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Abstract

Background: Chemical cross-linking combined with mass spectrometry (CX-MS) is a high-throughput approach to
studying protein-protein interactions. The number of peptide-peptide combinations grows quadratically with respect
to the number of proteins, resulting in a high computational complexity. Widely used methods including xQuest
(Rinner et al.,, Nat Methods 5(4):315-8, 2008; Walzthoeni et al., Nat Methods 9(9):901-3, 2012), pLink (Yang et al,, Nat
Methods 9(9):904-6, 2012), ProteinProspector (Chu et al,, Mol Cell Proteomics 9:25-31, 2010; Trnka et al., 13(2):420-34,
2014) and Kojak (Hoopmann et al., J Proteome Res 14(5):2190-198, 2015) avoid searching all peptide-peptide
combinations by pre-selecting peptides with heuristic approaches. However, pre-selection procedures may cause
missing findings. The most intuitive approach is searching all possible candidates. A tool that can exhaustively search
a whole database without any heuristic pre-selection procedure is therefore desirable.

Results: We have developed a cross-linked peptides identification tool named ECL. It can exhaustively search a
whole database in a reasonable period of time without any heuristic pre-selection procedure. Tests showed that

searching a database containing 5200 proteins took 7 h.

ECL identified more non-redundant cross-linked peptides than xQuest, pLink, and ProteinProspector. Experiments
showed that about 30 % of these additional identified peptides were not pre-selected by Kojak. We used protein
crystal structures from the protein data bank to check the intra-protein cross-linked peptides. Most of the distances

between cross-linking sites were smaller than 30 A.

Conclusions: To the best of our knowledge, ECL is the first tool that can exhaustively search all candidates in
cross-linked peptides identification. The experiments showed that ECL could identify more peptides than xQuest,
pLink, and ProteinProspector. A further analysis indicated that some of the additional identified results were thanks to

the exhaustive search.
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Background

Chemical cross-linking combined with mass spectrome-
try (CX-MS) is becoming a powerful approach to study-
ing protein-protein interactions. In the CX-MS protocol,
proteins are linked before digestion. Digested products
include cross-linked peptides and conventional linear
peptides. In this paper, we refer to conventional linear
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peptides as peptides if there is no ambiguity. Cross-
linked peptides are two peptides linked by a chemical
compound. Two such peptides are referred to as chains,
and the chemical compound is referred to as cross-linker.
In the database searching based identification framework,
the number of all possible peptide-peptide combinations
grows quadratically with respect to the number of pro-
teins, which results in a large search space.

Many tools have been developed to identify cross-
linked peptides. An incomplete list includes ASAP [1],
MS2Assign [2], MS-Bridge [3], CLPM [4], GPMAW
(5], Virtual-MSLab [6], XDB [7], X!Link [8], Popitam
[9], MS3D [10], CrossSearch [11], xComb [12], crux
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[13], Xlink-Identifier [14], pLink [27], Hekate [15], Pro-
teinProspector [28, 29], Crossfinder [16], and Kojak
[30]. The approach of most of these tools is to mod-
ify conventional peptide identification tools’ workflow
and the corresponding score functions based on the
property of cross-linked peptides. Because the search
space is large, most of them pre-select high possi-
bility candidates before scoring PSMs (peptide spec-
trum matches). In order to reduce the search space,
cleavable cross-linkers [17-20] have been developed to
avoid generating peptide-peptide combinations during
database searching. Peptides linked by this kind of cross-
linker can be broken into two peptides in dissociation.
Thus, the cross-linked peptides identification problem
is converted to the conventional peptide identification
problem.

Due to the good chemical and biological properties
of noncleavable amine-reactive cross-linkers (e.g. DSS
(disuccinimidyl suberate) and BS3 (bis(sulfosuccinimidyl)
suberate)), they have been widely used recently [21-24].
Tools including xQuest [25, 26], pLink [27], Protein-
Prospector [28, 29], and Kojak [30] were proposed to iden-
tify peptides linked by this kind of cross-linkers. They use
preprocessing procedures to eliminate candidates with
low possibilities before scoring. Given a spectrum, they
compare it with the theoretical spectra from peptides
to determine their chances of resulting in high scores
heuristically. Peptides with low chances are eliminated.
Eliminating some of the peptides before PSM scoring may
result in false negatives. The most intuitive approach is
searching all candidates exhaustively.

In this paper, we propose a new tool, named ECL
(exhaustive cross-linked peptides identification), that can
exhaustively search a whole database within a reason-
able period of time. Experiments showed that more
cross-linked peptides were identified thanks to exhaustive
searching. For the purpose of visualization, we developed
another tool, named ECLAnnotator, that converts ECL
results into webpages. These webpages show annotated
tandem mass spectra and matched/unmatched theoretical
ions clearly.

Implementation

ECL is designed to identify peptides linked by noncleav-
able amine-reactive cross linkers like DSS and BS3. In
the current version, ECL only supports CID (collision-
induced dissociation). Given a peptide-peptide combina-
tion, ECL in silico fragments it to b-ions and y-ions with
different charges. These ions form a theoretical spectrum
whose peaks’ intensities are the numbers of ions with the
corresponding mass-to-charge ratios. The tandem mass
spectra produced by a mass spectrometer are referred
to as experimental spectra in this paper. ECL uses the
normalized cross correlation coefficient to measure the
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similarity between a theoretical spectrum and an experi-
mental spectrum:
Xty
score = ————, (1)
HXTITY T
where X is the theoretical spectrum, Y is the experimental
spectrum, and T stands for vector transpose.

Because the search space is large, we developed an effi-
cient and low memory requirement algorithm to score
PSMs. Concretely, Eq. (1) can be rewritten as:

X +Xx)TYy  X[y+x]y X[Y+x]Y

score = = = ,
XYY XTI [1X11
(2)

where X is the vector whose elements are contributed by
the first chain, X is the vector whose elements are con-
tributed by the second chain, X; + X» = X, and Y =
Y/||Y||. ECL calculates ¥ before scoring PSMs, which
reduces the computational complexity largely. Both X;
and X3 have linear ions containing one chain’s amino acids
and cross-linking ions containing both chains’ amino
acids (Fig. 1). Given an experimental spectrum and a
chain, ECL can obtain this chain’s ion masses as

, (3)

U b + I;, cross — linking ion
T linear ion

where i is the ion index starting from 0, x; is ith ion’s
mass, p is the experimental spectrum’s precursor mass,
c is the chain’s mass, and /; is the corresponding linear
ion’s mass. Taking the first chain in Fig. 1 for example,
4th b-ion is a cross-linking ion containing “EAKE” and
“EVRKELDDLR” linked by a cross-linker. Thus, its corre-
sponding linear b-ion is “EAKE”. Clearly, p — ¢ is equal to
the summation of the other chain’s mass and the cross-
linker’s mass. We don’t consider the difference between
the experimental spectrum’s precursor mass and the the-
oretical spectrum’s precursor mass because the precursor
mass tolerance is smaller than or equal to the tandem
mass tolerance for almost all mass spectrometers. Given

EAKELIEGLIPR

Fig. 1 Anillustration of cross-linked peptides’ dissociation pattern.
Two chains' lysines are linked. Green markers indicate linear ions, and
red markers indicate cross-linking ions. A chain’s linear ions only

contain that chain’s amino acids. A chain’s cross-linking ions contain
that chain’s amino acids, a cross-linker, and another whole chain
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each ion’s mass, ECL calculates its corresponding mass-
to-charge ratios with different charges. After getting all
ions’ mass-to-charge ratios for one chain, ECL generates
X1 or Xp. Given an experimental spectrum, XIT Y only
needs to be calculated once for different X5, which reduces
the computational complexity largely.

With the above optimization, ECLs workflow is
described as follows:

1. Indexing chains based on their masses.

2. Calculating ions’ masses for each chain.

3. Indexing experimental spectra based on their
precursor masses.

4. Peak de-noising. Eliminating peaks whose intensities
have the highest frequency.

5. Calculating Y = Y/||Y|| for each experimental
spectrum.

6. Finding the largest precursor mass from all
experimental spectra.

7. Looping over all chains whose masses are smaller
than or equal to half of the largest precursor mass in
ascending order:

7.1 Finding all spectra whose precursor masses are
larger than or equal to 2 x ¢ + r — o, where r is
the cross-linker’s mass and o is the precursor
mass tolerance.

7.2 Calculating ions’ masses using Eq. (3), and using
these masses to generate X;.

7.3 Calculating X!'Y for each corresponding
spectrum.

7.4 Finding all chains whose masses are within the
range [p—o—c—rp+o—c—r).

7.5 Looping over all found chains:

7.5.1 Calculating ions’ masses using Eq. (3),
and using these masses to generate X».
7.5.2 Calculating XzTY.

7.5.3 Calculating the final score using Eq. (2).
7.5.4 Saving each spectrum’s top score result

as a PSM.

8. Estimating FDR (false discovery rate) for each PSM.
9. Converting FDR to g-value.

ECL estimates FDR as what xProphet [26] and pLink
[27] do. Three kinds of PSMs are used:

1. Both chains are from the target database.

2. Both chains are from the decoy database.

3. One chain is from the target database and the other
chain is from the decoy database.

FDR is estimated with
_ fls) —d(s)
FDR(s) = T» (4)
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where s is a score, £(s) is the number of the first kind of
PSMs whose scores are smaller than or equal to s, d(s) is
the number of the second kind of PSMs whose scores are
smaller than or equal to s, and f(s) is the number of the
third kind of PSMs whose scores are smaller than or equal
to s. Finally, FDR is converted to g-value [31]:

qt) = mi?FDR(S), (5)
s<
where ¢ is a threshold.

Results and discussion

Computational complexity analysis

ECL is closely related to the work of Chen et al. [32]
and Kojak [30]. Chen et al. [32] provided their algorithm’s
computational complexity. Hoopmann et al. [30] provided
Kojak’s source code without computational complexity
analysis, so we analyzed its computational complexity
based on the source code. In this section, we will analyze
ECL’s computational complexity in detail.

Computational complexity analysis
Defining the following variables:

k: number of proteins in a database.

n: average number of peptides in a protein.

m: average length of a chain.

h: average number of peaks in an experimental
spectrum.

s: number of experimental spectra.

L: number of precursor mass tolerance ranges. This
approximately equals the precursor mass range
divided by the precursor mass tolerance.

The time complexity of the algorithm proposed by Chen
etal. [32] is

O(skn? log(kn) + sk>n* log(kn) /L + sk*n®(m + h)/L).
(6)

For the first and second terms, the authors only consid-
ered one experimental spectrum. We multiply the terms
by s because there are s experimental spectra. We also use
k*n*/L to replace p in the original paper. For the third
term, the authors only considered one PSM. We multiply
the term by sk?x#?/L because there are k?n?/L peptide-
peptide combinations for each experimental spectrum
and there are s experimental spectra. The time complexity
of Kojak is

O(knlog(s) + kns(m + h+ 1) + st?). 7)

Please refer to the Additional file 1 for details.

For ECL, the computational complexity is dominated
by step 7 in the workflow. The complexity of step 7.1 is
O(log(s)). Steps 7.2 and 7.5.1 have the same time complex-
ity, O(m). ECL stores theoretical and experimental spectra



Yu et al. BMC Bioinformatics (2016) 17:217

in sparse matrixes. We developed an algorithm to match
peaks between a theoretical spectrum and an experimen-
tal spectrum with O(m + k) complexity (Algorithm 1).
Thus, both steps 7.3 and 7.5.2 have the time complexity,
O(m + h). Moreover, for an experimental spectrum and
a pair of chains, steps 7.2 and 7.3 only need to be exe-
cuted once because ECL checks each chain whose mass
is smaller than or equal to half of the largest precursor
mass in ascending order. Steps 7.3 and 7.5.2 also only
need to be executed once for the same reason. The time
complexity of step 7.4 is O(log(kn)). The time complex-
ity of steps 7.5.3 and 7.5.4 is O(kns/L). Thus, the time
complexity of step 7 is

O(kn(log(s) + m + s(m + h) + log(kn) + kns/L)). (8)

Algorithm 1 Aligning a theoretical spectrum and an
experimental spectrum

procedure ALIGN(x, y,£) > x : experimental spectrum;
y : theoretical spectrum; ¢ : tolerance.
start < 1
idx <1
output < vector[len(x) + len(y)]
length of y
for i < 1,len(y) do
if (x[1] —y[i]) > t then
continue
end if
j < start
while j < len(x) do
if [y[i] —x[j]| < ¢ then
output| idx] < x[J]
idx < idx+ 1
else if x[j] —y[i] > t then
start < j—1
break
end if
jej+1
end while
end for
return output
end procedure

> len(y) is the

There are seven variables in the time complexity
equations. Five of them can be fixed based on biological
prior knowledge:

n =~ 100.
m ~ 20.
h~ 102,
s~ 10%
L ~10°.
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We plotted curves of Egs. (6), (7), and (8) against dif-
ferent numbers of proteins (Fig. 2). Since Kojak selects ¢
peptides for each spectrum, we plotted three curves corre-
sponding to three different ¢ values. We can see that Chen
et al. [32] has the highest time complexity. When the num-
ber of proteins is small, ECL has smaller time complexity
compared to Kojak (leftmost of Fig. 2). This is because
ECL doesn’t need to select peptides beforehand. When
the number of protein is large, ECL has higher complexity
than Kojak (rightmost of Fig. 2). This is because the num-
ber of peptide-peptide combinations searched by ECL
grows quadratically as the increase of protein number
(Eq. (8)). This is an unavoidable cost of exhaustive search-
ing. On the other hand, the number of peptide-peptide
combinations searched by Kojak is almost constant, and
the total time complexity increases linearly (Eq. (7)).

Even though ECLs time complexity is large, it can still
handle a large database. Given a data set containing thou-
sands of tandem mass spectra, ECL only needs 7 h to
search a database containing 5200 proteins.

Space complexity
e The space complexity of Chen et al. [32] is

O(kn + k*n? /L + knm + h). 9)

For the second term, we use k*#? /L to replace p in
the original paper. For the third term, the authors
only considered one peptide-peptide combination for
each experimental spectrum. We multiply the term
by kn considering that there are kn peptides for each
experimental spectrum.

20 time complexity vs. protein number
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Fig. 2 Computational complexity against different numbers of
proteins. Three t values were used to plot Kojak's computational
complexity curves. Chen et al. [32] has the highest time complexity.
When the number of proteins is small, ECL has smaller time
complexity compared to Kojak. When the number of proteins is large,
ECL has higher complexity than Kojak
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e There are two steps in Kojak. The space complexity
of the first step is O(m + sh), and the space
complexity of the second step is O(tm + h). Thus, the
total space complexity is

O(m + sh+ tm + h). (10)
e The space complexity of ECL is
O(knm + sh). (11)

Clearly, Chen et al. [32] has the highest space complex-
ity, and Kojak has the lowest space complexity. Although
ECL’s space complexity is higher than that of Kojak, from
our experience, a personal computer with 32G memory is
sufficient in most cases.

Experiments

In this paper, we will present two sets of experiments. The
first one used a data set from the cross-linking of two
synthetic peptides. The second one used four data sets
from the 26S proteasome sample [33] provided by xQuest
[25, 26]. Since our study did not involve any humans, ani-
mals or clinical data, we do not have ethics or consent
issues.

An experiment with synthetic peptides

This experiment used two synthetic peptides produced
by GL Biochem (Shanghai) Ltd. The sequences were
“EVRKELDDLR” and “EAKELIEGLPR”. N-terminals were
protected by Fmoc. We used 1 uL peptides and 0.5 uL
DSS. Their concentrations were 1 and 0.5mM, respec-
tively. We dissolved the peptides and DSS in DMSO
(dimethyl sulfoxide) to a final concentration of 50 mM.
The reaction was carried out at room temperature, and
the reaction time was 2 h. After quenching, we added
12.5 uL piperidine to the above solution to remove the
Fmoc protection. The reaction lasted for another 2 h.
Finally, we freeze-dried the sample to obtain the cross-
linked peptides.

LC-MS (liquid chromatography-mass spectrometry)
analysis was carried out on a Thermo LTQ Orbitrap XL
mass spectrometer (Thermo Fisher Scientific Inc.) with a
NanoLC system. The sample was loaded onto a trapping
column (PepMap C18; 2cm x 100 um x 5pum, 100A)
using a flow rate of 4 uL/min of solvent A. The loading
lasted for 10 min. Cross-linked peptides were separated at
a flow rate of 200 L/min on a 75 um x 50 cm C18 column
(Acclaim PepMap RSLC C18, 75um x 50cm X 3 pum,
100 A). The following gradient was used: 0-8 min 2 % B,
8-12 min 2-10 % B, 12—-180 min 10-50 % B, 180-200 min
50-98 % B, 200—215 min 98 % B, and 215-240 min 98 —
2 % B, where B was the ratio of acetonitrile to formic acid.
B equaled 100:0.1 in this experiment. The mass spectrom-
eter selected up to five precursors to perform CID. The
intensity threshold of triggering fragmentation was 150
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counts. Only those whose precursor charges were larger
than or equal to 2 were considered. CID was performed
for 30 ms using 35 % normalized collision energy and a
0.25 activation value. Dynamic exclusion was used with
the following parameters: 1 repeat count, 60 s exclusion
duration, 500 list size, and 10 ppm mass window. The ion
target value was 1,000,000 (or 500 ms fill time) for full
scans, and 1,000,000 (or 200 ms fill time) for a tandem
mass scan. Fragmented ions were detected in a linear ion
trap.

During the search, the precursor mass tolerance was
10ppm, and the tandem mass tolerance was 0.5Th. Up
to 2 missed cleavages were allowed. The database con-
tained 100 randomly selected proteins and two synthetic
peptides. The decoy database was generated by reversing
peptides, with lysine and arginine fixed. Because there was
only one linkable site in each synthetic peptide, all cross-
linked peptides formed by synthetic peptides were treated
as inter-protein cross-linked peptides. The g-value cut-off
threshold was 0.05.

The search was carried out on a personal computer with
an Intel Core i5-4570 CPU (central processing unit) and
32 GB memory. ECL needed about 100 s to finish the task.
Since we knew the ground truth, we could calculate the
false discovery proportion. 4 out of 149 PSMs were incor-
rect. The corresponding false discovery proportion was
0.03. This experiment indicated that ECL could provide
trustable results. Details can be found in the Additional
file 2.

Experiments with 26S proteasome data
Four data sets from the 26S proteasome sample
[25, 26, 33] were used. We first searched four data
sets against a database released along with the data
sets. It contained 34 proteins. The latest versions of
xQuest, pLink, ProteinProspector, Kojak, and ECL were
used: xQuest 2.1.1, pLink 1.23, ProteinProspector 5.14.4,
Kojak 1.4.2, and ECL 20160117. The precursor mass
tolerance was 10ppm, and the tandem mass toler-
ance was 0.2Da. Other parameters were the same as
those in the previous experiment. All the parameter
files used by these tools were included in the Addi-
tional file 3. We used xProphet [26] to estimate the g-
value for xQuest’s results by setting “qtransform” to 1
in the “xproph.def” file. Because ProteinProspector did
not provide the g-value in its results, we estimated it
as what Trnka et al. [29] did. We used Percolator to
estimate the g-value for Kojak’s results as what Kojak
required. Intra-protein cross-linked peptides and inter-
protein cross-linked peptides were analyzed separately.
For a fair comparison, these tools’ g-value thresholds
were 0.05.

Table 1 shows the numbers of non-redundant
cross-linked peptides identified by xQuest, pLink,
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Table 1 Numbers of non-redundant cross-linked peptides
identified by xQuest, pLink, ProteinProspector, Kojak, and ECL,
respectively. The database contains 34 proteins

Dataset ~ xQuest  pLink ProteinProspector ~ Kojak ECL
1 70 (56) 54) 104 (69) 102 (71) 97
2 73(41)  28(17) 99 (45) 120(56) 58
3 90(62)  28(10) 96 (64) 139(90) 127
4 6147) 20(14) 94 (68) 110(83) 135

Values in the brackets are the numbers of overlapping cross-linked peptides
identified by both ECL and the corresponding method

ProteinProspector, Kojak, and ECL, respectively. Corre-
sponding Venn diagrams can be found in the Additional
file 1. ECL identified more cross-linked peptides than
xQuest, pLink, and ProteinProspector. We used pro-
tein crystal structures from the protein data bank
(PDB) to measure the distances between linking-sites
in intra-protein cross-linked peptides. Only 3 proteins
had structural information. Their UniProt accessions
were 094444, P06732, and P50524, respectively. The
corresponding PDB ID were 2X5N, 1I0E, and 4B0Z,
respectively. There were 65 PSMs to these proteins. 60 of
them had a distance smaller than 30 A, which meant that
they were within the distance tolerance. Details can be
found in the Additional file 4. We also used ECLAnnota-
tor to generate annotated tandem mass spectra for ECL’s
results. They can be found at http://bioinformatics.ust.
hk/eclL.html. Then, we analyzed matched and unmatched
peaks. Please refer to the Additional file 2 for details.

In order to find out if the additionally identified
cross-linked peptides were due to exhaustive search,
we let Kojak output top 9999 pre-selected peptides for
each cross-linked peptide’s highest score spectrum. (The
default number of pre-selected peptides is 250. To our
knowledge, other tools can not output their pre-selected
peptides). Then, we compared the cross-linked peptides
identified by ECL with those pre-selected peptides in
the corresponding spectra. We consider one additionally
identified cross-linked peptides pair is due to exhaustive
search if all of the following criteria are satisfied (We thank
the anonymous reviewer for suggesting these criteria):

1. The precursor masses in Kojak and ECL are within
the same tolerance range.

2. If both of two peptide chains are in the pre-selection
list and at least one is over 250, Kojak and ECL
identify the same pair of peptide chains.

3. At least one peptide chain isn’t in the pre-selection
list.

Table 2 shows the summarized results. About 30 % of
these peptides aren’t within top 250 of Kojak’s pre-selected
peptides, which means that the pre-selection procedure is
one of the causes of missing findings. Each spectrum’s pre-
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Table 2 A table showing if Kojak searched those missing
identified peptides

Dataset ~ Number of peptides from Number of peptides ~ Ratio
the cross-linked peptides  that don't belong to
identified by ECL, but not Kojak's pre-selected
by Kojak peptides

1 25 2 0.08

2 2 1 0.50

3 37 12 032

4 52 21 0.40

Total 116 36 0.31

The second column contains the total numbers of peptides from the cross-linked
peptides identified by ECL, but not by Kojak. The third column contains the
numbers of peptides that don't belong to Kojak's pre-selected peptides. The forth
column contains the ratios between the number in the third column and the
number in the second column

selected peptides and detailed comparison results can be
found in the Additional file 5.

Table 3 shows the corresponding running time of
xQuest, pLink, Kojak, and ECL, respectively. Protein-
Prospector spent 1254 seconds on average analyzing one
data set. It was run on the authors’ web server so we didn’t
compare it with the other four tools. Since Kojak supports
multi-thread computing, we ran it with 4 threads. xQuest,
pLink, and ECL don’t support multi-thread computing.

Finally, we tested if ECL could search a large database
within a reasonable period of time. We searched the same
data sets against the whole proteome of Schizosaccha-
romyces pombe species. There were 5200 proteins. We set
the allowed maximum missed cleavage to 1. The rest of
the parameters were the same as those in the last exper-
iment. xQuest ran for a few days, but it still couldn’t
finish the searching. pLink could not handle such a large
database. ProteinProspector spent 1.7 h on average ana-
lyzing one data set on the authors’ web server. Kojak spent
0.25 h on average analyzing one data set. ECL spent 7 h on
average analyzing one data set.

There were 4 x 100 peptide-peptide combinations
including decoy peptides. The precursor mass tolerance
was 10 ppm. Thus, there were about 4 x 10° peptide-
peptide combinations for each spectrum. Kojak selected
top 250 peptides to generate peptide-peptide combina-
tions for each spectrum, which covered about 8 % of the
whole search space. ProteinProspector used a similar pre-
selection procedure to select top 1000 peptides. Thus,

Table 3 Running time of xQuest, pLink, Kojak, and ECL,
respectively. The unit is second

Data set xQuest pLink Kojak (4 threads) ECL
1 6349 851 46 51
2 6741 878 48 57
3 20419 876 49 60
4 21757 700 47 60
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the number of peptide-peptide combinations searched by
ProteinProspector and Kojak was almost constant with
the increase of the database size. However, the number of
peptide-peptide combinations searched by ECL increased
quadratically. That’s why ECL was slower than Protein-
Prospector and Kojak.

ProteinProspector, Kojak, and ECL identified fewer
cross-linked peptides compared with the previous exper-
iment (Table 4). It is a known issue [34, 35] that larger
databases lead to fewer results. The discussion of this
issue is beyond the scope of this paper. ECL identified
more non-redundant peptides than ProteinProspector
and Kojak. Please note that there is no intra-protein cross-
linked peptides identified by Kojak because Percolator
output errors in estimating g-value for Kojak. The errors
said: “the input data has too good separation between tar-
get and decoy PSMs”. It is a common error when there
are only a few target or decoy PSMs. Please refer to
Percolator’s document for more detail.

Conclusions

High computational complexity is a major obstacle in
exhaustively carrying out large-scale cross-linked pep-
tides identification. To the best of our knowledge, ECL
is the first tool that successfully addresses the computa-
tional complexity issue without any heuristic pre-selection
procedure. Given thousands of tandem mass spectra and
a database containing thousands of proteins, it can fin-
ish the task in a few hours. The experiments showed that
ECL could identify more peptides than xQuest, pLink,
and ProteinProspector. A further analysis on public data
sets showed that exhaustive search helped identify more
cross-linked peptides than existing methods.

Availability and requirements

Project name: ECL

Project home pase: http://bioinformatics.ust.hk/ecl.html
Operating systems: Windows, Linux, OS X
Programming language: Java, Python

Other requirements: Java 1.7 or higher, Python 2.7
License: Apache License 2

Table 4 Numbers of non-redundant cross-linked peptides
identified by ProteinProspector, Kojak, and ECL, respectively. The
database contains 5200 proteins

Data set ProteinProspector Kojak ECL
1 20(15) 5(0) 36
2 32(16) 6 (0) 39
3 24(12) 4(0) 39
4 23(17) 2(0) 57

Values in the brackets are the numbers of overlapping cross-linked peptides
identified by both ECL and the corresponding method. There is no result for
intra-protein cross-linked peptides reported by Kojak because Percolator outputs
errors in estimating g-value
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Additional files

Additional file1: A supplementary document contains ECL user
instruction, computational complexity analysis of Kojak, spectra analysis of
the 26S Proteasome results, and venn diagrams of 26S Proteasome results.
(PDF 434 kb)

Additional file 2: Detailed results of synthetic peptides and 26S
Proteasome samples. (ZIP 4432 kb)

Additional file 3: Parameter files used by xQuest, ProteinProspector,
Kojak, and ECL, respectively. (ZIP 17 kb)

Additional file 4: Distances of intra protein identified by ECL. (XLSX 15 kb)

Additional file 5: Kojak's pre-selection list of PSMs only identified by ECL.
(ZIP 5147 kb)

Abbreviations

BS3: Bis(sulfosuccinimidyl) suberate. CID: collision-induced dissociation; CPU:
central processing unit; CX-MS: chemical cross-linking combined with mass
spectrometry; DMSQO: dimethyl sulfoxide; DSS: disuccinimidyl suberate; ECL:
exhaustive cross-linked peptides identification tool; ETD: electron-transfer
dissociation; FDR: false discovery rate; PDB: protein data bank; PSM: peptide
spectrum match.
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