Sturm et al. BMC Bioinformatics (2016) 17:208
DOI 10.1186/512859-016-1069-7

SegPurge: highly-sensitive adapter

BMC Bioinformatics

@ CrossMark

trimming for paired-end NGS data

Marc Sturm’, Christopher Schroeder and Peter Bauer

Abstract

Background: Trimming of adapter sequences from short read data is a common preprocessing step during NGS
data analysis. When performing paired-end sequencing, the overlap between forward and reverse read can be
used to identify excess adapter sequences. This is exploited by several previously published adapter trimming tools.
However, our evaluation on amplicon-based data shows that most of the current tools are not able to remove all
adapter sequences and that adapter contamination may even lead to spurious variant calls.

Results: Here we present SeqPurge (https://github.com/imgag/ngs-bits), a highly-sensitive adapter trimmer that
uses a probabilistic approach to detect the overlap between forward and reverse reads of lllumina sequencing data.
SegPurge can detect very short adapter sequences, even if only one base long. Compared to other adapter trimmers
specifically designed for paired-end data, we found that SeqPurge achieves a higher sensitivity. The number of
remaining adapter bases after trimming is reduced by up to 90 %, depending on the compared tool. In simulations
with different error rates, we found that SeqPurge is also the most error-tolerant adapter trimmer in the comparison.

Conclusion: SeqPurge achieves a very high sensitivity and a high error-tolerance, combined with a specificity and
runtime that are comparable to other state-of-the-art adapter trimmers. The very good adapter trimming performance,
complemented with additional features such as quality-based trimming and basic quality control, makes SeqPurge an
excellent choice for the pre-processing of paired-end NGS data.

Background

Adapter contamination is a common problem of
short-read sequencing. It arises from fragments of the
sequencing library that are shorter than the read
length itself. In that case, a ‘read through’ into the
sequencing adapters occurs after sequencing the ac-
tual insert of interest. These adapter sequences often
disturb downstream analysis of the data, ie. read
mapping and variant calling, or de-novo assembly of
reads.

Thus, trimming adapter sequences is a common pre-
processing step in most NGS data analysis pipelines. For
amplicon-based sequencing approaches, which are
widely used in clinical diagnostics, sensitive adapter
trimming is of special importance. Recurrent untrimmed
adapters at the same genomic position can lead to spuri-
ous variant calls. Shotgun sequencing approaches with
random distribution of reads over the target region are

* Correspondence: marc.sturm@med.uni-tuebingen.de
Institute of Medical Genetics and Applied Genomics, University Hospital
Tubingen, Tubingen, Germany

(BioMed Central

more robust towards adapter contamination. The ran-
dom read distribution reduces the probability of spuri-
ous variant calls for most variant calling applications.
However, when calling variants with low allele frequen-
cies, e.g. somatic variants or mosaic variants, adapter
contamination can still lead to spurious variant calls.
Therefore, adapter trimming is an essential step for shot-
gun data as well.

Adapter trimming algorithms typically try to find the
adapter sequences in the reads using semi-global align-
ment or similar techniques. Jiang et al. [5] give a detailed
overview of the algorithms used in various tools. Algo-
rithms designed specifically to handle paired-end data
often take a different approach than those for single-end
data. Adapter contamination in paired-end data means
that the insert, i.e. the fragment of interest, was com-
pletely sequenced in both reads (see Fig. 1a). Most tools
that are designed for paired end data use the match
of insert sequences instead of searching for adapter
sequences. This approach has the big advantage that
it can trim very short adapter residues, down to one

© 2016 Sturm et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1069-7&domain=pdf
https://github.com/imgag/ngs-bits
mailto:marc.sturm@med.uni-tuebingen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Sturm et al. BMC Bioinformatics (2016) 17:208

(a) Forward read —
CCGATAGCGTAGCATCATACCCAGKERNS{E[er:N
el QIPNSINCCCGATAGCGTAGCATCATACCCAG

+«— Reverse read

(b)
offset 0: 10/32 bases matching > no match

CCGATAGCGTAGCATCATACCCAGAGATCGGA
AGGCTAG‘CCGATAGCGTAGCATCATACCCAG

offset 1: 4/31 bases matching > no match

CCGATAGCGTAGCATCATACCCAGAGATCGGA
AGGCTAGA CCGATAGCGTAGCATCATACCCAG

offset 8: 24/24 bases matching > insert match
CCGATAGCGTAGCATCATACCCAGK e uNs{elery

L e e v

BEEGIPNONCCCGATAGCGTAGCATCATACCCAG

Fig. 1 Read layout with adapter contamination (a) and insert match
algorithm examples with different offsets (b). Inserts are colored grey,
adapter remains are colored black. Reverse reads are displayed with
reverse-complementary sequence to facilitate visual comparison

of sequences

base length. We will term this the insert match ap-
proach. The alternative approach, where adapters are
detected based on their sequence only, is called
adapter match approach.

While analyzing NGS data generated with the
amplicon-based HaloPlex enrichment (Agilent, Santa
Clara CA), we found that adapter contamination was
not fully removed by any of the adapter trimming tools
we applied, even with optimized parameters [1, 8, 10].
Thus, we developed SeqPurge, a very sensitive paired-
end adapter trimmer that is based on a probabilistic
approach.

Implementation

Before going into the algorithm details, we will briefly
define the problem more formally: Given forward/re-
verse adapter sequences and the forward/reverse read
produced from one DNA fragment, remove all bases
from the reads that stem from a read-through into the
adapters, if present. Those bases that must not be
trimmed because they stem from the actual sequence of
interest are called insert in the following text.

Calculation of non-random match probability

As mentioned in the introduction, our algorithm is not
based on sequence alignment. It uses a rather simple
probabilistic approach. Given two DNA/RNA sequences
of length n, we count the number of matching bases k
between the sequences. Given the probability p of a

Page 2 of 7

single base match, we calculate the probability P to
observe k or more matching bases in sequences of
length # using the binomial distribution:

" n .
pP— _ B (1)
iz:;i!(n—i)!p(2

We call two sequences a (non-random) match, if P is
less than a given threshold. This threshold is the main
parameter that balances sensitivity/specificity of our
algorithm.

Using this simple approach is possible because model-
ling indels is not necessary - an insertion/deletion in the
insert is present in both read directions. We use a fixed
match probability p of 0.25 for all bases, i.e. we assume
that all four bases occur at the same rate. Based on our
performance evaluations, this simplification causes no
major problems.

Algorithm description

The primary design goal of SeqPurge was to achieve a
very high sensitivity while maintaining a state-of-the-art
specificity. In general, the insert match approach is very
sensitive and thus is the best approach for paired-end
reads. However, certain sequence motives and unbal-
anced base content can make sequencing difficult in one
read direction or even in both read directions. In these
difficult sequences, the adapter match approach can per-
form better than the insert match approach. Thus, we
combine the two approaches to increase the sensitivity
of SeqPurge.

First, we try to find an insert match between forward
read and the reverse-complement of the reverse read.
To detect an insert match, each possible offset between
both reads is tested for a match (see Fig. 1b). If we find a
match, the adapters are trimmed and the insert remains.
If we find several matches, we select the best offset, i.e.
the one with the lowest probability of being random.
Several matches occur primarily in reads of regions
with simple repeats. To prevent overtrimming because
of false-positive matches in simple repeat regions, we
also require a match between the previously defined
adapter sequence and the sequence flanking the puta-
tive insert. This additional adapter match is required
in only one out of the two reads, which makes the al-
gorithm more robust towards bad read quality in one
read direction.

If no insert match was found, we check for adapter
matches in the forward and reverse read separately.
Again, each possible offset is tested for an adapter se-
quence match. If an adapter match is detected, the
read is trimmed starting at the offset position. If only
one of the two reads has an adapter match, the other
read is trimmed at the offset as well, because a ‘read

Sturm et al. BMC Bioinformatics (2016) 17:208

through’ is always symmetrical. The rationale is again
that one read could have bad quality due to sequen-
cing problems.

Theoretical runtime and runtime optimizations

The theoretical runtime of the algorithm is nm” where 1
is the number of reads and m is the read length. We im-
plemented several optimizations to reduce the runtime
in practice.

Because we need to calculate the match probability 77
times for each read pair and three faculty values are
required for the calculation, the faculty values are pre-
calculated and stored in a hash for fast lookup.

To avoid a large part of the match probability calcula-
tions, we added a minimum matching bases parameter
(default is 80 %). Once the maximum allowed number of
mismatches of a comparison is exceeded, the rest of the
comparison can be skipped. This reduces the overall
runtime by up to 75 %.

Reading the data from file and processing the data
in the same thread can slow down the analysis con-
siderably when file I/O is slow. Thus, we pre-fetch
reads in an I/O thread and use n additional threads
for data analysis (n=1 by default). This strategy of
course increases the memory usage slightly.

We are currently evaluating the possible speedup
when using four bit-arrays instead of characters to store
DNA sequences. This approach is also used by Skewer
[5], the fastest tool in our comparison.

Results

For our benchmark we selected the best tools for paired-
end reads from [5]: Skewer [5], AdapterRemoval [8],
Trimmomatic [1], SeqPrep (https://github.com/jstjohn/
SeqPrep) and FlexBar [2]. Additionally, we benchmarked
the recently published tool PEAT [7], which was not part
of the comparison by Jiang and colleagues.

Benchmark datasets

For the main performance comparison, we used real-
world data to make the benchmark as realistic as pos-
sible. We created a benchmark dataset by sequencing
the NIST reference sample NA12878 [13]: (1) A library
was created from the NA12878 sample using a HaloPlex
custom panel containing the exons of 71 genes (247,305
bases in total) related to hereditary breast and ovarian
cancer; (2) the library was sequenced on an Illumina
MiSeq (Illumina Inc, San Diego, CA) resulting in about
half a million paired-end reads of 158 bp length. An
amplicon dataset was used for the benchmark, because
the effect of incomplete adapter trimming can even be
seen in variant lists. Generally, an adapter trimmer that
performs well on amplicon data will perform equally
well on shotgun data.

Page 3 of 7

For a second benchmark, we simulated paired-end
data. Five million read pairs for the coding region of the
genome (CCDS) were created with varying error rates of
0 to 4 %. The 100 bp read pairs were created based on a
theoretical library with mean insert size of 100 bp and a
standard deviation of 50 bp. This results in a dataset
where 50 % of the reads contain adapter contamination
and need to be trimmed. The reads were simulated using
the PERsim (see Availability of data and materials).

Benchmark metrics

We compare the adapter trimming performance based
on metrics of raw reads, mapped reads and variants
called. For each of the three steps, different metrics are
used.

For raw reads, the number of bases remaining after
trimming is counted. Additionally, we report the number
of remaining adapter 20-mers from the beginning of the
adapters. This crude metric already gives a good impres-
sion of the sensitivity. After perfect adapter trimming no
adapter 20-mer should be found in trimmed data.

For mapped reads, the first metric is the number of
properly paired reads with a mapping quality of 40 or
higher. The high mapping quality cutoff of 40 was
chosen to remove low-accuracy alignments. Removing
low-accuracy alignments is important because align-
ments are the basis to calculate the metrics of over-
trimmed and undertrimmed bases: The start positions of
the forward and reverse read indicate the start and end
position of the insert, respectively (see Fig. 1a). These
metrics depend on the mapping software and its param-
eters. For the real data evaluation, we assume that all
alignments are correct and that the Phred mapping qual-
ity is well-calibrated. For the simulated data evaluation,
no mapping is required and the correct trimming is
known a priori.

For variants, the most basic metric is the overall num-
ber of variants called. This simple metric can be used to
identify adapter trimmers that cannot trim short adapter
fragments. Remaining adapter sequences result in higher
variant counts. The more significant metrics are the
number of uncalled true-positives and called false-
positives. To determine these, all variants with genotype
calls differing between tools were manually inspected.

Benchmark results on real data
For this benchmark, we performed adapter trimming
with the respective trimming tool, mapping with BWA
0.7.5 [6] and variant calling with freebayes 0.9.20-16 [3].
All adapter trimmers were configured similarly to
make the results comparable: one thread was used for
trimming; reads smaller than 15 bases after trimming
were discarded; no trimming by base quality or no-call
stretches (i.e. no base could be called) was performed.

https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep

Sturm et al. BMC Bioinformatics (2016) 17:208

For algorithm-specific parameters of the adapter trim-
mers default values were used. Mapping was performed
using the BWA “mem” algorithm with default parame-
ters. Variant calling was performed on bases with a
Phred base quality of 20 or higher only.

Table 1 summarizes the raw data metrics after trim-
ming. The first line shows that more than 400,000 exact
adapter 20-mers are present in the input data. All
adapter trimmers significantly reduce the number of
adapters, but only SeqPurge and SeqPrep can remove all
adapters without any parameter optimization. Trimmo-
matic and FlexBar remove nearly all adapter 20-mers.
AdapterRemoval, Skewer and PEAT leave a significant
amount of adapter sequences in the reads.

In terms of bases left after trimming, most tools pro-
duce roughly 142.5 million bases. SeqPrep removes sig-
nificantly more bases. This will be discussed in the next
section together with the number of properly-paired
reads. PEAT removes significantly less bases, because
PEAT keeps reads with an insert size of zero, ie.
adapter-dimers with no insert.

Table 2 shows the performance metrics after mapping.
The properly-paired read count for most tools lies
between 1021224 and 1021323 reads. Interestingly, the
properly-paired read count for untrimmed reads is
higher. Intuitively one would argue that adapter trim-
ming should increase the number of mappable reads.
However, this contradiction can be explained. Un-
trimmed adapters can make reads with very short inserts
uniquely mappable which would not be uniquely map-
pable without adapter. Even reads without any insert can
be mappable when allowing soft-clipping of reads during
the mapping, which BWA does (see Additional file 1:
Figure S1 for an example). Only SeqPrep and PEAT are
outliers in terms of properly-paired read count. For Seq-
Prep the properly-paired read count is lower because it
completely removes about 4000 reads no other trimmer
removes. Manual inspection revealed that most of these
reads are of high quality and are mappable as a proper

Table 1 Adapter trimming benchmark results on real data (raw

reads)
Adapters left Bases left

no trimming 414254 168509790
SeqgPurge 0.1-270 0 142570393
AdapterRemoval 1.54 1450 142864048
Flexbar 2.5 7 142323263
PEAT 1.2.2 24298 146433832
SeqgPrep 1.2 0 142069127
Skewer 0.1.123 425 142664746
Trimmomatic 0.32 5 142717579

The number of adapter 20-mers and the number of bases left in the raw read
data after adapter trimming. The most notable entries are highlighted (bold)

Page 4 of 7

Table 2 Adapter trimming benchmark results on real data

(mapping)

Reads paired Bases Bases

overtrimmed undertrimmed

no trimming 1022388 0 21918793
SeqgPurge 0.1-270 1021315 1736 33650
AdapterRemoval 154 1021290 25 223997
Flexbar 2.5 1021224 4539534 62901
PEAT 1.2.2 1022901 69296 354531
SeqPrep 1.2 1018828 53 34949
Skewer 0.1.123 1021323 238 95279
Trimmomatic 0.32 1021316 1580 190062

Benchmark results after mapping: properly-paired reads, erroneously trimmed
insert bases, untrimmed adapter bases. The most notable entries are
highlighted (bold)

pair. It remains unclear why SeqPrep removes these
reads (see Additional file 1: Figure S3 and Figure S4 for
examples). PEAT cannot remove reads with no insert.
These untrimmed reads lead to a seemingly higher prop-
erly paired read count.

When looking at overtrimmed and undertrimmed
bases, only SeqPurge and SeqPrep show balanced sensi-
tivity (i.e. a low number of undertrimmed bases) and
specificity (i.e. a low number of overtrimmed bases).
FlexBar and PEAT have a low specificity. Adapter-
Removal, PEAT, Skewer and Trimmomatic have a low
sensitivity.

Table 3 shows the benchmark results of the variant
calling step. 155 variants were called after trimming with
each of the adapter trimming tools. These consensus
variants were considered true-positives and, thus, were
not further evaluated. All variants with diverging calls
were manually inspected using IGV [12].

Without adapter trimming, 24 spurious variants were
called. They were all caused by short adapter remains in

Table 3 Adapter trimming benchmark results on real data
(variant calling)

Variants Uncalled TPs Called FPs
no trimming 178 1 24
SeqgPurge 0.1-270 155 0 0
AdapterRemoval 1.54 155 0 0
Flexbar 2.5 174 0 19
PEAT 1.2.2 155 0 0
SeqPrep 1.2 155 0 0
Skewer 0.1.123 155 0 0
Trimmomatic 0.32 178 0 23

Benchmark results after variant calling: overall variant count, number of true-
positive variants that were not called, number of false-positive variants that
were called. The most notable entries are highlighted (bold)

Sturm et al. BMC Bioinformatics (2016) 17:208

mapped reads. The high number of spurious variant calls
underlines the importance of highly sensitive adapter
trimming for amplicon-based sequencing data. Using
FlexBar and Trimmomatic 19 and 23 false-positive vari-
ants were called, respectively, because they failed to trim
short adapter remains. FlexBar trims adapter sequences
longer than two bases only. Trimmomatic trims adapter
sequences longer than seven bases only.

Interestingly, one true-positive variant was missed
when applying no adapter trimming. The allele fre-
quency of the heterozygous variant dropped from 54 to
3 % due to incorrect mapping of untrimmed adapter
remains at the same genomic position (see Additional
file 1: Figure S2 for details).

Table 4 shows the single-thread processing time and
memory usage benchmark. The time benchmark clearly
demonstrates that adapter trimming must not slow
down the overall processing. Fast adapter trimmers with
a good trimming performance can speed up the overall
analysis time because mapping is considerably faster
after trimming. These mapping times are specific for
BWA. However, when using a more sophisticated map-
per, e.g. Stampy [9], or an additional indel-realigner, e.g.
ABRA [11], an even greater benefit of adapter trimming
can be expected. A second observation from the time
benchmarks is that AdapterRemoval, SeqPrep and Flex-
Bar are probably too slow for routine application in a
high-throughput setting. The peak memory usage of
most tools is below 30 MB. Only PEAT and Trimmo-
matic use much more memory, but the reason for this
remains unclear.

The adapter trimming benchmarks presented so far,
did not take trimming of low-quality bases into account.
We excluded this feature, because not all tools in the
comparison support it. Those tools that support it use
basically the same approach with only minimal differ-
ences: low-quality bases are removed from the end of
the read until a given base quality cutoff is exceeded.

Table 4 Resources benchmark results on real data

Trimming Mapping Variant calling Memory

time time time usage
no trimming n/a 303 69 n/a
SeqgPurge 0.1-270 38 182 65 288
AdapterRemoval 1.54 403 198 66 122
Flexbar 2.5 165 204 65 133
PEAT 1.2.2 43 241 73 672.7
SegPrep 1.2 304 180 65 6.2
Skewer 0.1.123 24 200 66 5.7
Trimmomatic 0.32 58 177 66 220.9

Page 5 of 7

Thus, no significant performance differences between
tools can be expected.

It is however interesting if quality trimming improves
mapping and variant calling in general. Our benchmarks
using SeqPurge and Skewer (see Additional file 1: Table
S1 for details) indicate that trimming low-quality bases
improves the properly-paired read count and the under-
trimmed bases count. Interestingly, most of the perform-
ance improvement was already achieved at moderate
quality score cutoffs (Q5 to Q15) and increasing the cut-
off did not improve the performance any further. A
more extensive evaluation of read trimming effects on
NGS data can be found in [4].

Benchmark results on simulated data
In our benchmark on real data we measured the adapter
trimming performance using a comprehensive set of
metrics. However, on real data we could not measure
the tolerance towards sequencing errors. In practice, this
is an important feature because it is not possible to
adjust algorithm parameters for each dataset in a high-
throughput setting. Thus, we benchmarked the error
tolerance on simulated data with different error rates.
Table 5 shows the trimming performance on simulated
data without sequencing errors. In terms of trimming
time, the results are similar to the benchmark on real
data: AdapterRemoval, SeqPrep and Flexbar are slower
than the other tools. Likewise, Flexbar, PEAT and Trim-
momatic show a lower sensitivity/specificity. SeqPurge
shows a slight tendency to over-trim up to 10 bases from
the end of reads that consist of simple repeats. However,
this affects less than 0.02 % of the reads, which is accept-
able since the focus of the algorithm lies on sensitivity.
With increasing error rate the execution time and the
number of overtrimmed bases (i.e. the specificity) stayed
constant for all tools, only the number of undertrimmed
bases (i.e. the sensitivity) changed significantly. Thus, we
now focus on undertrimmed bases of those tools that
performed well on error-free data (see Additional file 1:

Table 5 Trimming benchmark results on simulated data
without errors

Time [s] Bases Bases
overtrimmed undertrimmed

SeqgPurge 0.1-270 224 14488 0
AdapterRemoval 154 1712 434 0
Flexbar 2.5 837 2842491 221979
PEAT 1.2.2 342 2701634 70617998
SeqPrep 1.2 1158 1848 0
Skewer 0.1.123 185 16 0
Trimmomatic 0.32 348 0 2225766

Benchmark results of single-thread processing times (in seconds) and peak
memory usage (in MB). The most notable entries are highlighted (bold)

Benchmark results on simulated data (5 million read pairs of 100 bp) without
sequencing errors. The most notable entries are highlighted (bold)

Sturm et al. BMC Bioinformatics (2016) 17:208

Table S2 for the complete benchmark results). Table 6
shows the undertrimmed base counts for different error
rates. These results show that SeqPrep and Skewer do not
cope well with higher sequencing error rates. Adapter-
Removal performs well up to 2 % error rate. Only Seq-
Purge performs well up to 4 % error rate, which
corresponds to a very bad read quality that would not be
tolerated in production data.

Conclusion

We have presented SeqPurge, a novel adapter trimmer
for paired-end sequencing data that is based on a prob-
abilistic approach. The performance of SeqPurge was
compared to six other adapter trimming tools on an
amplicon-based benchmark dataset and on simulated
data.

Our comparison shows that SeqPurge is the only tool
that offers a good performance in terms of sensitivity,
specificity, speed and error tolerance: AdapterRemoval is
very slow and not very sensitive. FlexBar is quite slow,
not very specific and fails to trim short adapter remains.
PEAT has a low sensitivity and specificity, fails to re-
move reads without insert and has a high memory usage.
SeqPrep is very slow and removes good reads from the
dataset. Skewer is not as sensitive as SeqPurge, but it is
by far the fastest tool in the comparison. Using Skewer
might be considered for large amounts of shotgun data
where the runtime is more important than sensitivity,
ie. for whole genome data. Trimmomatic is not very
sensitive, keeps short adapter remains and has a high
memory usage.

For the real data benchmark we focused on amplicon-
based sequencing data because the effects of incomplete
adapter trimming can be demonstrated more easily on
amplicon data than on shotgun data. A similar bench-
mark was done on shotgun data (data not shown). The
results are comparable to the amplicon-based bench-
mark with two exceptions: (1) Spurious variant calls are
rare in shotgun data because untrimmed adapters are
generally not placed at the same genomic position; (2)
adapter dimers without insert occur less frequently in
shotgun data than in amplicon data.

Table 6 Undertrimmed base counts on simulated data

Errorrate SeqPurge AdapterRemoval SeqPrep Skewer
0.00 % 0 0 0 0

0.50 % 0 0 866762 2927032
1.00 % 0 212 2029956 9321200
2.00 % 122 48190 3367375 36206230
4.00 % 4312 6233300 4248922 109562658

Undertrimmed base counts on simulated data (5 million read pairs of 100 bp)
with different rates of sequencing errors. The most notable entries are
highlighted (bold)

Page 6 of 7

When considering the overall runtime and file I/O
load of an analysis pipeline, processing the FASTQ raw
data is one of the main contributors. Thus, it is advanta-
geous if only one tool is needed for raw read processing.
SeqPurge not only offers adapter trimming functionality,
but also trimming by base quality and no-call stretches.
Additionally, it can merge input FASTQ files from sev-
eral runs or lanes during the trimming process, and it
can calculate basic quality control metrics on raw read
data. The combination of these features reduces the
number of passes needed to perform the basic data
preparation steps significantly. To our knowledge,
SeqPurge is the only adapter trimmer that combines
all these features into a single tool. SeqPurge cur-
rently does not support merging of overlapping read
pairs into longer single-end reads, which is supported
by SeqPrep and AdapterRemoval. A detailed feature
overview of other adapter trimmers from our com-
parison can be found in [5].

Availability and requirements

SeqPurge is implemented in C++ and runs both under
Linux and Windows. It is available under the ‘GNU
General Public License version 2’ as part of the ngs-bits
project: https://github.com/imgag/ngs-bits.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials

The real NGS dataset supporting the conclusions of this
article is available in the European Nucleotide Archive,
ftp://ftp.sra.ebi.ac.uk/voll/ERA494/ERA494451/. The simu-
lated data supporting the conclusions of this article was
created using PERsim which is available at https://github.
com/imgag/ngs-bits.

Additional file

Additional file 1: Figure S1. Mapping of reads without insert. Figure S2.
Variant that is suppressed by adapter contamination. Figure S3. High-quality
reads removed by SeqPrep (example 1). Figure S4. High-quality
reads removed by SegPrep (example 2). Table S1. Benchmark results
with low-quality trimming. Table S2. Detailed benchmark results on
simulated data. (DOCX 184 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MS designed and implemented the algorithm, carried out the benchmark
data analysis and prepared the manuscript. CS contributed to algorithm
design, tested the algorithm and prepared the manuscript. PB contributed

https://github.com/imgag/ngs-bits
ftp://ftp.sra.ebi.ac.uk/vol1/ERA494/ERA494451/
https://github.com/imgag/ngs-bits
https://github.com/imgag/ngs-bits
dx.doi.org/10.1186/s12859-016-1069-7

Sturm et al. BMC Bioinformatics (2016) 17:208

to algorithm design and prepared the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

We thank all members of the Institute of Medical Genetics and Applied
Genomics, who found and reported false-positive variants, which helped us
improve our algorithm.

Funding
not applicable

Received: 22 January 2016 Accepted: 3 May 2016
Published online: 10 May 2016

References

1. Bolger AM, et al. Trimmomatic: a flexible trimmer for lllumina sequence
data. Bioinformatics. 2014;30(15):2114-20.

2. Dodt M, et al. FLEXBAR - Flexible Barcode and Adapter Processing for Next-
Generation Sequencing Platforms. Biology. 2012;1:895-905.

3. Garrison E, et al. Haplotype-based variant detection from short-read
sequencing. 2012. http://arxiv.org/abs/1207.3907. Accessed 18 Jan 2016.

4. Giorgi FM, et al. An Extensive Evaluation of Read Trimming Effects on
[llumina NGS Data Analysis. PLoS ONE. 2013;8(12):e85024.

5. Jiang H, et al. Skewer: a fast and accurate adapter trimmer for next-
generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182.

6. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. 2013. http://arxiv.org/abs/1303.3997. Accessed 18 Jan 2016.

7. Li YL, et al. PEAT: an intelligent and efficient paired-end sequencing adapter
trimming algorithm. BMC Bioinformatics. 2015;16:52.

8. Lindgreen S. AdapterRemoval: easy cleaning of next-generation sequencing
reads. BMC Res Notes. 2012,5:337.

9. Lunter G, et al. Stampy: A statistical algorithm for sensitive and fast
mapping of lllumina sequence reads. Genome Res. 2011;21:936-9.

10. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet journal. 2011;17:10-2.

11. Mose LE, et al. ABRA: improved coding indel detection via assembly-based
realignment. Bioinformatics. 2014;30(19):2813-5.

12. Robinson JT, et al. Integrative Genomics Viewer. Nat Biotechnol. 2011;
29:24-6.

13. Zook JM, et al. Extensive sequencing of seven human genomes to
characterize benchmark reference materials. 2015. http://dx.doi.org/10.1101/
026468. Accessed 18 Jan 2016.

Page 7 of 7

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central

http://arxiv.org/abs/1207.3907
http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1101/026468
http://dx.doi.org/10.1101/026468

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Calculation of non-random match probability
	Algorithm description
	Theoretical runtime and runtime optimizations

	Results
	Benchmark datasets
	Benchmark metrics
	Benchmark results on real data
	Benchmark results on simulated data

	Conclusion
	Availability and requirements

	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	References

