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Abstract

Background: Next-generation sequencing (NGS) technologies have provided researchers with vast possibilities in
various biological and biomedical research areas. Efficient data mining strategies are in high demand for large scale
comparative and evolutional studies to be performed on the large amounts of data derived from NGS projects.
Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to
structure large textual corpora for data mining.

Methods: We report a novel procedure to analyse NGS data using topic modeling. It consists of four major
procedures: NGS data retrieval, preprocessing, topic modeling, and data mining using Latent Dirichlet Allocation
(LDA) topic outputs. The NGS data set of the Salmonella enterica strains were used as a case study to show the
workflow of this procedure. The perplexity measurement of the topic numbers and the convergence efficiencies of
Gibbs sampling were calculated and discussed for achieving the best result from the proposed procedure.

Results: The output topics by LDA algorithms could be treated as features of Salmonella strains to accurately
describe the genetic diversity of fliC gene in various serotypes. The results of a two-way hierarchical clustering and
data matrix analysis on LDA-derived matrices successfully classified Salmonella serotypes based on the NGS data.
The implementation of topic modeling in NGS data analysis procedure provides a new way to elucidate genetic
information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of
biological and medical big data.

Conclusion: The implementation of topic modeling in NGS data analysis provides a new way to elucidate genetic
information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of
biological and medical big data.
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Background
Next generation sequencing (NGS) [1] is a term that re-
fers to post-Sanger sequencing methods. The primary
advantage offered by NGS technologies over traditional
sequencing methods is the production of large volumes
of sequence data inexpensively and with a high degree of
flexibility for the level of resolution required for given

experiments. The production of large numbers of low-
cost, high-quality sequences has enabled the scientific
community to address an increasingly diverse range of
biological and medical problems, including clinical diag-
nostics [2, 3], epidemiological investigation [4], species
classification and gene discovery in metagenomics stud-
ies [5], virology [6] and genomic analysis [7].
Although NGS technologies are increasingly used in

many areas, the large amounts of data produced by NGS
technologies present a significant challenge for data ana-
lysis and interpretation. Advanced high-performance
computing and intensive bioinformatics support is
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essential for the successful application of NGS technolo-
gies. Currently, a variety of analysis tools and software
have been developed for the early stage of NGS tech-
nologies. Most of these tools are used for the general
categories, such as sequence alignment, genome assem-
bly and annotation, and genetic variation detection [8].
Limited research has been reported on data mining
strategies for large next generation sequencing data to
address biology-driven questions.
Topic modeling is an active research technique in ma-

chine learning that has wide analytical applicability for
interpreting large data sets in text mining [9–11] and
image retrieval procedures [12, 13]. The basic idea in
topic modeling is that a document is a mixture of latent
topics, each of which is expressed by a distribution on
words. Latent Dirichlet Allocation (LDA) [10] is the
most popular topic modeling algorithm. In an enhanced
version of the earlier models [14, 15], LDA uses two
Dirichlet-Multinomial distributions to model both the
relationships between documents and topics and be-
tween topics and words. Two probability matrices are
provided by the LDA approach: 1. per-document topic
distributions and 2. per-topic word distributions. Ap-
proximate methods, such as variational inference [10]
and Markov chain Monte Carlo (MCMC) [16], are com-
monly used in LDA analysis to calculate the posterior
probabilities. The calculated probability matrices are
used to make inference about the topics and docu-
ments for text mining. Topic modeling has been ap-
plied for various purposes, such as protein structure
representation [17], FDA drug labeling [18] and meta-
genome data analysis [19], however, we are not aware
of any research that has been reported which applies
the text mining algorithms to next generation se-
quence data analysis.
In this study, we propose a procedure that applies

LDA topic modeling to analyze NGS data, especially
those on the large sequence datasets. The NGS data set
containing the Salmonella fliC gene was used as a case
study to show the workflow and the function of this pro-
cedure. The fliC gene encodes a Salmonella phase 1
antigen, and is considered one of the Salmonella sero-
type determinant genes [20]. The developed procedure
was applied to the fliC gene-containing NGS sequences
of 119 Salmonella strains of nine Salmonella serotypes.
These sequences were retrieved from the database of the
National Center for Biotechnology Information (NCBI)
and/or other sequence databases, and were trans-
formed into the files of documents on which the LDA
algorithm was run and two matrices were generated.
The two matrices were then analyzed by hierarchical
clustering and other data mining methods to elucidate
the hidden information within the content of DNA
sequences.

Based on our limited knowledge, the proposed method
in this study is the first attempt of applying topic modeling
to NGS data analysis at the level of phenotype-determinant
genes. Better performance and accuracy was observed
when comparing this method with Hamming distance
method [21] by clustering analysis and classification. The
results showed that the topic modeling provides a promis-
ing novel approach to analysis of NGS data for the purpose
of understanding and decoding hidden genetic information
in a biological system.

Methods
Dataset construction
In this study, the whole genome sequences of 119 strains
(Additional file 1: Table S1) of Salmonella O antigen
group B [22] were retrieved from the NCBI database, in-
cluding 75 strains of S. Agona, 14 strains of S. Heidelberg,
one strain of S. Paratyphi B, two strains of S. Saintpaul, two
strains of S. Schwarzengrund, one strain of S. Stanley, 22
strains of S. Typhimurium, one strain of S. Typhimurium
var.5-, and one strain of S. 4, 12:i:- [23]. The dataset was
constructed and preprocessed by our developed pipeline
[24] as briefly described in the following: The retrieved se-
quence reads or contigs were collected to a data pool. For
each strain, the sequence fragment best matching the refer-
ence fliC gene was selected by blasting with the serotype-
specific reference fliC, using the Basic Local Alignment
Search Tool (BLAST) [25]. In this study, the reference fliC
genes used for the strains of S. Agona, S. Heidelberg, S.
Paratyphi B, S. Saintpaul, S. Schwarzengrund and S. Stanley
were those of S. Agona SL483, S. Heidelberg SL476,
S. Paratyphi B SPB7, S. Newport SL254, S. Schwarzengrund
CVM19633 and S. Typhi CT18, respectively. The strains
of S. Typhimurium, S. Typhimurium var.5- and 1 S. 4,
12:i:- [26] used the fliC of S. Typhimurium LT2 as the ref-
erence gene. All the reference genes were retrieved from
NCBI by the same pipeline. The metadata of the fliC
gene-containing NGS data of 119 Salmonella strains are
listed in Additional file 1: Table S1.

NGS data preprocessing
The procedures for data preprocessing are shown in
Fig. 1(b-d). The sequences in the constructed dataset
(Fig. 1(a)) were aligned by an algorithm of multiple se-
quence alignment (MSA), such as MUSCLE [27] or
CLUSTAL [28], generating a dataset of aligned se-
quences (including insertions and deletions, or indels)
(Fig. 1(b)). The nucleotide differences at each site, called
single nucleotide polymorphisms (SNPs), were collected
and are shown in Fig. 1(c). Each of the 119 strains had
its corresponding file of words consisting of both SNPs
and the locations of the SNPs in the sequences
(Fig. 1(d)).
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Fig. 1 Flowchart of the proposed procedure
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Topic modeling
After preprocessing, a text corpus was generated in
which each of the documents corresponded to one of
the 119 strains, and all the documents had the same
number of words. The LDA program implemented in
Mallet [29] was utilized to model the corpus to get the
latent topics and the topic mixture distribution for each
strain.
LDA is a generative probabilistic model whose graph-

ical model representation is shown in Fig. 2. LDA gener-
ates a given corpus according to the following process
[10]:

1. For each topic k, where k in {1… K}, pick a
distribution over words φk ~Dir(β);

2. For each strain Ds, where s in {1… S},
a. Pick a distribution over topics θs ~Dir(θ);
b. For each word wn with n in {1… N},

(1)Pick a topic z ~Multinomial (θs);
(2)Pick word wn ~Multinomial (φz);

In the generative process, Dir represented a Dirichlet
distribution and Multinomial represented a Multinomial
distribution. The distributions of words for topics and

distributions of topics for documents were viewed as
random variables obeying Dirichlet distributions with
parameters β and α, respectively. Words in documents
were treated as random variables obeying the Multi-
nomial distribution of topics.
Given a corpus of S strains D = {D1, D2,…, DS}, the

probability of the corpus:

pðD α; βj Þ ¼
Ys
s¼1

Z
pðθs αj Þ

�YN
n¼1

Xk
z¼1

pðzsn θsj Þpðwsn φzsnj Þpðφz βj Þ
�
dθsdθz

ð1Þ
In this study, Gibbs sampling [11], a special case of

Markov chain Monte Carlo (MCMC) [16] approach, was
used to sample posterior distribution of θs 'Zsn and
φzsn.The LDA algorithm was run on the corpus several
times with different number of topics. For all the runs,
we assigned α = 0.1 and β = 0.01 as initial values for the
two hyper-parameters, and 2000 iterations in Gibbs sam-
pling. The default values were applied for the other pa-
rameters in the LDA model in Mallet.

Fig. 2 Graphical representation of the LDA model. The shaded circle represents the observed variable and white circles represent latent variables
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Perplexity measurement
Leave-one-out cross-validation was used to measure the
perplexity of LDA algorithm. The LDA algorithm was
first trained by 118 samples, and then the obtained LDA
model was applied to calculate the perplexity of the left-
out sample. This process was repeated 119 times until
each of the samples had been left out once. The average
perplexity of the 119 samples was taken as the final per-
plexity for the corresponding number of topics.

Data mining
Strain characterization The per-document topic distri-
butions and the per-topic word distributions were ob-
tained after LDA processing. Words with high probability
for given topics were selected to characterize and differen-
tiate bacterial strains.

Two-way hierarchical clustering Two-way clustering is
a data mining technique which allows simultaneous
clustering of the rows and columns of a matrix. In
the two-way hierarchical clustering analysis in this
study, the topic mixture distributions of strains were
viewed as the strain representatives. The dissimilar-
ities between strains and topics were calculated by
Euclidean distance of topic mixture distributions of
strains. The result describes simultaneously the sub-
groups of samples and the relationships among topics.
Hierarchical cluster analysis using the complete link-
age was applied on the dissimilarities to perform a
two-way hierarchical clustering. Function “heatmap.2”
in package “gplots” of R [30] was utilized to imple-
ment the two-way clustering. The colors from blue to
red indicate the values of the topic probabilities of
the strains ranging from 0 to 1.

Distance Matrix Analysis In the distance matrix ana-
lysis, Euclidean distance measure was used to measure
the dissimilarity between strains based on the strain-
topic mixtures derived from the fliC SNPs dataset. The
program “dist” in package “stats” of R (with default
values of parameters) [31] was utilized to calculate the
Euclidean distances between all the strains. The colors
from blue to red represent the values of the Euclidean
distances as they range from 0 to 1.

Evaluation of topic modeling performance
To evaluate the performance of topic modeling, we ap-
plied clustering and classification algorithms on the
sample-topic matrices (Fig. 1(f )) generated by LDA and
similarity matrices generated by Hamming Distance
[21], and the results were compared based on the sero-
types (Additional file 1: Table S1) of the samples which
were viewed as the sample’s true labels.

1. Hamming Distance measures
The documents (samples) in Fig. 1(d) were
transformed into matrix of Vector Space Model
(VSM) [32] which is a commonly used model for
representing text documents. In the VSM matrix,
the number of row is the number of samples and
the number of column represents the size of the
vocabulary. Using Hamming Distance measures, the
traditional clustering and classification methods
were conducted and the results were compared with
those conducted on the sample-topic matrices from
LDA (Fig. 1(f )).

2. Cluster analysis and result comparison
3. Classification analysis and comparison

Topic model-derived clustering method [33] was
applied, in which LDA was utilized as a feature
reduction approach for cluster analysis. The LDA-
derived topics were considered as the new features
of datasets. The sample-topic matrix (Fig. 1(f )) was
treated as a new representation of the original dataset.
Based on the sample-topic matrix (topic number was
chosen as 5 and 30, respectively), conventional
clustering algorithms, such as k-means, was used for
the clustering analysis. The number of clusters was set
as 7 in the k-means method due to 7 different
serotypes in the dataset. While in comparison,
k-means algorithm was also applied on VSM matrix
using Hamming Distance similarities. For further
comparison, due to the dimension reduction of topic
modeling approach, the traditional tool of PCA was
used to reduce features (Numbers of 2, 5, 10 and 30
were randomly selected as the reduced features,
respectively) of VSM matrix followed by the k-means
cluster analysis. Moreover, clustering by only LDA
referred as “highest probable topic assignment” [33]
(5 and 30 topics were used) was also used for
comparison. In “highest probable topic assignment”,
the LDA-derived topics were made as the clusters of
the dataset. Then, each sample was assigned to the
cluster (Topic) with the highest probability in the row
of the sample-topic matrix. To interpret the clustering
results obtained by the k-means algorithm, samples in
each cluster were labeled as the dominant serotype of
the samples in the cluster. The predicted labels of
samples were compared with the true labels (serotypes)
to evaluate the clustering quality.
The clustering results were evaluated by Normalized
mutual information (NMI) [34] and Adjusted Rand
Index (ARI) [35]. NMI and ARI are two external
validation metrics to evaluate the quality of
clustering results with respect to the given true
labels of datasets. The range of NMI and ARI values
is 0–1. In general, the larger the value is, the better
the clustering quality is.
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Two commonly used classification algorithms,
Support Vector Machine (SVM) [36] and Random
Forest (RF) [37], were applied on the sample-topic
matrix obtained by LDA with the topic number set
to 5 and 30, respectively. SVM and RF were also
applied to the VSM matrix for comparison. Accuracy
rate was used to evaluate and compare the classification
results. Since classification is a supervised learning
task, training dataset is required to include all of the
true labels in the testing dataset. Therefore, the new
data set for classification consists of 117 samples with
two serotypes (true labels) Paratyphi B and Stanley
samples removed from the original dataset due to the
insufficient samples. Leave-One-Out Cross-Validation
(LOOCV) was conducted on the 117 samples and the
predicted accuracy rate was calculated. In this study,
the function “svm” (with “Polynomial” kernel and
default values of other parameters) in R package
“e1071” and function “randomForest” (number of trees
setting as 500 and default values of other parameters)
in R package “randomForest” were utilized to train the
classifiers.

Results
In this study, we propose a novel procedure for applying
the concept of topic modeling to the analysis and mining
of NGS data. Assuming that the SNPs composition (four
nucleotides and their locations) in NGS sequences can
be considered and treated as “words”, the original se-
quence data are transformed to a file of “a bag of words”.
A topic modeling procedure is then run on the docu-
ment file to create two digital matrices, on which various
data mining algorithms are applied to reveal the hidden
genetic information in the sequences. A NGS data set of
119 Salmonella outbreak strains was used as a case
study to show the workflow and its applications.

Procedure
Figure 1 shows a schematic representation of the pro-
posed procedure to transform the original sequence data
to two digital matrices by topic modeling. The data set,
first constructed (Fig. 1(a)) by our developed pipeline
[24], is described in detail in “Methods”. The best fliC
gene-matching sequences from all of the 119 Salmonella
strains were collected in the dataset (Fig. 1(a)). Nucleotides
A, T, G, and C are shown by different colors. In the proce-
dures for data preprocessing (Fig. 1 (b-d)), the best fliC
gene-matching sequences were multi-aligned and the vari-
ant nucleotides were found at 840 sites in 119 strains. All
the nucleotides at the 840 sites in the 119 sequences are
designated as SNPs in this study (displayed in yellow in
Fig. 1(b)). The collection of all the SNPs in the dataset
(Fig. 1(c)) was then transformed into a text corpus, in
which each of the 119 Salmonella strains had its unique file

of words (Fig. 1(d)). The final vocabulary size is 2379
and the obtained corpus had a total of 99,960 words
(occurrences) from the 119 strains.
LDA algorithms run on the corpus and generated two

digital matrices: Fig. 1(e) shows per-topic word distributions;
and Fig. 1(f) exhibits per-document topic distributions. The
two matrices provided vast information pools available for
data mining.

Topic analysis
LDA-derived topics classify a group of words which
share the similar characteristics. Table 1 lists the top 10
most probable words in each of the five topics when the
number of topics was set to 5 (T0, T1, T2, T3, and T4).
In each topic, the words were shown in the order of the
probabilities, from high to low. Each topic had its unique
word composition, and the top 10 words among the five
topics were different. Each strain had a unique file con-
sisting of various topics and corresponding probabilities
(Additional file 2: Table S2). Strains of the same serotype
exhibited similar topic mixture coefficients (Additional
file 2: Table S2). We have grouped the strains by sero-
types and calculated the average probabilities of the
topics for each serotype (Fig. 3). The topic distributions
varied with serotypes. Three serotypes, Typhimurium,
Typhimurium var. 5-, and 4,[5],12:i:-, harbored only one
topic T0 (shown in red bar); while the absences of topics
T0 and T3 differentiated the serotype Agona from the
other eight serotypes. Serotype Heidelberg was unique,
lacking topics T1, T2, and T4. Serotype Saintpaul distin-
guished itself from serotypes Schwarzengrund and
Stanley by missing topic T4. The various topic distribu-
tions could be used to differentiate serotypes.

Two-way hierarchical clustering
The two mixtures derived from LDA (Fig. 1 (e) and (f ))
provided vast probabilities for data mining. Hierarchical
clustering analysis was first conducted on the strain-
topic mixtures (Fig. 1(f )) of all 119 strains in the data set
to identify the relationships between the strains, sero-
types, and the obtained five topics (Fig. 4). The heat map
shows that the strains with the same serotype were

Table 1 Topic-10 most probable words obtained when topic
number is set to five

Topic ID Topic-10 most probable words

Topic 0 1724C; 1662G; 1654A; 456C; 434C; 415G; 383G; 382G; 372C; 361A

Topic 1 1443 T; 1020G; 842C; 827C; 706A; 616C; 1594 T; 1532-; 1433C;
1416A

Topic 2 1137G; 1010 T; 1676A; 1520 T; 1378G; 1354A; 1314 T; 1297G;
1294G; 1245A

Topic 3 1115C; 656 T; 913G; 1100G; 1059C; 1027-; 1026-; 746 T; 705 T; 660G

Topic 4 1835 T; 1748 T; 1627A; 1626A; 1549 T; 1511C; 1469 T; 1348A; 1317 T;
1147A
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grouped together and all 119 strains were clustered into
four groups (I to IV): 75 strains of Agona expressing f, g,
and s factors of the fliC gene were clustered in group I;
24 strains of serotypes Typhimurium, Typhimurium
var.5- and 4,[5],12:i:- with i factor of the fliC gene were

clustered together in group III; 14 strains of Heidelberg
with factor “r” of the fliC gene were grouped into group
IV; and the six strains from serotypes Schwarzengrund,
Stanley, Paratyphi B, and Saintpaul were in group II. The
results are consistent with those shown in Fig. 3.

Fig. 3 The topic distribution among different serotypes when the topic number is set to five. The five topics and the average probabilities for
each serotype were calculated and the colored bars represent topics T0 to T4, respectively

Fig. 4 Two-way hierarchical clustering analysis of the LDA-derived strain-topic matrix. The complete-link hierarchical clustering algorithm was
applied on the Euclidean distance measures of the topics in any two of the strains in the dataset. The heat map shows that the 119 strains are
clustered into four groups (I to IV groups). I: Agona; II: Saintpaul, Paratyphi B, Schwarzengrund and Stanley; III: Typhimurium, Typhimurium var.5-
and 4,[5],12:i:- ; IV: Heidelberg. The color histogram from blue to red shows the value of the topic weights of the strains ranged from 0 to 1
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Serotypes Agona and Heidelberg, as well as the
group of three serotypes Typhimurium, Typhimur-
ium var.5- and 4,[5],12:i:-, have unique and distin-
guishable topic compositions; while the serotypes
Schwarzengrund, Stanley, Paratyphi B, and Saintpaul
share more or less similar topic compositions. The cluster-
ing patterns on the data matrix derived from the topic
modeling reflected the genetic truth of the serotype deter-
minant fliC gene. According to the CDC’s annual report
[38], I 4,[5],12:i:- is the monophasic variant of Typhimur-
ium (formula I 4,[5],12:i:1,2) and lacks the second
phase H antigen 1,2. In surveillance reports, Typhi-
murium var. 5- has been considered an O:5-negative
variant of Typhimurium or reported as Typhimurium
[38]. Strains of all three serotypes express factor i of
the fliC gene and were classified in one group. Figure 4

clearly showed not only the topic distributions among
serotypes (as shown in Fig. 3), but also the relationships
between the topics. The topic distributions and SNPs
compositions in topics were confirmed to be important
features that could be used to characterize bacterial
strains and distinguish serotypes.

Distance matrix analysis
Distance matrix analysis was performed on the LDA-
derived (topic number set to 5) strain-topic matrix of the
119 strains (Fig. 5). Colors ranging from blue to red indicate
various degrees of similarity of topic mixtures between
every pair of strains. The blue squares in the diagonal,
which are distinguishable from the other squares, represent
concordance among the strains within the same serotypes.
All of the 119 strains were classified into four subgroups

Fig. 5 Distance matrix of 119 strains with topic number set to 5. The heat map shows the distance matrix performed on topic mixture
representations of the 119 strains. The color histogram from blue to red indicates various degrees of similarity of topic mixtures between every
pair of strains. Four groups are visualized. Group A: Typhimurium, Typhimurium var.5- and 4,[5],12:i:-; Group B: Heidelberg; Group C: Saintpaul,
Paratyphi B, Schwarzengrund and Stanley; Group D: Agona
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(A, B, C and D). Strains of Typhimurium and its variants
were grouped into subgroup A, while strains of Heidelberg
were grouped into subgroup B. The distances of the strains
between subgroups A and B are much smaller (light blue),
compared to the distances to the strains in other subgroups
(light red to red). The results show that serotypes Heidel-
berg, Typhimurium and its variants share the same fliC fac-
tor i and are genetically close to each other. Strains of
serotype Agona were clustered into subgroup D, containing
similar topics. The distances of Agona strains to other sero-
type strains are much further. The results shown in Fig. 3,
4 and 5 are concordant with each other.
We also ran the LDA algorithms on the SNPs corpus

with the topic numbers (K) set to 2, 3, 5, 10, 20, 40, 60, and
80, respectively, to clarify the effect of topic number vari-
ation on the resulted biological importance. Data mining
was then performed on the obtained strain-topic mixtures
representing the SNPs in the fliC gene of 119 Salmonella
strains. Figure 6 shows the heat map of the distance matri-
ces performed at the LDA outputs with various topic num-
bers. A, B, C, and D represent the same serotype groups as
shown in Fig. 5. When K is set to two, the groups A and B
cannot be separated, and the distance between the groups
A/B and C is relatively close (Fig. 6(a)), indicating that the
strain-topic matrices are not able to provide sufficient infor-
mation to distinguish the serotypes included in groups of
A, B and C. When K is increased, the blue squares in the
diagonal increase and become more differentiated from
each other (Fig. 6(b-g)) until they are stable (Fig. 6(h-i)).
The groups A and B were separated from each other when
the topic number was set to three (Fig. 6(b)). When K was
increased to 20, the strains in subgroup C were classified
into three groups (Fig. 6(e)) representing three groups of se-
rotypes. The strains in group A were classified into two
small closely related subgroups when K was set to 30
(Fig. 6(f)) or more, indicating the existing two patterns of
serotype Typhimurium var.5- and 4,[5],12:i:-. The pattern
differentiation and subgroup classification remain the same
when the topic number is set to 60 or more (Fig. 6(h-i)).
Therefore, we consider that the strain-topic matrices de-
rived from the LDA algorithm best distinguished the
serotype-determinant fliC gene when the topic number was
set to 30 for this NGS dataset.

Model evaluation
We compared the performance and accuracy of our pro-
posed topic modeling method with Hamming method,
which is one of the existing methods on sequence similarity
analysis, by clustering analysis and classification. Table 2
shows the NMI and ARI values of different methods which
were applied to evaluate the clustering results. It is obvious
that both NMI and ARI measurements were the highest
when k-means clustering analysis was applied on LDA-
derived sample-topic matrix with topic number set to 30,

indicating the better accuracy of topic modeling on similar-
ity detection. However, when topic number was set to 5,
the clustering quality was not satisfactory due to the insuffi-
cient distinguishment among serotypes. The results are
consistent with those in Fig. 6 (c). The distinction between
different serotypes becomes more significant when the
topic number increases from 2 to 30. Five topics were not
enough to distinguish the samples with serotypes Paratyphi
B, Saintpaul, Schwarzengrund and Stanley. Therefore, the
clustering quality was worse than that when 30 topics were
applied. In addition, it was noticed that when Hamming
distance was used to calculate the sequence similarities,
PCA feature extraction had no obvious effect on the qual-
ities of k-means clustering, comparing the similar ARI and
NMI values of k-means, PCA(2) + k-means, and PCA(5) +
k-means, inferring that topic modeling was more efficient
than PCA on this dataset even as a dimension reduction
tool. Comparing the results of various methods, the
method of “highest probable topic assignment” performed
the worst, indicating that the highest probable topic only is
not sufficient to describe the distinctions among samples.
Table 3 shows the classification results using both SVM

and RF algorithms to compare the proposed topic model-
ing method and Hamming method. Overall, the LDA de-
rived sample-topic matrix with 30 topics had higher
classification accuracies than the matrix from Hamming
method. Especially, RF algorithm reached 100 % accurate
prediction on the sample-topic matrix with 30 topics.

Biomarker identification and visualization
The LDA-derived strain-topic and topic-word matrices
could also be combined to analyze the SNPs in the fliC
gene. The LDA algorithm was run on the text corpus of
the fliC SNPs from 119 strains with the topic number
set to five, resulting in two matrices: strain-topic matrix
(119 × 5), and topic-SNP matrix (5 × 2379). We multi-
plied the two matrices and generated a new matrix of
strain-SNPs, from which the top 10 SNPs were then col-
lected for each strain. A sketch was plotted to show the
dissemination of these highly emerged SNPs in 119
strains (Fig. 7). The colored dots represent SNPs of A, T,
C, G, and deletions as well as their locations in the fliC
gene. The dissemination of the top ten SNPs for the 119
strains was shown to be serotype-dependent. Especially,
the top 10 SNPs are identical for the strains of the same
serotypes of Heidelberg, Typhimurium group (including
Typhimurium, Typhimurium var.5- and 4,[5],12:i:-),
Schwarzengrund and Saintpaul. The strains of serotype
Agona exhibit more diversity on SNPs dissemination,
with a majority of the SNPs located between 1000–
1500 bp. The accuracies of these SNPs in the 119
strains have been confirmed by the sequences from NCBI
(Additional file 1: Table S1). The information about the
commonalities and diversities in and between serotypes
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shown in Fig. 7 provides vast possibilities for potential bio-
marker discrimination, strain evolution, source tracking,
and genomic knowledge interpretation (more details in
Discussion).

Discussion
In this study, we proposed a novel procedure to analyze
NGS data and discussed its computational implementation

as an integrated tool to analyze a target gene’s diversity
from the whole genome sequence reads. The key element
of the procedure is the application of topic modeling and
its integration with current sequence analysis tools and data
mining methods. Topic modeling has been widely used in
large dataset analysis [10, 14, 15]. Its algorithms analyse the
words of documents to discover the themes that pervade a
large collection of documents [39]. The rational for

Fig. 6 Distance matrix of 119 strains with various topic numbers. Nine heat maps show the distance matrices when the topic number K is set to
2 (a), 3 (b), 5 (c), 10 (d), 20 (e), 30 (f), 40 (g), 60 (h), and 80 (i), respectively. The analysis was performed on the topic mixture representations of the
119 strains by the same method as shown in Fig. 4. The color histogram from blue to red indicates various degrees of similarity of topic mixtures
between every pair of strains. Four groups are visualized. Group A: Typhimurium, Typhimurium var.5- and 4,[5],12:i:-; Group B: Heidelberg; Group
C: Saintpaul, Paratyphi B, Schwarzengrund and Stanley; Group D: Agona
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incorporating topic modeling on NGS data analysis was
based on the fact that the four nucleotides as well as their
orders in NGS sequences could be treated as “words”,
therefore, the genetic information in sequences was trans-
lated and exhibited as “a bag of words”. Two matrices gen-
erated by the algorithms of topic modeling provide huge
potential applications by combining with various data min-
ing methods for different purposes. The main motivation of
this study was to develop the text mining and data mining
methods of NGS data analysis for better understanding the
genetic diversity of bacterial pathogen populations with
high rates of nucleotide substitutions.
The Salmonella fliC gene was used as a case study to

show one of the applications of the proposed procedure on
genetic diversity and biomarker clarification for bacterial
pathogen populations. Epidemiological investigations of
Salmonella infections in humans and animals have
depended on serotyping of the cultivated isolates for more
than 70 years [40, 41]. Currently there are more than 2,500
serotypes within S. enterica and S. bongori due to the vari-
ous combinations of 46 O antigens and 85 H antigens
[41]. The limitations of traditional serotyping have stimu-
lated the request for developing new DNA-based serotyp-
ing methods. Multiple methods have been investigated for

their abilities as a replacement for Salmonella serotyping,
such as PFGE (Pulsed-Field Gel Electrophoresis) [42–
45], ribotyping [46], repetitive extragenic palindromic
sequence-based PCR (rep-PCR) [46], microsphere-
based liquid arrays, and Multilocus Sequence Typing
(MLST) [47]. These methods are feasible for some sero-
types, but lack widespread adoption and might mis-
identify a newly emergent serotype [48]. The nature of
unbiased NGS approaches allows numerous applica-
tions in comprehensive pathogen detection, infectious
disease diagnosis, outbreak investigation and surveil-
lance at a global level [49]. However, the latest applica-
tions have mostly relied on phylogenetic clustering and
comparisons based on whole genome reads [26, 49, 50].
It is challenging to globally estimate a targeted func-
tional encoding gene’s diversity in bacterial pathogen
populations from whole genome reads. Before the cost-
effective NGS sequencing technologies became avail-
able, this was approached by sequencing PCR-amplified
fragments of cultivated isolates, which was indirect,
usually biased and inaccurate due to genetic diversity,
oligonucleotide primer design, and experimental errors.
The proposed procedure is designed to work on NGS

reads or contigs from the NCBI bio-project NGS se-
quence database (Additional file 1: Table S1) or any
other data source, and the specific target gene-related
reads or contigs (e.g. Salmonella fliC-related gene frag-
ments) were retrieved for the following alignment. The
SNPs we identified in this study were different from the
original designation, in which all the variations in the
same location were included (Fig. 1(c)). Therefore, the
“bag of SNPs” (Fig. 1(d)) covered all possible variations
in the fliC-coding region. These variations, as well as
their locations, could be used as characteristics to distin-
guish strain similarities or identify new mutants (Fig. 7).
Moreover, the original data of ATGC sequence reads
were transferred into a file of texts on which the text
mining/data mining tools can be applied for deep ana-
lyses. In the example used in this study, by using the
strain-topic matrix derived from topic modeling, we in-
vestigated the relationships and similarities between 119
strains and nine serotypes by two-way hierarchical clus-
ter analysis and distance matrix analysis (Fig. 4,5, and 6).
Since the Salmonella fliC is the coding gene for Salmonella
phase 1 antigen, and is considered one of the Salmonella
serotype determinant genes [20], the diversity of Salmonella
fliC and the relationship with the corresponding serotypes
(Fig. 3, 4, 5, 6, and 7) more accurately reflected gene-
phenotype relationships than the whole genome sequence
phylogenetic trees. The nucleotide-level Salmonella fliC
gene diversity can be potentially used as the biomarker for
serotype screening (Fig. 7). The more NGS sequences are
added from more strains and serotypes, the higher the ac-
curacy of the biomarker will be.

Table 2 Comparison the results of clustering

Methoda ARI NMI

k-means 0.9232 0.8861

PCA(2) + k-means 0.9202 0.8547

PCA(5) + k-means 0.9322 0.8547

LDA(5) 0.5325 0.4209

LDA(30) 0.8634 0.7946

LDA(5) + k-means 0.4301 0.713

LDA(30) + k-means 0.9543 0.912
ak-means: traditional k-means applying on VSM format of dataset, using
Hamming distance
PCA(2) + k-means: traditional k-means applying on 2 feature matrix obtained
by PCA
PCA(5) + k-means: traditional k-means applying on 5 feature matrix obtained
by PCA
LDA(5): “highest probable topic assignment” by LDA with 5 topics
LDA(30): “highest probable topic assignment” by LDA with 30 topics
LDA(5) + k-means: traditional k-means applying on sample-topic matrix by LDA
with 5 topics
LDA(30) + k-means: traditional k-means applying on sample-topic matrix by
LDA with 30 topics
Note that PCA(2) and PCA(5) exhibited better clustering qualities than PCA(10)
and PCA(30), and are shown in the table
Bold numbers indicate the best results among various methods

Table 3 Comparison the results of classification

Data Format SVM RF

VSM 0.8462 0.9573

Sample-topic matrix(5) 0.9573 0.9829

Sample-topic matrix(30) 0.9658 1

Bold numbers indicate the best results among various methods
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Fig. 7 SNPs differentiation and locations in 119 strains. The identified SNPs and their relative locations in the Salmonella fliC gene were marked.
The red, green, purple, black and grey dots represent A, T, G, C and deletions, respectively
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In this study, Gibbs sampling was used to maximize the
probabilities of the obtained text corpus. An important
property of the Gibbs sampling approach is its convergent
efficiency. If it takes too many iterations to converge,
Gibbs sampling approach will not be a feasible tool for
real applications. To test if Gibbs sampling converged fast
in the LDA model, we computed the likelihood of the
model consisting of both a Dirichlet-multinomial for the
SNPs in each topic and a Dirichlet-multinomial for the
topics in each strain. The formula used for model likeli-
hood is shown in Eq. 2. The larger the value of the model
likelihood is, the better the model that is obtained. Gibbs
sampling in LDA converges once the value is stable.

LL modelð Þ ¼
Ys

s¼1

Γ
Xk

i¼1
ai

� �

Γ
Xk

i¼1
ai þ nsið Þ

� �Yk

i¼1

Γ ai þ nsið Þ
Γ aið Þ

8<
:

9=
;

⋅
Yk

k¼1

Γ
Xv

j¼1
βj

� �

Γ
Xv

j¼1
βj þ nkj

� �� �Yv

j¼1

Γ βj þ nkj
� �

Γ βj

� �
8<
:

9=
;

ð2Þ

Here in Eq.2, V represents the size of the vocabulary
(number of different words in the corpus). The first part
in right-hand side of Eq.2 is the Dirichlet-multinomial
for the topics in S documents and nsi represents the

number of topics i picked in document s; The second
part in right-hand side of Eq.2 is the Dirichlet-
multinomial for the words in K topics and nkj represents
the number of words j picked in topic k. The log of
Eq. 2 for every 100 iterations was calculated (every 10 iter-
ations for the first 100). Fig. 8 shows the results of the
convergence test of Gibbs sampling in the LDA algorithm
with the number of topics set at different numbers. The
log likelihood of the model increases fast in the first 100
iterations, then becomes stable after about 300 iterations
(500 iterations when the topic number is three). Gibbs
sampling reaches the convergence around 300, indicating
that the running of the LDA algorithm is fast to reach the
best result. Therefore, the proposed procedure and the
implemented tool will be a fast, efficient method and
workflow for NGS data analysis and data mining.
Our procedure could be applied on NGS datasets for

genetic diversity identification and biomarker develop-
ment on various functional genes and gene clusters in
various biological and biomedical areas. The proposed
procedure has implemented the topic modeling algo-
rithms and data mining algorithms in the NGS data ana-
lysis, and the resulting sample-topics and topic-words
matrices provide huge possibilities for data mining and
interpretation. Furthermore, the algorithms in the pro-
cedure are designed to accommodate billions of NGS

Fig. 8 Gibbs sampling convergence test. The likelihood of the model, consisting of both a Dirichlet-multinomial for the SNPs in each topic and a
Dirichlet-multinomial for the topics in each strain, was computed when the topic number was set to various numbers. The log of Eq. 2 of every
100 iterations was calculated (every 10 iterations for the first 100)
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reads if the users’ computer capacity allows. Therefore,
the tool we developed in this study is suitable for over-
coming difficulties in big NGS data analysis in biological
and medical fields. We expect this procedure to be an
efficient tool to cope with high complexity and huge vol-
umes of sequence data for elucidating genetic informa-
tion, gene-phenotype relationships and biomarker
identification. The tool has the potential to give a more
complete view of the evolutionary dynamics of the bac-
terial population.

Conclusions
We have reported a novel procedure to analyze next-
generation sequencing data by introducing topic model-
ing, which is an active research field in machine learning
and has been mainly used as an analytical tool to struc-
ture large text corpora for data mining. Four major steps
are included in this procedure: NGS data retrieval, pre-
processing, topic modeling, and data mining using Latent
Dirichlet Allocation (LDA) topic outputs. The perform-
ance was evaluated by a case study of the NGS data set of
the Salmonella enterica strains. The results illustrate that
the implementation of topic modeling in NGS data ana-
lysis provides a new way to elucidate genetic information
from NGS data, and identify the gene-phenotype relation-
ships and biomarkers, especially in the era of biological
and medical big data.

Ethics approval and consent to participate
Not applicable.

Availability of data and materials
The original whole genome sequences of 119 strains of
Salmonella O antigen group B were retrieved from the
NCBI database, including 75 strains of S. Agona, 14
strains of S. Heidelberg, one strain of S. Paratyphi B, two
strains of S. Saintpaul, two strains of S. Schwarzengrund,
one strain of S. Stanley, 22 strains of S. Typhimurium,
one strain of S. Typhimurium var.5-, and one strain of S.
4, 12:i:-. The WGS Accession Numbers, Sequence Bio-
project Numbers, and strain names in NCBI database
are listed in Additional file 1: Table S1.

Additional files

Additional file 1: Table S1. Metadata of 119 samples used in this
study. (DOCX 25 kb)

Additional file 2: Table S2. Topic mixtures of 119 samples with 5
topics. (DOCX 29 kb)

Abbreviations
ARI: adjusted rand index; BLAST: basic local alignment search tool;
LDA: Latent Dirichlet Allocation; LOOCV: leave one out cross validation;
MCMC: Markov chain Monte Carlo; MLST: multilocus sequence typing;
MSA: multiple sequence alignment; NCBI: national center for biotechnology

information; NGS: next generation sequencing; NMI: normalized mutual
information; PFGE: pulsed-field gel electrophoresis; RF: random forest;
SNPs: single nucleotide polymorphisms; SVM: support vector machine;
VSM: vector space model; WGS: whole genome sequence.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WZ (Zhao) performed all the calculations and data analysis, and wrote the
first draft of the manuscript. WZ developed the methods, had the original
idea, and guided the data analysis and presentation of results. WZ, WZ
(Zhao), JC, RP, YW, ZL, HH, and WT participated the dataset construction and
result presentation. WZ managed the research and guided the scientific
discussing and editing. All authors contributed to data verification, approach
evaluation, and assisted with writing the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work and the publication were funded by FDA. Dr. Weizhong Zhao
acknowledges the support of a fellowship from the Oak Ridge Institute for
Science and Education, administered through an interagency agreement
between the U.S. Department of Energy and the U.S. Food and Drug
Administration. We are grateful to Ms. Beth Juliar and Dr. John Sutherland for
critical reading of this manuscript.

Disclaimer
The views presented in this paper are those of the authors and do not
necessarily represent those of the U.S. Food and Drug Administration.

Author details
1Division of Bioinformatics and Biostatistics, National Center for Toxicological
Research, U.S. Food and Drug Administration, 3900 NCTR Road, HFT-20,
Jefferson, AR 72079, USA. 2College of Information Engineering, Xiangtan
University, Xiangtan, Hunan Province, China.

Received: 20 October 2015 Accepted: 7 May 2016

References
1. Metzker ML. Sequencing technologies - the next generation. Nature reviews

Genetics. 2010;11(1):31–46.
2. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW. Transforming clinical

microbiology with bacterial genome sequencing. Nature reviews Genetics.
2012;13(9):601–12.

3. Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart
AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, et al. Rapid whole-
genome sequencing for investigation of a neonatal MRSA outbreak. The
New England journal of medicine. 2012;366(24):2267–75.

4. Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, Keys CE, Hammack TS,
Musser SM, Brown EW, Allard MW, et al. Identification of a salmonellosis
outbreak by means of molecular sequencing. The New England journal of
medicine. 2011;364(10):981–2.

5. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J. Metagenomic
pyrosequencing and microbial identification. Clinical chemistry.
2009;55(5):856–66.

6. Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N. Application
of next-generation sequencing technologies in virology. The Journal of
general virology. 2012;93(Pt 9):1853–68.

7. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-
generation sequencing revolution and its impact on genomics. Cell. 2013;
155(1):27–38.

8. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation
sequencing on genomics. Journal of genetics and genomics = Yi chuan xue
bao. 2011;38(3):95–109.

9. Hofmann T. Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning. 2001;42:177–96.

10. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. Journal of Machine
Learning Research. 2003;3:993–1022.

Zhao et al. BMC Bioinformatics  (2016) 17:213 Page 14 of 15

dx.doi.org/10.1186/s12859-016-1075-9
dx.doi.org/10.1186/s12859-016-1075-9


11. Griffiths TL, Steyvers M. Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America. 2004;101(suppl. 1):
5228–35.

12. Blei DM, Jordan MI. Modeling annotated data. In: The Annual International
ACM SIGIR Conference on Research and Development in Informaion
Retrieval. 2003. p. 127–34.

13. Datta R, Joshi D, Li J, Wang JZ. Image retrieval: Ideas, influences, and trends
of the new age. ACM Computing Surveys. 2008;40(2):5.

14. Hofmann T. Probabilistic latent semantic indexing. In: annual international
ACM SIGIR conference on Research and development in information
retrieval. 1999. p. 50–7.

15. Papadimitriou CH, Tamaki H, Raghavan P, Vempala S. Latent semantic
indexing: A probabilistic analysis. In: ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. 1998. p. 159–68.

16. Jordan MI. Learning in Graphical Models. Cambridge: MIT Press; 1999.
17. Shivashankar S, Srivathsan S, Ravindran B, Tendulkar AV. Multi-view methods

for protein structure comparison using latent dirichlet allocation.
Bioinformatics. 2011;27(13):i61–68.

18. Bisgin H, Liu Z, Kelly R, Fang H, Xu X, Tong W. Investigating drug
repositioning opportunities in FDA drug labels through topic modeling.
BMC bioinformatics. 2012;13 Suppl 15:S6.

19. Zhang R, Cheng Z, Guan J, Zhou S. Exploiting topic modeling to boost
metagenomic reads binning. BMC bioinformatics. 2015;16(5):S2.

20. Macnab RM. The bacterial flagellum: reversible rotary propellor and type III
export apparatus. Journal of bacteriology. 1999;181(23):7149–53.

21. Hamming RW. Error Detecting and Error Correcting Codes. At&T Tech J.
1950;29(2):147–60.

22. Grimont PA, Weill FX. Antigenic formulae of the Salmonella serovars. 9th ed.
WHO Collaborting Centre for Reference and Research on Salmonella: Paris; 2007.

23. Allard MW, Luo Y, Strain E, Li C, Keys CE, Son I, Stones R, Musser SM, Brown EW.
High resolution clustering of Salmonella enterica serovar Montevideo strains
using a next-generation sequencing approach. BMC genomics. 2012;13:32.

24. Zhao W, Chen JJ, Foley S, Wang Y, Zhao S, Basinger J, Zou W. Biomarker
identification from next-generation sequencing data for pathogen bacteria
characterization and surveillance. Biomark Med. 2015;9(11):1253–64.

25. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning
DNA sequences. Journal of computational biology : a journal of
computational molecular cell biology. 2000;7(1–2):203–14.

26. Allard MW, Luo Y, Strain E, Pettengill J, Timme R, Wang C, Li C, Keys CE,
Zheng J, Stones R, et al. 2013. PLoS One. 2013;8(1):e55254.

27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic acids research. 2004;32(5):1792–7.

28. Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene. 1988;73(1):237–44.

29. McCallun AK: MALLET: A Machine Learning for Language Toolkit. 2002.
http://mallet.cs.umass.edu. 11 May 2016.

30. Warnes GR, Bolker B, Bonebakker L, Gentleman R, et al. gplots: Various R
programming tools for plotting data. R package version 2.12.1

31. Mardia KV, Kent JT, Bibby JM. Multivariate Analysis: Academic Press. 1979.
32. Salton G, Wong A, Yang CS. Vector-Space Model for Automatic Indexing.

Communications of the Acm. 1975;18(11):613–20.
33. Zhao W, Zou W, Chen JJ. Topic modeling for cluster analysis of large

biological and medical datasets. BMC bioinformatics. 2014;15(11):S11.
34. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure

identification. J Stat Mech Theory and Experiment. 2005;2005(09):P09008.
35. Hubert L, Arabie P. Comparing Partitions. J Classif. 1985;2(2–3):193–218.
36. Vapnik V. The Nature of Statistical Learning Theory. New York: Springer; 1995.
37. Breiman L. Random forests. Machine Learning. 2001;45(1):5–32.
38. CDC. National Salmonella Surveillance Annual Data Summary, 2009. In: US

Department of Health and Human Services CDC Atlanta, Georgia. 2009.
39. Blei DM. Probabilistic Topic Models. Communications of the ACM. 2012;

55(4):77–84.
40. Kauffmann F, Edwards PR. Classification and nomenclature of

Enterobacteriaceae. Int Bull Bacteriol Nomencl Taxon. 1952;2:2–8.
41. Grimont PA, Weill F-X. Antigenic formulae of the Salmonella serovars. 9th

Edition. Paris, France: WHO Collaborating Centre for Reference and Research
on Salmonella; 2007. http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/
WKLM_2007.pdf.

42. Liebana E, Guns D, Garcia-Migura L, Woodward MJ, Clifton-Hadley FA,
Davies RH. Molecular typing of Salmonella serotypes prevalent in animals in
England: assessment of methodology. J Clin Microbiol. 2001;39(10):3609–16.

43. Gaul SB, Wedel S, Erdman MM, Harris DL, Harris IT, Ferris KE, Hoffman L. Use of
pulsed-field gel electrophoresis of conserved XbaI fragments for identification
of swine Salmonella serotypes. J Clin Microbiol. 2007;45(2):472–6.

44. Zou W, Lin WJ, Foley SL, Chen CH, Nayak R, Chen JJ. Evaluation of pulsed-
field gel electrophoresis profiles for identification of Salmonella serotypes.
J Clin Microbiol. 2010;48(9):3122–6.

45. Zou W, Lin WJ, Hise KB, Chen HC, Keys C, Chen JJ. Prediction system for
rapid identification of Salmonella serotypes based on pulsed-field gel
electrophoresis fingerprints. Journal of clinical microbiology. 2012;50(5):
1524–32.

46. Guard J, Sanchez-Ingunza R, Morales C, Stewart T, Liljebjelke K, Van Kessel J,
Ingram K, Jones D, Jackson C, Fedorka-Cray P, et al. Comparison of dkgB-
linked intergenic sequence ribotyping to DNA microarray hybridization for
assigning serotype to Salmonella enterica. FEMS microbiology letters. 2012;
337(1):61–72.

47. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG,
Hale JL, Harbottle H, Uesbeck A, et al. Multilocus sequence typing as a
replacement for serotyping in Salmonella enterica. PLoS pathogens.
2012;8(6):e1002776.

48. Ranieri ML, Shi C, Moreno Switt AI, den Bakker HC, Wiedmann M.
Comparison of typing methods with a new procedure based on sequence
characterization for Salmonella serovar prediction. Journal of clinical
microbiology. 2013;51(6):1786–97.

49. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E,
Bouquet J, Greninger AL, Luk KC, Enge B, et al. A cloud-compatible
bioinformatics pipeline for ultrarapid pathogen identification from next-
generation sequencing of clinical samples. Genome research. 2014;24(7):
1180–92.

50. Pettengill JB, Timme RE, Barrangou R, Toro M, Allard MW, Strain E. Musser
SM. Brown EW: The evolutionary history and diagnostic utility of the CRISPR-
Cas system within Salmonella enterica ssp enterica PeerJ. 2014;2:e340.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Zhao et al. BMC Bioinformatics  (2016) 17:213 Page 15 of 15

http://mallet.cs.umass.edu
http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/WKLM_2007.pdf
http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/WKLM_2007.pdf

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Dataset construction
	NGS data preprocessing
	Topic modeling
	Perplexity measurement
	Data mining
	Evaluation of topic modeling performance

	Results
	Procedure
	Topic analysis
	Two-way hierarchical clustering
	Distance matrix analysis
	Model evaluation
	Biomarker identification and visualization

	Discussion
	Conclusions
	Ethics approval and consent to participate
	Availability of data and materials

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Disclaimer
	Author details
	References

