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Abstract

Background: MicroRNAs (miRNAs) impact various biological processes within animals and plants. They complementarily
bind target mRNAs, effecting a post-transcriptional negative regulation on mRNA level. The investigation of miRNA
target interactions (MTIs) by high throughput screenings is challenging, as frequently used in silico target prediction tools
are prone to emit false positives. This issue is aggravated for niche model organisms, where validated miRNAs and MTIs
both have to be transferred from well described model organisms. Even though DBs exist that contain experimentally
validated MTIs, they are limited in their search options and they utilize different miRNA and target identifiers.

Results: The implemented pipeline LimiTT integrates four existing DBs containing experimentally validated MTIs. In
contrast to other cumulative databases (DBs), LimiTT includes MTI data of 26 species. Additionally, the pipeline enables
the identification and enrichment analysis of MTIs with and without species specificity based on dynamic quality criteria.
Multiple tabular and graphical outputs are generated to permit the detailed assessment of results.

Conclusion: Our freely available web-based pipeline LimiTT (https://bioinformatics.mpi-bn.mpg.de/) is optimized to
determine MTIs with and without species specification. It links miRNAs and/or putative targets with high granularity. The
integrated mapping to homologous target identifiers enables the identification of MTIs not only for standard models,
but for niche model organisms as well.

Keywords: MiRNA target interactions, miRNA target linkage, Transcriptome, Proteome, miRNAome, Niche
model organisms

Background
The class of microRNAs (miRNAs) consists of small, ap-
proximately 22 nucleotides long, non-coding RNAs, which
play a crucial role in the negative gene regulation of many
biological processes in various organisms (reviewed in
[1]). Since their first discovery in the early 1990s in Cae-
norhabditis elegans, more than 28,600 miRNAs have been
identified within various species [2–4]. Examples of bio-
logical processes involving miRNAs are the initiation and
progression of human cancer [5, 6] or the development
and disease of mammalian hearts [7, 8].
Because the negative regulation of gene expression is

also induced for imperfect miRNA-mRNA seed region
matches, miRNAs are able to target more than one
mRNA. Consequently, mRNAs might be regulated by
one or several miRNAs [9].
Considering the interpretation of biological data with

respect to miRNAs, the identification of interactions
between miRNAs and their target mRNAs is an essential

step. Often in silico target prediction tools (reviewed in
[10]) are used to link miRNA datasets to their targets.
These tools assess sequence similarity, mRNA folding and
other parameters to identify possible targets. To increase
the accuracy of predictions, some tools use the characteris-
tic properties of already validated miRNA target interac-
tions (MTIs). Several databases like TarBase [11],
miRTarBase [12], miRecords [13] and starBase [14] exist,
that host these experimentally validated MTIs, mainly by
curating research articles with a miRNA context (for de-
tails see below). One recently published DB that merges
the information of four different resources containing vali-
dated MTIs and the data of 12 MTI prediction tools is
miRWalk2.0 [15] (http://zmf.umm.uni-heidelberg.de/apps/
zmf/mirwalk2/index.html). However, miRWalk2.0 is de-
signed to work with MTIs of human, mouse and rat exclu-
sively. The same species restriction applies for the
cumulative DB miRSel [16] (https://services.bio.ifi.lmu.de/
mirsel/), which combines its own validated MTI findings
with the data of three other MTI DBs, as well as with com-
putational predictions. To the best of our knowledge, no
existing tool provides an option to combine and compare
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the data of verified target DBs of more than three species
in addition to the handling of extensive lists of miRNAs or
target identifiers as input, especially if these contain identi-
fiers of various species. Due to this limitation, the search
for validated MTIs becomes challenging, especially for
niche model organisms without previously known miRNA
repertoires (reviewed in [17]). Such organisms often host
unique capabilities in certain fields of live, e.g. tissue regen-
eration or accelerated/delayed ageing. Examples for niche
model organisms in the field of regeneration research are
axolotl [18], newt [19–21], and hydra [22] due to their abil-
ity to regenerate whole extremities complex tissues and or-
gans. By the analysis of MTIs, single miRNAs were already
linked to regeneration processes of extremities and lenses
within the newt, as well as the heart, limb and spinal cord
of axolotls [18, 23, 24]. While there exist specialized tools
that identify miRNAs from high throughput sequencing
approaches in niche models (such as MIRPIPE [25]), the
miRNA target assignment in such settings is still challen-
ging. Here, miRNA and gene or protein identifiers have to
be transferred from standard model organisms by hom-
ology based annotation approaches to enable a comparison
with verified MTIs. The mapping onto standard organisms
results in datasets containing miRNAs or genes/proteins
from a variety of organisms, representing a new level of
complexity. Such species overlapping datasets cannot yet
be processed by any MTI DB.
Another crucial step in MTI analysis is the integration

of expression data from high throughput experiments
such as RNA-Seq or MS-based proteomics. For this kind
of analysis, MTIs have to be evaluated in terms of their
potential influence on the phenotype, allowing the identi-
fication of miRNA driven effects on gene or protein
expression. The expected result is the identification of sev-
eral key miRNAs that might explain the differential
expression between conditions under investigation.
Here we present a user-friendly pipeline named LimiTT,

intended to overcome the challenges mentioned above.
LimiTT enables an automatic assignment of experimen-
tally validated MTIs to a given set of miRNAs and possible
targets (e.g. an annotated transcriptome or proteome). In
order to permit application to niche model organisms, the
tool is able to process species overlapping datasets which
are compared to a wide range of MTIs collected from
multiple MTI DBs. Furthermore, the pipeline comprises a
method to consider ranked target lists to assess the poten-
tial influence of miRNAs on the phenotype under investi-
gation by the determination of an enrichment score for
miRNA target sets.

Implementation and functionality
Preparing the reference databases
LimiTT relies on experimentally validated MTIs ori-
ginating from the open source DBs TarBase,

miRTarBase, miRecords, and starBase. TarBase (http://
microRNA.gr/tarbase) contains about 65,000 curated
MTIs of 18 different species in its sixth version. MTIs
are automatically preselected from miRNA-related
PubMed [26] (http://pubmed.org) entries, manually
curated and assigned to their miRBase accession
numbers. This procedure is similar to the curation
method of miRTarBase (http://mirtarbase.mbc.nctu.e-
du.tw/). The 2013 update (release 4.5) of this DB
contains about 51,500 experimentally verified MTIs of
18 species. The MTI DB miRecords (release 1, update
on 27.04.2013; http://c1.accurascience.com/miRecords/)
contains about 2,700 MTIs of 15 species. Unlike the
other two DBs, miRecords is specialised on interactions
verified by Reporter assays and Western blots, whereas
the others also include MTIs verified by NGS methods.
Finally, StarBase (release 2.0; http://starbase.sysu.edu.cn)
is focused on MTIs experimentally verified by CLIP-Seq
experiments and collects interactions from three species.
It retrieves its information by building an overlap of
predicted MTIs processed from several miRNA pre-
diction software programs with CLIP-Seq supported
interactions from 108 data sets, generated by 37 stud-
ies. Other DBs like miR2Disease, HMDD or Pheno-
miR also contain experimentally validated MTIs, but
just consider miRNAs connected to human diseases
(reviewed in [10]).
A comparison of the selected databases mentioned

above reveals a huge difference in terms of experimen-
tal methods the MTIs were validated with. Further-
more, the naming schemes of assigned targets differ,
as target identifiers are acquired from curated publica-
tions, leading to varying kinds of symbols, identifiers,
and accession numbers. This is obstructive not only
for the comparison of the DBs, but also for the com-
parison with submitted target lists. LimiTT performs a
pre-processing of target interaction databases to over-
come these difficulties.
Since the miRNA information within the TarBase data re-

lies on miRBase accession numbers, these accessions are
mapped onto full miRNA identifiers. To enable the com-
parison of target symbols between the MTI DBs and to re-
trieve additional information for each target, all identifiers
are further mapped onto UniProt accessions. Gene symbols
and synonyms of all UniProtKB entries, as well as cross ref-
erences to several DBs (Additional file 1, Section 1b) are
compared to the target identifiers of all MTI DBs. The
current combination of DBs results in 2092 miRNAs and
about 570,000 MTIs for 26 species (Additional file 1,
Section 2).
For local pipeline execution, all pre-processed database

files are included within the download archive. The data-
base pre-processing is performed regularly to reflect
changes in underlying MTI DBs.
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Results
LimiTT use cases
Depending on the input files provided by the user, Lim-
iTT includes a range of different use cases (see Fig. 1).
1) Without any input file, the user is able to choose
MTIs from the four MTI DBs by filtering them accord-
ing to adjustable parameters. This mode supplies a func-
tion for comparing the DBs content for specific needs,
such as filtering for MTIs of single species or reducing
the DB content to MTIs with specific validation
methods. 2) When submitting a list of miRNA identi-
fiers, LimiTT generates a list of targets for each miRNA
in accordance with the parameters selected for the MTI
database comparison. This feature enables the identifica-
tion of targets for miRNAs retrieved for example via
miRNA-Seq technologies. 3) Starting the pipeline with
an annotation file hosting UniProt IDs (e.g. resulting
from a transcriptome screen or an annotated ChIP-Seq
analysis) will filter for validated MTIs with targets
present in this file. The result list will include all miR-
NAs that are relevant for the provided targets. 4) In case
a miRNA list and a target file are submitted, the result-
ing MTIs will rely on both datasets. This setup will iden-
tify and link MTIs from a submitted miRNA-Seq and

e.g. a ChIP-Seq or RNA-Seq. 5) Optionally, the MTI set
enrichment analysis (MTISEA) function of LimiTT can
be used by submitting a ranked target list to LimiTT.
The origin of ranking is arbitrary and might originate
from a network analysis or an expression screening e.g.
from a proteomics study (see section validation below).
For all use cases the provided lists can be species specific
or species overlapping. A comparison on the unique fea-
tures of LimiTT can be found in Additional file 2.

General workflow
The default workflow of LimiTT starts with the input of
a list of miRNAs and a file containing targets with their
corresponding UniProt accessions (Fig. 1). Additional in-
formation about the file formats with examples can be
found in Additional file 1.
Supplied miRNAs (as generated by an analysis tool such

as MIRPIPE) are compared via a semantic comparison to
the miRNA identifiers of experimentally validated MTIs
from up to four MTI DBs based on user selection. The
pipeline is able to process full miRNA identifiers (e.g. hsa-
miR-301b-3p), as well as shortened miRNA identifiers with-
out species prefix and/or omitted-3p, -5p suffix (e.g. miR-
301b or miR-301b-3p) (Additional file 1, Section 4ab).
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Fig. 1 Flowchart illustrating the workflow of LimiTT. The input (grey) is composed of an optional list of miRNAs and an optional annotation file with a
transcriptome/proteome. If an annotation file was submitted, the black path represents the processing steps of LimiTT, otherwise, the process is described
by the red path. a The workflow starts with the selection of miRNA target interactions (MTIs) from the four MTI databases (DBs) in consideration of the
miRNAs supplied by the user. Additionally the MTI stringency can be filtered by adjusting several parameters. b All target gene symbols of the selected
MTIs are mapped to UniProt Accessions (UniProtAccs), while c all UniProtAccs are filtered from the annotation file simultaneously. d Subsequently, both
lists are overlapped, resulting in those MTIs which can be linked to the submitted data. If no annotation file is provided, steps (c) and (d) are ignored, and
the resulting MTIs rely on the miRNA list or just on the adjustable properties. e Optionally, an enrichment analysis of the identified MTI sets can be
performed based on a ranked list with UniProtAccs supplied by the user
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Further options include the degree of conservation in the
MTI DBs (e.g. present in one DB, or present in all DBs), the
species of interest (or ignoring the underlying species), a fil-
ter for the experimental methods, as well as the stringency
in case of starBase (the minimal number of CLIP-Seq ex-
periments the MTIs are supported with) (Additional file 1,
Section 4).
All MTIs fitting to the selected parameters are filtered

from the chosen MTI DBs and saved separately for each
chosen MTI DB. Target symbols of the selected MTIs
are then mapped onto UniProt accession to facilitate the
comparison between MTI DBs. At this point, the species
information can be used to either map the target in a
species specific way (e.g. human hprt1 results in two
UniProt accessions), or species membership can be ig-
nored and target symbols are mapped regardless of the
underlying species (e.g. hprt1 results in 75 accessions
from 56 different species). This feature permits the in-
clusion of homologous genes in the MTI identification.
Next, all UniProt accessions from the MTI list as well

as those from the submitted target list are overlapped to
identify all accessions which represent both experimen-
tally validated miRNA targets and annotated compo-
nents of the organism under investigation.

MTI set enrichment analysis (MTISEA)
With the resulting sets of MTIs an enrichment analysis
can be performed by passing an expression file contain-
ing a ranking value for each potential target (Additional
file 1: Table S3). The implemented enrichment analysis
is a variant of GSEA [27]. Briefly, with a running sum
statistic, a weighted Enrichment Score (ES) is calculated
for each gene set based on position dependent gene
matches between the ranked list and the set. A leading
edge analysis [27] additionally identifies and analyses the
core genes of the gene set which mainly affect the ES.
To take the set sizes into account, MTI set enrichment
analysis calculates the Normalized Enrichment Score
(NES) [27] for each gene set by using permutations

(number of permutation can be set as a parameter; ran-
dom permutations are performed on target genes in
each miRNA set, keeping the number of targets in the
respective miRNA set constant) of the dataset in the
next step. Additionally, the False Discovery Rate (FDR)
q-value is calculated [27], representing the estimated
probability of a false positive result for each set with a
given NES. MTISEA is fully integrated into LimiTT.

Output
The pipeline generates a set of result files and figures
(an example of each output file can be found in
Additional file 1), each of which focuses on a specific
point of view on the data. To give a general overview on
the processed data, a bar graph displaying the number of
miRNAs and MTIs after each processing step of the
pipeline is generated (Fig. 2). These plots are very help-
ful for reference database depending parameter fine tun-
ing. A MTI matrix file constitutes all interactions
between identified miRNAs and target UniProtAccs
(Additional file 1: Table S2). By using binary strings
within the matrix, the individual occurrence of each
MTI over the chosen MTI DBs is represented. In order
to display all interacting miRNAs for a specific target
UniProtAcc, the MTI information file lists the target
gene symbols and synonyms, the corresponding UniProt
accession, the species, as well as further information like
protein names and GO numbers.
The overlap of targets between all identified MTI sets

is depicted in an MTI set overlap heatmap (Additional
file 1: Figure S4). In case a MTISEA is performed, just
the leading edge genes of all MTI sets are considered.
After the optional MTISEA, the ranking file contains the
results of the analysis for each set of miRNA targets (e.g.
set size, ES, NES and FDR q-value). If no MTISEA was
started, the MTI sets are ranked according to their num-
ber of targets. In case of a MTISEA, additional enrich-
ment plots are created which illustrate the running
enrichment score for each MTI set over all UniProtAccs

Fig. 2 Bar graph output of LimiTT. The figure depicts an exemplary bar graph output of LimiTT, showing the number of miRNAs on the left and
the number of MTIs on the right after specific processing steps of the pipeline
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in the ranked dataset (Fig. 3). Finally, the MTI set target
information file of LimiTT represents the textual base
for all enrichment plots, listing the index in the ranked
list for each ranked MTI, as well as the running ES and
the leading edge status.

Validation
In order to test our pipeline for datasets from well anno-
tated organisms as well as niche model organisms, we
performed an exemplary analysis on a disease in
humans, where the role of miRNAs is well described. In
a second analysis we simulated a niche model dataset
based on human genes and target interactions to illus-
trate the principle of gene identifier and miRNA target
assignments in niche models.

Testcase well annotated organism
In 2014, Bertero et al. [28] published a paper describing
the identification of human MTIs relevant for pulmon-
ary hypertension (PH) based on a sophisticated bioinfor-
matics approach. We chose this disease model to validate
LimiTT, since the role of many miRNAs is already de-
scribed for PH (reviewed in [29–32]), allowing the final
validation of the resulting list generated by LimiTT.
Bertero et al. used in silico predicted MTIs generated

with a list of 242 human PH-related genes (from litera-
ture search) and created a network revealing the under-
lying connections among the MTIs and among the
genes. Based on MTI set size and network position
(highly connected knots vs. less connected), the group
narrowed their findings down to 30 top ranked miRNA
families consisting of 98 miRNA members (no distinc-
tion between -3p/-5p variants).
To test whether LimiTT is also able to identify at least

these 30 published miRNA families just by mapping to
overlapped target databases without a bioinformatics
network approach, the 242 PH-related genes were used
as annotation file input. LimiTT was invoked from the

web interface with the following parameters: Clustered
miRNAs (-3p and -5p suffixes are ignored), all MTI da-
tabases, MTI database occurrence of at least one, organ-
ism H. sapiens, all experimental methods and starBase
stringency of one.
The pipeline identified 222 of the 242 genes as vali-

dated miRNA targets, interacting with various miRNAs.
All of the top 30 miRNA families published in Bertero et
al. (2014) were identified by our tool and consisted in
total of 73 of the 98 miRNA members (Additional file 1:
Table S5). In addition, 317 further interesting miRNAs
were determined by our tool, resulting in 390 identified
miRNAs in total.
Next, we tested whether our MTISEA module was

able to sort the 390 identified miRNAs in a way that pul-
monary hypertension (PH) relevant miRNAs will receive
a high score. LimiTT was started again with the previ-
ously described annotation file consisting of the 242 PH-
related genes accompanied by a ranking file. The latter
contained the genes of the PH-network from Bertero et
al. ranked by the number of connections to other genes
within the network. The idea behind this approach is to
identify miRNAs that affect highly interconnected tar-
gets within the PH-network. The resulting list was fil-
tered for small target sets and ranked according to the
normalized enrichment score (NES) calculated by our
tool.
Twenty-three miRNAs of the top 25 identified sets

can be assigned to the 14 miRNA families, namely mir-
22, mir-28, mir-34, mir-155, mir-185, mir-193, mir-302,
mir-302_2, mir-320, mir-368, mir-432, mir-515, mir-542
and mir-708 (Additional file 1: Table S6). According to
miRBase, the other two miRNAs (miR-4306 and miR-
3619) are not yet assigned to any family.
Fifteen of the 25 miRNAs from 10 miRNA families are

already associated with pulmonary hypertension: miR-
193a and miR-193b, as well as miR-22 were found to be
significantly downregulated in the case of PH [33, 34],
while miR-34a seems to be higher expressed [35]. Add-
itionally, the knockout of miR-155 was found to prevent
fibroblast proliferation in hypoxic conditions [36].
The miRNAs miR-302a/b/c/d of the mir-302 family

were identified to be downregulated by bone morpho-
genetic protein (BMP) signalling, which leads to the de-
repression of their target gene BMPR2 [37]. The BMP sig-
nalling pathway in turn is well known to cause heritable
PH in the case of mutational defects in BMPR2 [38].
In case of a hypoxia-induced PH, the miRNA pro-

cessing endonuclease Dicer is known to be downregu-
lated, resulting in a decreasing level of miR-185 and
other miRNAs [39]. This leads to the de-repression of
the miR-185 target gene HIF-2, which is involved in
the regulation of hypoxic adaptions in pulmonary
vasculature.

Fig. 3 Enrichment plot output of LimiTT. Depicted is the example of
an Enrichment plot for an MTI set named miR-149 from LimiTT with
the running enrichment score for each of the UniProt accessions
from a ranked list in blue, the positions of targets from the MTI set
within the ranked dataset in black and the position of the maximum
ES in red
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The last five miRNAs can be associated with diseases
that can lead to PH:
PH is known to seriously complicate idiopathic pul-

monary fibrosis (IPF) [40, 41]. MiR-326 and miR-542
were found to be downregulated in pulmonary fibrosis,
dysregulating homeostasis of the lung [42, 43].
The miRNAs miR-376a/b of the mir-368 family are

significantly downregulated in case of patients with
sickle cell disease [44]. This disease is complicated by
PH in about 30 % of the SCD cases [45–47].
PH can also be caused by pulmonary tuberculosis

[48, 49]. MicroRNA miR-432 was found to be to be
significantly upregulated in case of tuberculosis and
considered to be a biomarker for this disease [50].
Another six miRNAs of 3 miRNA families cannot be

associated directly with PH, but are known to play a role
in lung cancer.
The miRNAs miR-320 and miR-708 were found to be

overexpressed [51, 52] in case of lung cancer, whereby a
downregulation was reported for miRNAs of the miR-
515 family [53, 54].
Summing up, our test dataset from Bertero et al. [28]

consisting of PH-relevant genes revealed a list of miR-
NAs that was also reported by Bertero to be highly im-
portant in the PH disease condition. Whereas Bertero et
al. reported miRNA families, our tool is also able to re-
port single miRNA family members. Additionally, the
LimiTT analysis of the PH-related gene network gener-
ated by Bertero et al. gave rise to a list of enriched MTI
sets which led to miRNAs that are already well known
to play a role in the PH disease.

Testcase niche model organism
As MTI databases lack information about niche model
organisms, a benchmark with an outcome that can be
interpreted in terms of correctness is difficult to define.
Therefore we simulated a niche model dataset by gener-
ating an example list of human gene symbols to serve as
a ranked list for MTISEA analysis (random 1600 gene
symbols). Next we assumed the human organism as
niche model. In order to analyse this dataset, we choose
the mouse as a well-represented and sufficiently related
organism to perform a simulated annotation step. We
mapped the human gene symbols to mouse uniprot
identifiers, assigning 5812 mouse uniprot IDs to the ori-
ginal 1600 human genes in the ranked list. This step
simulates the mapping step to mouse uniprot identifiers
normally done by sequence homology based annotation
methods as regularly performed for a real niche model
organism. Next, we evoked LimiTT with the translated
mouse identifiers and generated the standard output
which represents the niche model results. In order to
evaluate the findings, we mapped the original human
gene list to human uniprot identifiers as well (7699

uniprot ids). A second run of the LimiTT tool with this
ranked list represented the “real” result of the simulated
human niche model for a target-performance compari-
son. First we compared the miRNAs that were identified
in mouse and human analysis to check if miRNA targets
are conserved in general on a random gene list. As
shown in Fig. 4a, the miRNA identification step resulted
in a larger number of miRNAs in humans compared to
mouse. Nonetheless, the percentage of overlap (74 %,
Fig. 4a) with identified mouse miRNAs suggests substan-
tial conservation, considering that ~54 % of all human
miRNAs are human or at least primate specific [55]. We
assume the differences in the total number of detected
miRNAs for human and mouse identifiers to be gener-
ated by the total difference of miRNA targets repre-
sented in the MTI databases, as shown by Fig. 4e and f.
To check for robust results with respect to the MTI
database settings, we performed a second run with our
tool, taking targets into account that occur only in one
of the MTI database. This analysis resulted in a similar
overlap for mouse and human (77 %, Fig. 4b) with
higher total numbers of detected miRNAs, supporting
our method to be robust with respect to database
composition.
Finally, we aimed to determine whether the high over-

lap between our simulated niche model and the real tar-
get organism is conserved for significantly enriched
miRNAs from MTISEA as well. By overlapping the sig-
nificantly enriched miRNAs (MTISEA FDR < 0.05), we
found 50 % (Fig. 4c) to 59 % (Fig. 4d) of the individual
miRNAs to be conserved (Additional file 3). In sum-
mary, the simulated niche model dataset illustrates a
meaningful application of LimiTT for an organism with-
out descriptions on the miRNA level.

Discussion
The identification and validation of MTIs is still a challen-
ging process, as it is not yet possible to retrieve such inter-
actions automatically via high-throughput technologies.
LimiTT offers access to experimentally validated MTIs of
26 different species by combining research from TarBase
6.0, miRTarBase 4.5, miRecords 1.0, and starBase 2.0.
These particular DBs were chosen because all of them host
MTIs of more than one species, their last update was in
2013 or later, and their content is publicly available.
While tools such as miRWalk2.0 and miRSel already

represent such cumulative DB search tools, they are lim-
ited to MTIs of the species human, mouse, and rat. The
ability to map data in a species-agnostic way represents a
unique feature of LimiTT that can be used for the predict-
ive identification of related targets based on homology to
the validated ones. Extensive lists of species overlapping
miRNAs and/or targets can be submitted, from which val-
idated MTIs are filtered. This is an essential feature for
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the processing of niche model organisms, based on previ-
ous research finding miRNA seed conservation among
mammals, particularly in the 3′ UTR, and indicating se-
lective evolutionary pressure to maintain nucleotide bind-
ing sites for microRNAs [56, 57]. Another study on 10
mammalian orders found a whole class of MTIs to be
under evolutionary constrains [58]. Due to the increasing
divergence of MTIs with increasing evolutionary distance
of the compared organisms, homology based mapping will
nonetheless introduce a certain amount of inaccuracy
[59]. Our simulated dataset suggested that an inter-species
mapping results in a valid miRNA identification rate
around 70 %, which reflects at least the most conserved
miRNAs between species under investigation represented
in the dataset. Although the evolutionary distance from
human to mouse is relatively large, a substantial number
of significantly enriched miRNAs (~50-60 %) could be de-
tected. A homology based approach as implemented by
LimiTT thus represents an option to bioinformatically en-
able research on new niche model organisms besides
mouse, human and zebrafish.
Submitted miRNA identifiers can either include the

species prefix and the -3p or -5p hairpin-arm informa-
tion (e.g. hsa-miR-1a-3p), but can also be unspecific with
regard to these information (e.g. miR-1a-3p, hsa-miR-1a

or miR-1a). This function enables the clustering of the
assigned miRNAs under shortened, more general identi-
fiers submitted by the user, thus granting additional con-
trol over the sensitivity/specificity of the algorithm.
Finally, the MTI set enrichment analysis enables the

combination of the miRNA target assignment with an
automated functional downstream analysis which allows
the identification of e.g. MTI sets whose targets show
particularly high expression values. Other ranking
values, such as the number of interactions between
genes, can also be used for the enrichment analysis, as
demonstrated in the validation section.
One current shortcoming of LimiTT is the reliance on

gene symbols (gene names) to identify homologous genes,
which could be improved by additionally assessing the
protein similarity to exclude genes which bear the same
name but putatively perform different functions.

Conclusions
In summary, LimiTT is the first web-based pipeline which
can automatically identify and link validated MTIs from ex-
tensive lists of miRNAs and target genes in batch mode,
even if the provided data is not species specific. The latter
enables the prediction of homologous targets for identified
MTIs, extending the usability from standard model systems

a b

c d

Occurence minimum: 2

hsa mmu

117 57 20

hsa mmu

179 217 68

Occurence minimum: 1

hsa mmu

95 25 27 168 124 86

e f hsa mmu

Fig. 4 Simulated niche model dataset. Depicted is the overlap on identified miRNAs and significantly enriched miRNAs in respect to a simulated
dataset where we treaded a human identifier list in context of the mouse organism. a Overlap of mouse and human miRNAs, identified in at
least two databases. b Overlap of mouse and human miRNAs, identified in at least one database. c Overlap of significantly enriched mouse and
human miRNAs, identified in at least two databases. d Overlap of significantly enriched mouse and human miRNAs, identified in at least one
databases. e Total number of human miRNAs found in all four databases and respective analysis steps resulting in 174 relevant miRNAs as shown
in Fig. 4a (117 + 57 = 174). f Total number of mouse miRNAs found in all four databases and respective analysis steps resulting in 77 relevant
miRNAs as shown in Fig. 4a (57 + 20 = 77)
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to niche model organisms. Furthermore, it permits the up-
load of ranked expression lists of miRNA effectors originat-
ing from e.g. microarrays, RNA-Seq, or proteomics
experiments, which can be used to predict key miRNAs re-
sponsible for the phenotype of a dataset. The wide range of
parameters permits individual filtering of the DBs in ac-
cordance with the researcher’s needs and completes the
pipeline. The generated output files display different points
of view on the total dataset, allowing further downstream
analysis without the need to rearrange and recalculate sin-
gle lists. LimiTT thus represents a valuable new tool to rap-
idly scan large amounts of data from high throughput
research to identify miRNA/target interactions without
large investments in on-site computational hardware.

Availability and requirements

� Project name: LimiTT
� Project home page: https://bioinformatics.mpi-

bn.mpg.de
� Operating system(s): Platform independent
� Programming language: Python
� License: Free
� Any restrictions to use by non-academics: None

Availability of data and materials
All materials used for pipeline evaluation are included as
supplemental files. Example files are available from our
website.

Additional files

Additional file 1: Data: Supplementary figures and descriptions helpful
for the understanding of LimiTT. (PDF 1745 kb)

Additional file 2: Data: Supplementary table, comparing MTI databases
and other MTI tools with LimiTT (XLSX 10 kb)

Additional file 3: Data: Supplementary table, result list from LimiTT
MTISEA analysis on random list of identifiers as used in use case two. Each
tab contains all miRNAs identified in human and mouse respectively with
the parameter “database overlap (occ)” one and two. Yellow background
indicates the significant enriched (FDR < 0.05) miRNAs. (XLSX 63 kb)
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