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Abstract

Background: The targeting of disease-related proteins is important for drug discovery, and yet target-based
discovery has not been fruitful. Contextualizing overall biological processes is critical to formulating successful drug-
disease hypotheses. Network pharmacology helps to overcome target-based bottlenecks through systems biology
analytics, such as protein-protein interaction (PPI) networks and pathway regulation.

Results: We present a systems polypharmacology platform entitled DrugGenEx-Net (DGE-NET). DGE-NET predicts
empirical drug-target (DT) interactions, integrates interaction pairs into a multi-tiered network analysis, and
ultimately predicts disease-specific drug polypharmacology through systems-based gene expression analysis.
Incorporation of established biological network annotations for protein target-disease, —signaling pathway,
—molecular function, and protein-protein interactions enhances predicted DT effects on disease pathophysiology.
Over 50 drug-disease and 100 drug-pathway predictions are validated. For example, the predicted systems
pharmacology of the cholesterol-lowering agent ezetimibe corroborates its potential carcinogenicity.

When disease-specific gene expression analysis is integrated, DGE-NET prioritizes known therapeutics/experimental
drugs as well as their contra-indications. Proof-of-concept is established for immune-related rheumatoid arthritis
and inflammatory bowel disease, as well as neuro-degenerative Alzheimer's and Parkinson’s diseases.

Conclusions: DGE-NET is a novel computational method that predicting drug therapeutic and counter-therapeutic
indications by uniquely integrating systems pharmacology with gene expression analysis. DGE-NET correctly
predicts various drug-disease indications by linking the biological activity of drugs and diseases at multiple tiers of
biological action, and is therefore a useful approach to identifying drug candidates for re-purposing.

Keywords: DrugGenEx-NET, TMFS, Polypharmacology, Gene expression analysis, Rheumatoid arthritis, Inflammatory

bowel disease, Parkinson'’s disease, Alzheimer's disease

Background

Modern drug discovery endeavors are only rarely trans-
lated into acceptable clinical success rates [1]. Pre-
clinical drug discovery initiatives have been gene-centric
with a focus on finding drugs for targets of interest with
high binding affinity and selectivity [2]. It is increasingly

* Correspondence: sd233@georgetown.edu

Equal contributors

'Department of Oncology, Lombardi Comprehensive Cancer Center,
Georgetown University Medical Center, Washington DC 20057, USA
’Department of Biochemistry & Molecular Biology, Georgetown University,
Washington DC 20057, USA

Full list of author information is available at the end of the article

( ) BiolVed Central

accepted, however, that disease states exhibit biological
complexity, and that the gene-centric view neglects
physiologic context by isolating the target in an artificial
environment [3]. Furthermore, drugs arising from de
novo design are likely to have many unknown targets
given the limited scope of biochemical assays, thus lead-
ing to both clinical toxicity and unanticipated novel dis-
ease indications [4]. Systems pharmacology, the
integration of systems biology with network pharmacol-
ogy, is a mechanism-centric solution that considers the
global physiological environment of disease states and
allows for the discovery of drugs or combinations of
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drugs that may simultaneously target multiple nodes of
the disease-associated network [5]. Initiatives utilizing
network analysis have led to successful drug discovery
efforts [6-11].

As most FDA-approved drugs are considered safe and
simultaneously exhibit multi-target effects, drug repurpos-
ing is an optimal strategy for harnessing the strength of
polypharmacology [12]. Current methods do not utilize
high-throughput approaches to empirically determine
drug-target associations and subsequently contextualize
them using systems biology. Here, we have created a novel
computational systems pharmacology platform, entitled
DGE-NET, that: (1) accurately predicts drug-protein target
interactions, (2) assesses drug effects through systems ana-
lysis of cumulative predicted targets for each drug, and (3)
formulates drug-disease associations through gene expres-
sion analysis and polypharmacology.

DGE-NET was first applied to a set of 3,671 FDA ap-
proved and experimental drugs across 2,335 human protein
target crystal structures for potential drug repurposing.
Drugs were then associated with biological effects, which
include molecular functions, signaling pathways, protein-
protein interactions (PPIs) and diseases, through associ-
ation with their predicted targets. Drug-biological effect
predictions were validated at multiple tiers using findings
in the literature and experimentally determined associations
from annotated databases. Over 50 drug-disease and 100
drug-pathway associations were validated. DGE-NET also
provided further evidence for unexpected toxicities, such as
the potential carcinogenic properties of the cholesterol ab-
sorption blocker ezetimibe. Drug-target and drug-biological
effect signatures were also statistically associated with clin-
ical disease-relevant protein targets, PPIs, pathways, and
functions obtained from differential gene expression ana-
lysis. DGE-NET incorporated a novel drug prioritization
scheme that ranks drugs matched to a disease based on its
polypharmacology at each tier of biological action.

For proof-of-concept, DGE-NET was applied to
human-derived gene expression datasets obtained for
rheumatoid arthritis (RA), inflammatory bowel disease
(IBD), Alzheimer’s disease (AD), and Parkinson’s disease
(PD). DGE-NET was validated by prioritizing approved
drugs and biologics as well as those currently being ex-
amined repurposing, and also revealed drugs contra-
indicated in those conditions, such as tetracyclines in
IBD. DGE-NET is first computational platform we know
of that predicts novel protein binding signatures of
FDA-approved drugs and subsequently matches drug ac-
tion at multiple levels of biological activity to gene
expression-based characterization of disease perturb-
ation. It stands as an effort to address the pressing need
for models that account for the complexity of multi-
tiered interactions for better simulations of disease states
and predictive therapeutics. In summary, DGE-NET is a
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novel computational method for gene expression- and
systems polypharmacology-driven drug repurposing.

Methods

Collection of FDA-approved drugs, experimental mole-
cules, and protein target curation

Spatial Data Files (SDF) of drugs and experimental mol-
ecules containing spatial atom connectivity information
were obtained from DrugBank [13], the NCGC Pharma-
ceutical Collection [14], FDA (www.FDA.gov), and Bin-
dingDB [15]. Energy-minimized 3D structures were
prepared using Schrodinger’s LigPrep [16] algorithm at
pH 7.0. Human protein crystal structures were obtained
from RCSB (www.rcsb.org). Only X-ray structures with
<2.5 angstrom resolution and a reference co-crystallized
ligand were chosen. Protein structures were further
processed to remove non-biologically relevant chains
(i.e. those that do interact with the ligand), metal ions,
and all heteroatoms (i.e. non-cofactors, solvent mole-
cules). Structures were then prepared using ProteinPrep
in Schrodinger to relax the structures and optimize
hydrogen bonds at pH 7.0. After processing, the dataset
included 3,671 drugs and 2,335 protein target crystal
structures.

Predicting Drug-Target (DT) signatures

DGE-NET utilizes a modified version of our “Train,
Match, Fit and Streamline” (TMFS) method [17] for
generating reliable binding signature predictions. Briefly,
TMES is a proteochemometric method that predicts the
binding potential of a protein-ligand complex by inte-
grating docking, three-dimensional shape, and ligand
physicochemical descriptors (Fig. 1). GLIDE [18] was
used to dock molecules into protein pockets identified
by the reference ligand, and QikProp [19] was used to
generate the following ligand-specific physicochemical
descriptors: (1) solvent-accessible surface area, (2) vol-
ume, (3) dipole, (4) # H-bond acceptors, (5) # H-bond
donors, (6) globularity, (7) ionization potential, and (8)
electron affinity. Strike [20] was used to generate Tani-
moto similarity coefficients to quantify the similarity of
ligand physicochemical descriptors to that of the bio-
active reference molecules found in the protein complex
crystal structures. Ligand and pocket 3D shapes were
quantified using a spherical harmonics expansion ap-
proach [21] and ligand-reference molecule/ligand-pro-
tein pocket shape similarities were quantified using a
Euclidean distance metric. After docking scores, shape
similarity, Euclidian distance scores, and ligand-based
descriptor similarity scores were derived by the tools de-
scribed above, a common scheme was used to normalize
these scores, wherein each is transformed into a 0-1
range, 1 being the most favorable score present. These
metrics were combined into a comprehensive Z-score
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Fig. 1 Workflow for predicting drug-target signatures and relating network pharmacology
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that was used to rank ligands such that the top-ranking
molecules are considered most likely to bind. The Z-
score for a unique ligand (/) —protein (p) co-crystallized
with reference ligand r is as follows:
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Y is the normalized docking score with weight wy_ 4.
The first summation term is the normalized shape simi-
larity score for ligand-to-protein pocket f,,(/, p) and lig-
and-to-reference f'm(l, r) with weights w,,_; and Wy,
and the second summation term corresponds to the
sum of the Tanimoto similarity coefficients between the
ligand and reference for physicochemical descriptors.
Aforementioned weights for docking, protein shape

similarity, and ligand shape similarity, respectively, were
found to maximize the accuracy of TMES in predicting
top protein targets from publically available experimen-
tal data. Lastly, CS(OLIC) is a correction term based on
the similarity of contact points created between the lig-
and and reference to the protein target. It was assumed
that drugs have similar experimental activity if their
interaction involves similar binding site residues and
interaction patterns to that of the reference. The top
40-scoring drugs were considered as “hits” for a given
protein target for subsequent network analysis. The top
40 drugs were chosen as they represent the top 1 % of
all the drugs in our dataset, a fraction that is typically
employed in virtual screening protocols [17].

Relating drug-target predictions to diseases, pathways,
functions, and protein-protein interactions

Predicted drug-target associations were associated with
diseases, signaling pathways and molecular functions for
network analysis (Fig. 1). Protein targets were cross-
referenced using the unique PDB entry with UniProt
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[22]. Because many crystal structures may correspond to
the same protein, collapsing them using UniProt reduces
the total number of protein target nodes. A list of genes
associated with the protein were obtained from each
UniProt entry and mapped to Online Mendelian Inherit-
ance in Man (OMIM) Morbidity Map [23] gene-disease
associations, a procedure modeled after Yildirim et al.
[24]. Drugs are connected to a disease via mapping of
their target genes to their associated disease. Thus, a
drug is connected to a disease if its predicted targets
have disease genes associated with the disorder. In the
DT-disease network, all disorders associated with a pre-
dicted protein target will be associated with the drug.

Disease-associated targets were also annotated with
KEGG pathway [25, 26] and Gene Ontology (GO) mo-
lecular function [27, 28] information using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) Functional Annotation Tool (FAT) [29, 30]. FAT
was also used to annotate pathways and functions for a
given drug via its predicted direct and indirect targets
through protein-protein interactions using FDR <0.25.
Protein-protein interactions (PPIs) were extracted from
the ExPASy STRING database [31] using a confidence
score cutoff of 0.95. Any PPI pairs where one of the part-
ners did not exist in our protein target dataset were ex-
cluded. A gene list comprised of a drug’s predict direct
targets as well as those targets’ interacting partners was
subjected to DAVID annotation. For example, if Drug A
was predicted to interact with Target A and Target B, and
Target A also interacted with Protein C while Target B
interacted with Protein D and Protein E, then the gene
list for Drug A would consist of the following: Target A,
Target B, Protein C, Protein D, and Protein E.
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Annotating disease and pathway categories

The disease categories from Medical Subject Headings
(MeSH) were used for annotation of disease names cor-
responding to OMIM disorder entries. Approximately
93 % of the diseases were mapped to a disease category.
The Comparative Toxicogenomics Database (CTD) [32]
was used to map 75 % of the diseases; the remaining dis-
eases were manually curated, with 71 % of these provid-
ing a partial or close match. Diseases that mapped to
multiple disease categories were manually evaluated to
determine a primary disease category. This was done by
determining what the primary clinically treated category
is for a disease. For example, the disease systemic lupus
erythematosus is primarily an autoimmune disorder but
can be considered as “skin and connective tissue” if the
disease process involves the facial malar rash. Diseases
in which a primary category could not be determined
were categorized as multiple. Pathways were manually
organized into categories based on metabolic/cellular
processes and diseases as annotated by KEGG.

Incorporation of disease gene expression data with
systems pharmacology

A schematic of DGE-NET is illustrated in Fig. 2. Differen-
tial gene expression analysis on Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) microarray data was
performed for RA (GSE55235 and GSE55457), IBD
(GSE52746 and GSE11223), AD (GSE29378), and PD
(GSE7621). Differentially expressed genes between normal
and diseased patient biopsies with adjusted P values < 0.05
(using GEO2R [33]) were obtained. GEO2R is a R-based
publicly accessible web tool for analyzing GEO-deposited
gene expression data (http://www.ncbinlm.nih.gov/geo/

~

Drug-Disease Asscciations
via Systems Pharmacology

Gene Signatures

Differential Gene

Expression

>3,700 Drugs

/ -
/I STRING Indirect Protein #1 L

GEO2R

A 7{ KEGG Pathway #1
] Protein Target #1

@&\

N

%

\| [ STRING Indirect Protein #2 %
\. | KEGG Pathway #2

GO Function #2 |

Normal
> Protein Target #1
Protein Target #2
\
Protein Target #3 B

7

Protein Target N

| Indirect Protein j, Pathway j, Function k I

Protein Target n

and protein-protein-interactions

Fig. 2 Schematic of DGE-NET used to associate drugs with diseases. Differential gene expression analysis of diseased versus non-diseased states is
used to establish a disease-related gene set. DAVID and STRING analysis of this gene set provides disease-related pathways, functions,
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geo2r/). The differential gene list was subjected to
functional systems biology annotation as noted above.
For disease sets, multiple testing correction yielded
few genes having significantly differential expression.
Nominal P-values < 0.05 were therefore used to allow
for robust overrepresentation analyses. For the IBD
set (normal colonic tissue control versus active IBD
without anti-TNF therapy), the top 1,500 up-regulated
and top 1,500 down-regulated genes were taken to
create a list of 3,000 genes — the maximum number
that DAVID accepts. All other datasets resulted in
differential gene lists of fewer than 3,000 genes.

Using drug-target signatures from TMFS and the DGIdb
[34], a comprehensive resource of experimentally deter-
mined drug-target associations curated from multiple large
publically available databases, drugs were associated with
diseases using the hypergeometric test (Fig. 3a) in R [35] at
each of the following biological levels: direct protein tar-
gets, cell signaling pathways, molecular functions and PPIs.
Drugs with P<0.05 had their P-values log-transformed
and normalized to the value of the most significantly-
associated drug, resulting in values on the 0—1 unit range
as illustrated in Fig. 3b. All non-significant P-values were
automatically normalized to a value of 0. Normalization
minimizes discrepancies found in the P-value ranges be-
tween different biological effect categories.

For each drug i, normalized values corresponding to
each biological effect tier were used to calculate a drug-
disease association Z-score used for ranking:

Z; = aA + bB + cC +dD (2)

where A, B, C, and D correspond to the normalized values
for drug-direct target, —pathway, —function, and —PPI as-
sociations, respectively. In illustrative Fig. 3c, A, B, C, and
D correspond to zgene, zpathway, zfunction, and zPPI, re-
spectively. Associated weights a, b, ¢, and d were set to the
values of 2, 1, 0.5, and 0.25, respectively, as to prioritize
direct binding of disease-regulated gene products with
each subsequent level of activity receiving lower weights
(Fig. 3c). This configuration was determined to best
prioritize experimentally validated drugs for the given in-
dication, and allowed for drugs highly associated with dis-
ease mechanisms at pathway, function, and indirect
proteins levels to be recognized as candidates even when
gene-level significance of association was poor. PPIs were
given the least weight as many interactions tend to occur
simultaneously within the diseased cell and prioritizing
relevant interactions is difficult due to the simultaneous
expression of thousands of proteins. Drugs are ranked in
descending order by Z-score (Fig. 3d). High Z-scores indi-
cate a drug’s potential to most significantly and simultan-
eously target the greatest amount of direct proteins,
pathways, functions and PPIs associated with the disease.
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Fig. 3 Hypergeometric test schematic for drug-disease association at
each level of biological activity. Each drug is associated with a given
disease at each level of biological action by the hypergeometric test.
a Given a gene, pathway, function, or indirect protein ‘universe’, the
hypergeometric test allows one to determine the probability that
coincident drawings between two samples drawn from that universe
is due to random chance. Therefore, the statistical significance of
having hits (common items) between drug-associated biological
factors and disease-associated factors is derived. b Computation of
hypergeometric p-values and subsequent normalization for
integration into cumulative score. ¢ Computation of drug-disease
association Z-score. d Ranking scheme by drug-disease association
Z-score in descending order. That is, Zi exhibits the highest system-
wide statistical association (highest-magnitude Z-score), followed by

Zi+1,Zi+2, Zi+ 3, and so forth
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Fig. 4 Formation of drug-target (DT) disease networks. A random sample of drugs with predicted protein targets known to be associated with a
disease in OMIM were selected to illustrate the process of associating drugs with diseases. a Drugs (orange circle nodes) are connected using a
charcoal dashed edge to predicted protein targets (square nodes); the protein targets are connected using a solid tan edge to a disease if the
protein has disease genes associated with the disease. Pink nodes represent proteins associated with multiple diseases, while green nodes
represent proteins associated with a single. These interactions were used to form a drug-target disease network. b The drugs (orange circle
nodes) are connected to a disease if a predicted drug-target has disease genes associated with the disease
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Fig. 5 Predicted drug-target (DT) disease network. The DT disease bipartite network is generated using the top 1-ranked DT predictions and
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protein that has disease genes associated with the disease. Disease nodes are colored according to their MeSH disease category; color
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Thus, drugs with the highest Z-scores are prioritized for
repurposing due to their systems-wide effects.

Results & discussions

Prediction of empirical drug-disease associations
DGE-NET predicted drug associations to diseases with
known etiologies by way of direct gene aberrations, as
annotated in OMIM (Fig. 4). The DT-disease network
contains 562 drugs (only those appearing as the top 1-
ranked for their respective protein target) and 296 dis-
eases, with the largest component containing 498 drugs
(Fig. 5; Additional file 1: Table S1). The neoplasm and
“nutritional and metabolic” disease classes are found
centrally, reflecting the large number of drugs already
approved for them and a notable potential for repurposing.
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Given their topology in the network, associated drugs have
potential polypharmacology to other disease classes. More
specialized diseases tend to occupy peripheral areas of the
DT-disease network, exhibiting a smaller degree of node
connectivity and suggesting increasingly unique pathogenic
factors. Such diseases include digestive, urogenital, “hemic
and lymphatic”, and respiratory disorders. By contrast, the
DT-cancer network exhibits high connectivity, with the
average degree of drug nodes being 1.7 and 57 of 159 hav-
ing a degree higher than 1 (Fig. 6). 26 drugs are predicted
to target colorectal cancer, several of which are also pre-
dicted to target breast cancer. This is reflected in clinical
practice, where several drugs are utilized across multiple
cancers. The biologically sensible topology of the network
provides further validation: biologically-related cancers are

Fig. 6 Predicted drug-cancer network from top-scoring DT interactions
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clustered together through their predicted drugs. For in-
stance, the bottom right cluster contains the endocrine
gland tumors medullary thyroid carcinoma, multiple endo-
crine neoplasia (MEN), and pheochromocytoma, whereas
the unique endothelial-originating hemangioma is found
isolated in the top right.

Drug-disease predictions were validated via data found
in the primary literature (Additional file 2: Table S2).
Out of 526 predicted drug-disease associations, 51 were
validated. Full coverage is not attainable, as many drug-
disease associations have not yet been examined. Nonethe-
less, some predicted drug-disease combinations have been
well studied, such as lisinopril for diabetes-associated
microvascular complications [36]. Other associations in-
clude the anti-hookworm mebendazole for hepatocellular
carcinoma and the antibiotic ceftriaxone for bladder
cancer. Thus, for diseases with strong single-gene known
associations, DGE-NET is able to reliably predict clinically
relevant drug-disease associations by forming accurate
drug-target associations. These data collectively demon-
strate the ability of DGE-NET to establish known and
novel drug-disease associations.

Expansion of the drug-target prediction space to systems
pharmacology

Many diseases exhibit complexity in implicating multiple
perturbations rather than single deciding gene associations,
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and this necessitates a complex systems pharmacology per-
spective for clinical treatment. Drugs were therefore associ-
ated with pathways using KEGG annotations of their
predicted targets. Mazindol (DB00368) and sulfadiazine
(DB00359) had the least number of predicted pathways
(Fig. 7). Mazindol is a tricyclic anorexigenic known to affect
the noradrenergic, dopaminergic and serotonergic path-
ways (KEGG Drug D00367). Sulfadiazine is a sulfonamide
used to treat bacterial infections by specifically inhibiting
the folate biosynthesis pathway (KEGG Drug D00587).
DGE-NET was able to recapitulate their specificity for
those pathways. Alternatively, kinase inhibitors and nu-
cleoside analogs such as nelarabine (DB01280) disrupt
multiple pathways (Fig. 7). The KEGG Drug corpus was
also used to validate 103 drug-pathway associations
across 59 drugs (Table 1). Thus, DGE-NET is able to
reliably associate drugs with biological pathways im-
portant in disease processes.

DGE-NET also related predicted DT signatures to mo-
lecular functions (Fig. 7). Deferasirox, an iron chelator,
was predicted to affect the greatest number of molecular
functions. According to the Institute for Safe Practices,
deferasirox was the second most suspected drug in re-
ported patient deaths [37]. This may be due to its poten-
tial to disrupt many molecular functions as predicted by
DGE-NET. Anti-neoplastic drugs were also predicted to
alter a large number of functions (Fig. 8). This reflects

o
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i Pl
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Fig. 7 Waterfall plot for the predicted number of KEGG pathways affected by each drug
.
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Table 1 Validations of predicted drug-pathway associations via
the KEGG Drug database

Drug KEGG KEGG Pathway
Drug ID

Acetohexamide D00219  Type Il diabetes mellitus

Aripiprazole D01164  Gap junction

Bezafibrate D01366  Adipocytokine signaling pathway

Bicalutamide D00961  Pathways in cancer, Prostate cancer

Candesartan D00626  Vascular smooth muscle contraction

Carvedilol D00255  Vascular smooth muscle contraction

Celecoxib D00567  VEGF signaling pathway

Cilostazol D01896  Insulin signaling pathway

Clozapine D00283  Gap junction

Conivaptan D01236  Vascular smooth muscle contraction

Danazol D00289  Oocyet meiosis, Progesterone-mediated
oocyte maturation, Pathways in cancer

Dasatinib D03658  MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, VEGF signaling pathway,
Pathways in cancer, Chronic myeloid
leukemia

Diflunisal D00130  VEGF signaling pathway

Domperidone  D01745  Gap junction

Droperidol D00308  Gap junction

Drospirenone D03917  Aldosterone-regulated sodium transport

Dydrogesterone D01217  Oocyte meiosis, Progesterone-mediated

oocyte meiosis

Eltrombopag D03978  Cytokine-cytokine receptor interaction,
Jak-STAT signaling pathway

Epoprostenol D00106  Vascular smooth muscle contraction

Eprosartan D04040  Vascular smooth muscle contraction

Erlotinib D07907  MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, Pathways in cancer, Pancreatic
cancer, Non-small cell lung cancer

Fenofibrate D00565  Adipocytokine signaling pathway

Floxuridine D04197  Pyrimidine metabolism

Flupenthixol D01044  Gap

Flurbiprofen D00330  VEGF signaling pathway

Flutamide D00586  Pathways in cancer, Prostate cancer

Gemcitabine D02368  Purine metabolism, Pyrimidine metabolism

Gliclazide D01599  Type Il diabetes mellitus

Glipizide D00335  Type Il diabetes mellitus

Haloperidol D00136  Gap junction

Imatinib D01441  MAPK signaling pathway, Cytokine-cytokine
receptor interaction, Hematopoietic cell
lineage, Pathways in cancer, Chronic
myeloid leukemia

Indacaterol D09318  Endocytosis

Indomethacin D00141  VEGF signaling pathway

Ketoprofen D00132  VEGF signaling pathway
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Table 1 Validations of predicted drug-pathway associations via
the KEGG Drug database (Continued)

Lapatinib D04024  MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
pathway, Pathways in cancer

Levonorgestrel  D00950  Oocyte meiosis, Progesterone-mediated
oocyte maturation

Losartan D08146  Vascular smooth muscle contraction

Methysergide D02357  Gap junction

Milrinone D00417  Progesterone-mediated oocyte maturation

Mitiglinide D01854  Type Il diabetes mellitus

Naproxen D00118  VEGF signaling pathway

Nilutamide D00965  Pathways in cancer, Prostate cancer

Norethindrone  D00182  Oocyte meiosis, Progesterone-mediated
oocyte maturation

Olmesartan D01204  Vascular smooth muscle contraction

Oxaprozin D00463  VEGF signaling pathway

Piroxicam D00127  VEGF signaling pathway

Progesterone D00066  Oocyte meiosis, Progesterone-mediated
oocyte maturation

Propericiazine D01485  Gap junction

Regadenoson  D05711  Vascular smooth muscle contraction

Risperidone D00426  Vascular smooth muscle contraction, Gap
junction

Salsalate D00428  VEGF signaling pathway

Silodosin D01965  Vascular smooth muscle contraction

Sorafenib D08524  MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, Chemokine signaling pathway,
mTOR signaling pathway, VEGF signaling
pathway, Natural killer cell mediated
cytotoxicity, Pathways in cancer, Renal cell
carcinoma

Sulindac D00120  VEGF signaling pathway

Sunitinib D06402  MAPK signaling pathway, Cytokine-cytokine
receptor interaction, VEGF signaling
pathway, Pathways in cancer

Telmisartan D00627  Vascular smooth muscle contraction

Testosterone D00075 Pathways in cancer, Prostate cancer

Vandetanib D06407  MAPK signaling pathway, ErbB signaling

pathway, Cytokine-cytokine receptor
interaction, VEGF signaling pathway,
Pathways in cancer

their polypharmacology as a class of drugs, as they are
designed to affect cell signaling and growth through
multiple mechanisms. As a result, these drugs also ex-
hibit high toxicity. Such analysis of molecular function
can have the advantage of identifying broad- or
specific-acting drugs for enriched clinical efficacy or
minimized toxicity.

The incorporation of protein-protein interactions
(PPIs) further increased the robustness of DGE-NET,
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providing insight into unexpected biological similarities
among drugs. For example, fluoxymesterone (DB01185)
and amscarine (DB00276) are chemically and structurally
unrelated. However, our method predicted that they
would bind androgen receptor and B-Raf, respectively,
both of which interact with MAPKI. It is through the
PPI with MAPK1 that these drugs link to pathways in
cancer (KEGG hsa:05200). Other drug-PPI validations
are listed in Table 2 [38-48]. To highlight the import-
ance of PPIs in attaining a mechanistic understanding
of drug effects, we specifically assessed the predicted
effects of ezetimibe (Fig. 9; Additional file 3: Table S3).
Ezetimibe (DB00983) is a cholesterol-lowering drug

Table 2 Validations of predicted drug-PPI interactions

used for improving cardiovascular health and has also
been associated with increased incidence of cancer
[49, 50]. PPIs derived from predicted targets for ezetimibe
are highly clustered, indicating that the affected biological
space is tightly coordinated through those targets and
greatly perturbed by the actions of ezetimibe (Fig. 9).
These clustered interacting targets are mainly involved in
cell growth, differentiation and signal transduction. Func-
tional annotation using both direct and indirect ezetimibe
targets implicates pathways and functions involved in car-
cinogenesis (Additional file 3: Table S3). Thus, the present
DGE-NET prediction of ezetimibe’s pro-tumorigenic ef-
fects warrants further investigation.

Drug Name Protein #1 (direct binding partner) Protein #2 (PPI) Reference
Bicalutamide ABL1 CASP9 Danquah et al. Pharm Res. 26(9):2081-92. (2009) [38]

ABL1 CCNA2 Katayama et al. Int J Oncol. 36(3):553-62. (2010) [39]

ABL1 MAPK11 Malinowska et al. Endocr Relat Cancer. 16:155-169. (2009) [40]
Cladribine ADA DCK Sasvari-Székely et al. Biochem Pharmacol. 56(9):1175-1179. (1998) [41]
Chlordiazepoxide AKT1 NR3C1 Curtin et al. Brain Behav, Immun. 23(4): 535-547. (2009) [42]
Progeterone AR F2 Oger et al. Arterioscler Thromb Vasc Biol. 23:1671-1676. (2003) [43]
Cyproterone AR CASP3 Eckle et al. Toxicol Pathol. 32:9-15. (2004) [44]

AR NR3C1 Honer et al. Mol Pharmacol. 63(5):1012-1020. (2003) [45]
Telmisasrtan BCL2 L2 Syrbe et al. Hypertens Res. 30(6):521-527. (2007) [46]
Sorafenib BRAF PRKCQ Jane et al. J Pharmacol Exp Ther. 319(3):1070-1080. (2006) [47]
Methotrexate DHFR CDK2 Maddika et al. J Cell Sci. 121:979-988. (2008) [48]
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Incorporation of autoimmune disease-related gene
expression data for polypharmacology-driven drug
repurposing

Autoimmune diseases are systemic or local pro-
inflammatory pathologies with multiple etiologies. Current
therapeutics such as corticosteroids, methotrexate and
anti-TNF biologics focus on regulating inflammation, and
immunosuppression. In addition to acting non-specifically
these medications do not address the full extent of effector
tissue pathobiology. A treatment approach rooted in poly-
pharmacology may be more efficacious and offers the po-
tential for limiting side effects. For proof-of-concept, we
apply DGE-NET as a gene expression-based polypharma-
cology prediction method (Fig. 2) for rheumatoid arthritis
and inflammatory bowel disease.

Rheumatoid arthritis (RA) is a painful multi-joint de-
structive disease. Joint synovium, usually 1-2 cells thick,
becomes inflamed and reaches multicellular thickness
due to infiltration of immune effector cells and activation

and subsequent proliferation of fibroblast-like synovio-
cytes (FLS). Cellular molecular cross-talk, infiltration and
proliferation lead to pannus formation, which acts analo-
gously to an invasive tumor and causes joint destruction.
As FLS cells are critical mediators of RA, we applied our
method using differentially expressed genes when compar-
ing activated FLS cells from RA patients and quiescent
FLS cells from non-RA patients (GSE55235 and
GSE55457). A consensus drug list was constructed by
combining the top 100 (~ Top 10 % of total drug data-
base) predicted drugs for each study and extracting those
that are present in one or both lists, ranked by mean asso-
ciation Z-score (Additional file 4: Table S4). Shown in
Table 3 are those drugs from the consensus drug list that
are currently used for RA, or have been found to be po-
tentially useful in the clinic [51-54, 97-103]. Drugs cur-
rently used in the clinic were recapitulated in our list,
such as anti-TNF biologics adalimumab and etaner-
cept, as well as the NSAID sulindac. Non-approved



Issa et al. BMC Bioinformatics (2016) 17:202

Page 12 of 18

Table 3 Validations of predicted drug indications for RA and IBD from consensus drug lists, ordered by drug list ranking

Rheumatoid Arthritis (RA)  Reference for Validation

Inflammatory Bowel Reference for Validation

Disease (IBD)

Alvocidib Sekine et al. J Immunol. 180(3):1954-1961
(2008) [51]

Karenitecin Liu et al. Med Res Rev. 35(4):753-89 (2015) [53]

Sulindac Brogden et al. Drugs. 16(2):97-114 (1978) [97]

Sunitinib Fuyura et al. Mod Rheumatol. 24(3):487-491
(2013) [52]

INCB28050 Taylor et al. Ann Rheum Dis. 73:A31
(2014) [99]

Amodiaquine Kersley et al. Lancet. 2(7108):886-888
(1959) [54]

Raltitrexed van der Heijden et al. Scand J Rheumatol.
43(1):9-16 (2014) [100]

BIRB 796 Page et al. Arthritis Rheum. 62(11):3221-3231
(2010) [101]

Adalimumab Weinblatt et al. Arthritis Rheum. 48(1):35-45
(2003) [102]

Etanercept Moreland et al. Ann Intern Med. 130(6):478-486
(1999) [103]

Minocycline O'Dell et al. Arthritis Rheum. 40(5):842-848

(1997) [104]

Sulfasalazine Klotz et al. N Engl J Med. 303(26):1499-1502

(1980) [105]

Olsalazine Baumagart et al. Lancet. 369(9573):1641-1657
(2007) [106]

Tetomilast Keshavarzian et al. Expert Opin Investig Drugs.
16(9):1489-1506 (2007) [107]

Inosine Mabley et al. Am J Physiol Gastrointest Liver

Physiol. 284(1):G138-G144 (2003) [108]

Lechin et al. J Clin Gastroenterol. 4(5):445-450
(1982) [56]

Thioproperazine

Etoricoxib El Miedany et al. Am J Gastroenterol.
101(2):311-317 (2006) [109]

Balsalazide Carter et al. Gut. 53(Suppl 5):V1-V16 (2004) [110]

Thalidomide Gerich et al. Ailment Pharmacol Ther.

41(5):429-437 (2015) [59]

Ramakers et al. J Clin Immunol. 27(3):275-283
(2007) [57]

Ray et al. Gut. 62(S1):A525-A525 (2013) [60]

Rosiglitazone

Irbesartan

Chloroquine Nagar et al. Int Immunopharmacol. 21(2):328-335

(2014) [111]

drugs currently being studied for RA also appeared.
These include kinase inhibitors such as alvocidib [51]
and sunitinib [52], the topoisomerase inhibitor kareni-
tecin [53], and the chloroquine-related compound
amodiaquine [54]. Predicted RA indication for these
drugs, which are generally anti-cancer agents, illus-
trates an important mechanistic underpinning of RA
with respect to FLS cells in that activated FLS mimic
cancer cell progression [55]. Regardless of the activat-
ing stimulus (e.g. TNF-a), our polypharmacological
method focuses on downstream gene expression, sig-
naling, and functional effects in activated FLS cells.
This highlights the cancer-like mechanisms of patho-
genesis and prioritizes those drugs that are able to
simultaneously disrupt the greatest number of those
mechanisms. In addition, because antibodies have
single-target effects, we were surprised by their pre-
dicted indications for RA. However, if that target has
many pathology-related pleiotropic downstream ef-
fects, such as TNF-a, then such drugs would be pri-
oritized due to the pathway and function terms in
our equation. Thus, DGE-NET is capable of making
important polypharmacological associations beyond
immediate gene targets.

DGE-NET also predicted drugs for inflammatory
bowel disease (IBD), also a multi-etiological immune-
related collection of disorders. Differential gene expres-
sion analysis was performed by, comparing normal and
inflamed bowel tissues (GSE52746 and GSE11223). Like

the RA dataset, a consensus list of the Top 100
drugs obtained from each IBD study was constructed
(Additional file 5: Table S5), and therapeutic valida-
tions from this list are recapitulated in Table 3 [56-60,
104-110]. Our method predicted the known IBD drug
sulfasalazine, serving as an important litmus. Other pre-
dicted drugs that are promising in experimental settings
and from diverse chemical classes include the anti-
psychotic thioproperazine [56], the anti-diabetic thiazlidi-
nedione rosiglitazone [57], the leukotriene receptor antag-
onist tetomilast [58], and thalidomide [59]. Interestingly,
DGE-NET predicted the angiotensin receptor blocker
(ARB) irbesartan as potential therapy. A recent prelimin-
ary study implicates the role of angiotensin receptors in
intestinal fibrosis in Crohn’s disease [60], a type of IBD,
but greater investigation is needed.

In addition to recapitulating known drug associations,
we predicted the drugs topotecan and mebendazole for
repurposing to rheumatoid arthritis. Topotecan is a
DNA topoisomerase 1 (Topl) inhibitor used for NSCLC
cancer and has been given both orally and intravenously.
Topoisomerases have been implicated in rheumatoid
arthritis etiology [61], and the established Top1 inhibitor
camptothecin (CPT) has been shown to be effective in a
murine collagen-induced RA model [62]. Koo et al. de-
veloped a novel nanocarrier for CPT called CPT-SSM-
VIP, which denotes micelles to overcome solubility is-
sues and vasoactive intestinal peptide (VIP) for active
targeting. As CPT provides evidence for Topl inhibition
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in RA, we also pursued topotecan. Although it can be
inferred that topotecan could be an effective anti-
arthritic via topoisomerase, many other unreported tar-
gets were predicted for topotecan that could mediate po-
tential efficacy. These include multiple tyrosine-protein
kinases (BTK, CSK, LCK, TTK, ITK, LYN), non-tyrosine
kinases (AURK1, PIK3CGQ), as well as cyclin A2. Meben-
dazole is an anti-hookworm tubulin inhibitor with anti-
cancer potential through mammalian crossover tubulin
[63] and kinase inhibition [64]. We previously predicted
many novel protein kinase targets for mebendazole [17].
Kinase inhibition is a sought after therapeutic strategy
for rheumatoid arthritis, especially as non-biologic treat-
ment alternatives and for methotrexate-resistant cases
[65—-67]. Inhibitors of spleen tyrosine kinase (Syk) and
Janus kinases (Jaks) have shown short-term efficacy, but
other kinases inhibitors with good long-term effect pro-
files may also exist. Other kinases implicated in RA
pathogenesis include aurora kinases [68] and cyclin-
dependent kinases (CDKs) [69]. Mebendazole may serve
as a good non-biologic disease-modifying antirheumatic
drug (DMARD) given its historic use, low toxicity pro-
file, and its effect on multiple kinases.

In another proof-of-concept, we applied DGE-NET to
two neurodegenerative disorders, Alzheimer’s disease
(AD) and Parkinson’s disease (PD). Table 4 summarizes
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those drugs predicted to be in the top 50 for AD and PD
by DGE-NET that are currently validated for standard
or potential therapeutic use [70-86]. The complete top
50 predicted drugs for these diseases and their valida-
tions are found in Additional file 6: Table S6. Others
listed are currently undergoing pre-clinical or clinical in-
vestigation. Of note is that memantine, an approved
drug for AD, appears beyond the top 50 but within the
top 500. This drug exhibits less polypharmacology but is
still effective given the importance of its direct targets
and pathways for AD disease processes (i.e. NMDA re-
ceptor antagonism reducing glutamate excitotoxicity of
neurons [87]). Thus, it can be hypothesized thatdrugs
found higher up in the rank list may be more effective
than the current clinical standards of care as those drugs
theoretically alter a greater proportion of disease-associated
protein targets and biological effects simultaneously.
Sunitinib has been identified as a lead candidate having
the potential to mitigate the development of oxidant in-
jury to endothelial cells associated with AD [79]. Sunitinib
could affect the vascular activation mechanisms of patho-
genesis in AD by reducing the expression of amyloid beta,
thrombin, tumor necrosis factor alpha, interleukin-1
beta, interleukin-6, and matrix metalloproteinase 9, and
other factors associated with neurodegenerative disorders
[79, 88, 89]. This anti-angiogenic property has been

Table 4 Validations of top 50 predicted drug indications for AD and PD, ordered by ranking

Alzheimer's Disease (AD) Reference for Validation

Parkinson'’s Disease (PD) Reference for Validation

Rasagiline Weinreb et al. Neurotherapeutics.
(6)1:163-74. (2009) [70]

Interferons Grimaldi et al. J Neuroinflammation.
11:30 (2014) [71]

Calcium Woods et al. Adv Exp Med Biol.
740:1193-217 (2012) [72]

Dovitinib Li et al. Medical Hypotheses.

(80)4:341-44. (2013) [73]

Somatropin Recombinant Ling et al. Growth Horm IGF Res.

(17)4:336-41 (2007) [74]

Aripiprazole De Deyn et al. Expert Opin. Pharmacother.
(14)4:459-74 (2013) [75]

Clozapine Tariot et al. Clin Geriatr Med.
(17)2:359-76 (2001) [76]

Quercetin Ansari et al. J Nutr Biochem.
20(4):269-75 (2009) [77]

Flavopiridol Pallas et al. Med Hypotheses.
64(1):120-3 (2005) [78]

Sunitinib Grammas et al. J Alzheimers Dis.
40(3):619-30 (2014) [79]

Risperidone Katz et al. Int J Geriatr Psychiatry.
(60)2:107-15 (2007) [80]

Genistein Valles et al. Brain Res. 1312:138-44
(2010) [81]

Dasatinib Dhawan et al. J Neuroinflammation.

9:117 (2012) [82]

Dextroamphetamine Parkes et al. J Neurol Neurosurg Psychiatry.

38(3):232-7 (1975) [83]

Orphenadrine Bersani et al. Clin Neuropharmacol.
13(6):500-6 (1990) [84]
Quinacrine Tarig et al. Brain Res Bull. 54(1):77-82

(2001) [85]

Weintraub et al. Neurology. 75(5):448-55
(2010) [86]

Atomoxetine
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previously shown to be a major component of the anti-
cancer acitivity of sunitinib [90]. Figure 10 illustrates the
polypharmacology of sunitinib, at each level of biological
activity, predicted by DGE-NET to coincide with signifi-
cantly AD-associated factors. Single-agent or combination
therapies that exploit multiple aspects of disease process
are assumed to be efficacious, requiring lower dosages than
current therapies and reducing the likelihood of resistance.
In addition to therapeutic drug repurposing candi-
dates, DGE-NET reported drugs that are known to be
contra-indicated for their respective diseases. Minocy-
cline and tretinoin, both of which are used to treat acne,
may have IBD toxicity. Minocycline is a tetracycline
antimicrobial with a potential association with IBD
(Additional file 5: Table S5) [91]. Tretinoin is a topical
retinoid that is structurally related to isotretinoin, an oral
medication used for more severe acne. While tretinoin itself
is safe, isotretinoin has been implicated in causing IBD
(Additional file 5: Table S5) [92], though this finding is con-
troversial. It could be extrapolated that if tretinoin was
given orally and at higher doses that IBD may be a conse-
quence. Others include methysergide, a prophylactic drug
that is contra-indicated for RA and other collagen diseases
(Additional file 4: Table S4) [93], indomethacin, a non-
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selective non-steroidal anti-inflammatory drug known to
exacerbate IBD (Additional file 5: Table S5) [94, 95], quetia-
pine, an atypical antipsychotic associated with increased
cognitive decline in AD (Additional file 6: Table S6) [96],
and methamphetamine, which has been linked with an in-
creased risk of PD (Additional file 6: Table S6), [97]. The
appearance of these drugs is likely due to DGE-NET not
discriminating between agonistic and antagonistic effects of
drugs but rather forming non-directional drug-target-effect
associations. Counter-therapeutic drug actions are therefore
incorporated, so long as they correspond with disease-
associated biological activity.

Conclusions

DGE-NET is able to predict drug-target interactions and
contextualize their biological effects at the levels of
protein-protein interactions, biological pathways, and
molecular functions. It further integrates gene expres-
sion signatures for identification of systems-based dis-
ease-relevant targets and prioritization of drugs that
exhibit a desired polypharmacology. DGE-NET reca-
pitulated known therapeutic and contraindicated
drugs for rheumatoid arthritis and inflammatory
bowel disease and led to the identification of mebendazole
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Fig. 10 Predicted sunitinib drug action network on AD. Direct protein targets predicted by DGE-NET for sunitinib that are also significantly
AD-modulated are in large orange and blue circles. Blue circles are genes overexpressed in AD with statistical significance, while orange
circles are protein partners of those genes. Pink circles are KEGG pathways, and purple circles are GO cellular functions, enriched at p-value < .01
in the up-regulated genes of AD. The top 10 significantly enriched cellular functions and pathways are detailed in large ovals
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as drug repurposing candidate for rheumatoid arthritis. Its
ability to do so can also be extended to other small mole-
cules with the potential to act as endogenous drugs to
alter physiology, such as metabolites. We are currently
pursuing the application of DGE-NET to cancer-
associated metabolites to potentially explain the mecha-
nisms behind metabolite-disease phenotypic associations.
DGE-NET ultimately assists in the formulation of drug-
disease hypotheses poised for clinical success.

Differential gene expression analysis is one way of asses-
sing disease pathogenesis to find therapeutic targets.
DGE-NET is the first computational tool that associates
drugs with diseases through multiple tiers of systems biol-
ogy obtained via gene expression analysis. This not only
aids in finding effective drugs but helps bypass issues that
arise from traditional gene sequencing approaches such as
un-actionable mutations in single nucleotide polymor-
phisms, which is currently an important limitation in on-
cology. Importantly, DGE-NET in its current form does
not differentiate agonist or antagonist effects of drugs.
The next iteration will include this improvement so that
DGE-NET can better discriminate between therapeutic
agents and drugs that are contraindicated.

Availability of data and materials

Because DGE-NET is applied to publicly available data, the
authors have provided a tutorial which describes the step-
wise implementation of DGE-NET, in Additional file 7.

Additional files

Additional file 1: Table S1. Predicted drug-target-disease associations
using OMIM. For each human protein target crystal structure, the top
40-ranked drugs were associated with a disease through their predicted
target. (XLSX 464 kb)

Additional file 2: Table S2. Validations of predicted drug-disease
associations from the literature. (XLS 38 kb)

Additional file 3: Table S3. Predicted systems pharmacology of
ezetimibe. Targets predicted to directly associate with ezetimibe and
their interacting protein partners (confidence score cutoff greater than
0.95) were used to infer pathways and molecular functions (FDR < 0.25)
that could be perturbed by ezetimibe. (XLS 42 kb)

Additional file 4: Table S4. Consensus drug rank list for Rheumatoid
Arthritis. (XLS 47 kb)

Additional file 5: Table S5. Consensus drug rank list for Inflammatory
Bowel Disease. (XLS 51 kb)

Additional file 6: Table S6. Top 50 predicted drugs and validations for
Alzheimer’s Disease and Parkinson’s Disease. (XLS 39 kb)

Additional file 7: Tutorial outlining the manual implementation of the
DrugGenEx-NET methodology. (DOCX 14 kb)
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