

SRR037457 0.1541 0.1796 0.1793

SRR037458 0.2386 0.2573 0.2575

SRR037459 0.1996 0.2216 0.2233

SRR037460 0.2027 0.2504 0.2647

SRR037461 0.1779 0.2058 0.2093

SRR037462 0.1858 0.2329 0.2319

SRR037463 0.1771 0.2019 0.2072

SRR037464 0.1850 0.2377 0.2448

SRR037465 0.1842 0.2019 0.2070

SRER error rate estimated using shadow regression
EER_CS empirical error rate estimated using cubic smoothing spline
EER_RS empirical error rate estimated using robust smoothing spline
estimates error rates for next-generation, short-read se-
quencing data than other available approaches.
In this paper, we first reviewed the shadow linear

regression approach for short sequencing read error rate
estimation proposed by Wang et al. [7]. The shadow
regression approach was developed based on the as-
sumption of a linear relationship between the number of
reads sequenced and the number of shadows. The linear
SRR032571 0.0724 0.1400 0.1400

SRR032572 0.0818 0.1611 0.1593

SRR032573 0.1602 0.2756 0.2752

SRR032574 0.0557 0.1004 0.1053

SRR032575 0.0882 0.1191 0.1179

SRR032576 0.1101 0.1915 0.1899

SRR032577 0.0762 0.1282 0.1280

SRR032578 0.1365 0.1874 0.1873

SRR032580 0.0727 0.1262 0.1266

SRR032581 0.0981 0.0506 0.0511

SRR032582 0.0941 0.1689 0.1679

SRR032583 0.1141 0.2057 0.2042

SRR032584 0.0849 0.0963 0.0742

SRR032586 0.0623 0.3606 0.3621

SRR032587 0.0857 0.1524 0.1532

SRR032588 0.0701 0.1446 0.1440

SRR033543 0.0802 0.1084 0.1102

SRR033544 0.1175 0.1588 0.1586

SRER error rate estimated using shadow regression
EER_CS empirical error rate estimated using cubic smoothing spline
EER_RS empirical error rate estimated using robust smoothing spline



Table 7 Error rates in real ENCODE data using shadow linear
regression and smoothing spline approaches

Samples SRER EER_CS EER_RS

SRR002053 0.4134 0.4469 0.4453

SRR002056 0.3225 0.3020 0.3355

SRR002065 0.3842 0.3918 0.3913

SRR005092 0.4628 0.4884 0.4776

SRR005093 0.4090 0.4724 0.4013

SRER error rate estimated using shadow regression
EER_CS empirical error rate estimated using cubic smoothing spline
EER_RS empirical error rate estimated using robust smoothing spline
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assumption may be appropriate if one could plot the
counts of true error-free reads and associated shadow
counts obtained using only the reads containing errors.
However, the sequencing data is noisy and such infor-
mation is not identifiable. Therefore, the proposed ap-
proach to compute a sample-level error rate using the
median of the error rates obtained at different values of
error-free read counts and corresponding fitted shadow
counts is likely to be more robust. From the sample
next-generation sequencing data presented in the Wang
et al. paper [7], the linear assumption for the read-shadow
relationship might hold for the PhiX DNA sequencing
data, but it is not valid for the mRNA sequencing data
(MAQC and ENCODE) or the mutation screening re-
sequencing data (Additional file 1). Therefore, we
employed smoothing spline approaches to model the
nonlinear read-shadow relationship and proposed an
empirical approach to estimate the short-read sequen-
cing error rates. The smoothing spline approaches
can control the smoothness through the tuning parameter
in the penalty term instead of the number and location of
knots, which provides the same fit with fewer parameters,
and in turn, reduces the likelihood of overfitting the data
[25]. Although one could use the linear smoothing spline,
in our paper we used the cubic smoothing spline because
we desired a smoother interpolating function. Moreover,
in addition to the cubic smoothing spline, to improve the
robustness of the spline, we also used the robust smooth-
ing spline, employing an iterative re-weighted smoothing
spline algorithm with the inverse of the absolute value of
the residuals as the weights. We then compared the
proposed empirical error rate approach with the shadow
linear regression approach using simulation studies. The
Table 8 Error rates in real PhiX DNA data using shadow linear
regression and smoothing spline approaches

Samples SRER EER_CS EER_RS

100217 0.0261 0.0317 0.0315

100514 0.0142 0.0155 0.0157

SRER error rate estimated using shadow regression
EER_CS empirical error rate estimated using cubic smoothing spline
EER_RS empirical error rate estimated using robust smoothing spline
results from the simulation studies showed that the
shadow linear regression underestimated error rates while
the proposed empirical approach provided more accurate
estimations of the error rates. This was true even for the
DNA sequencing data, where the linear read-shadow rela-
tionship might be valid.
In practice, the true sample genome sequence might

not be the same as the reference genome sequence due
to polymorphisms or duplications. Therefore, we per-
formed additional simulations with two scenarios: (1)
there is one polymorphism for every 1000 base pairs as
was assumed in Wang et al. [7]; and (2) there are two
base-pair duplications for every 1000 base pairs. It is
important to note that these assumptions are specific for
simulating the data and are not required for the shadow-
based methods. Specifically, based on the reads of
sample SRR037440, uniquely mapped to the reference
genome with no mismatches, we added one polymorph-
ism or two base-pair duplications per 1000 base pairs
and considered the resulting reads as error-free reads.
We then added substitution errors based on pre-specified
base-specific error rates. In both scenarios, our proposed
approach provided accurate results. For example, in the
scenario where we assumed that there was one poly-
morphism per 1000 base pairs, the expected error rate in
the simulation was 0.1977. The estimated error rates using
the cubic smoothing spline and robust smoothing spline
were 0.1973 and 0.1989, respectively. In the scenario
where we assumed that there were two base-pair dupli-
cations per 1000 base pairs, the expected error rate in the
simulation was 0.1728. The estimated error rates were
0.1722 and 0.1761, respectively, using the cubic smoothing
spline and robust smoothing spline. These results showed
that the proposed approach is not affected by the poly-
morphisms or duplications as well as the validity of the
shadow-based approaches.
We applied the proposed approach to real data from

studies of MAQC, mutation screening, ENCODE, and
PhiX DNA and compared the results with those obtained
using the shadow linear regression approach. The results
showed that shadow regression provided relatively low
error rates compared to the proposed approach. For
example, for the MAQC mRNA sequencing data, our
approach yielded error rates between ~17 and ~32 %,
whereas shadow regression provided error rates of
~15 to ~27 %. The lower error rates estimated by the
shadow regression method could be attributed to the
linear assumption, which is not valid in some real
data sets, as can be seen by even simple visual in-
spection (Additional file 1). When analyzing the DNA
sequencing data, for which the linear relationship
might be valid, the proposed approach provided estima-
tions of error rates similar to those obtained using shadow
linear regression.
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To better investigate the performance of the proposed
approach, we developed a frequency-based simulation
approach to capture the nonlinear relationship between
the number of reads sequenced and the number of
reads that contained errors based on the sequencing
reads from real data sets. We compared these two
simulation approaches and showed that in the data
generated using the Wang et al. simulation approach
the shadow counts increased linearly as the error-free
read counts increased, whereas in the data generated
using our frequency-based simulation approach, the pat-
terns were similar to those in the original sample data
(Additional files 3 and 4).
For the proposed empirical error rates, we adapted the

original definition of per-read error rate used by Wang
et al. [7], which was the proportion of reads containing
sequencing errors among all the reads in a sample.
Instead of using the slope from the linear model, we
defined the empirical error rate as a function of the
error-free read count. That is, in a given sample, the
error rate could vary on the basis of the number of
reads sequenced, which might be practically more ro-
bust than the shadow regression in which one fixed
error rate is provided for a given sample. We also de-
fined a sample-level error rate using the median of
the error rates obtained using different numbers of
error-free read counts and corresponding fitted shadow
counts.
Both the proposed empirical approach and the

shadow regression can be affected by outliers. There-
fore, we suggest pre-processing the sequence data
before data analysis using standard statistical ap-
proaches, such as boxplot rule (i.e., based on the
upper and lower quartiles of the data sample distribu-
tion), chi-squared test [43], Dixon test [44], and
Grubbs’ test [45]. One can also consider alternative
approaches that might be more robust to outliers
such as the quantile regression [46] or Akima spline
[47, 48]. In this study, we showed the application of
the proposed approaches to data from several sequen-
cing experiments, such as DNA sequencing, mRNA
sequencing and re-sequencing. We also showed that the
shadow-based approaches are valid when polymorphisms
and duplications are present. Because the shadow-based
approaches (i.e., shadow regression and our proposed
approaches) are independent of the reference genome,
they can be applied to other types of sequencing experi-
ments, such as extensive polymorphisms, isoforms, or the
microbiome. In particular, as the approaches consider only
the reads that differ from the error-free reads by up to two
bases as the shadows (i.e., reads with errors), the reads
with many differences, such as extensive polymorphisms,
isoforms or microbiome data, will not be counted as
shadows in the analysis.
Conclusion
In summary, we proposed an empirical error rate esti-
mation approach in which cubic and robust smoothing
splines were used to model the read-shadow relation-
ship. The proposed approach does not assume a linear
relationship between the error-free reads and shadows
counts and provides more accurate estimations of error
rates for next-generation, short-read sequencing data.

Availability of data and materials
The datasets of MAQC, re-sequencing and ENCODE
used for the analyses described in this paper were
obtained from National Center for Biotechnology Infor-
mation Sequence Read Archive (Accession numbers:
SRX016366 and SRX016368 for MAQC; SRX000570 for
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Giovanni Parmigiani, Dana-Farber Cancer Institute. The
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