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Abstract

Background: Detecting and visualizing nonlinear interaction effects of single nucleotide polymorphisms (SNPs) or
epistatic interactions are important topics in bioinformatics since they play an important role in unraveling the
mystery of “missing heritability”. However, related studies are almost limited to pairwise epistatic interactions due
to their methodological and computational challenges.

Results: We develop CINOEDV (Co-Information based N-Order Epistasis Detector and Visualizer) for the detection
and visualization of epistatic interactions of their orders from 1 to n (n ≥ 2). CINOEDV is composed of two stages,
namely, detecting stage and visualizing stage. In detecting stage, co-information based measures are employed to
quantify association effects of n-order SNP combinations to the phenotype, and two types of search strategies are
introduced to identify n-order epistatic interactions: an exhaustive search and a particle swarm optimization based
search. In visualizing stage, all detected n-order epistatic interactions are used to construct a hypergraph, where a
real vertex represents the main effect of a SNP and a virtual vertex denotes the interaction effect of an n-order
epistatic interaction. By deeply analyzing the constructed hypergraph, some hidden clues for better understanding
the underlying genetic architecture of complex diseases could be revealed.

Conclusions: Experiments of CINOEDV and its comparison with existing state-of-the-art methods are performed
on both simulation data sets and a real data set of age-related macular degeneration. Results demonstrate that
CINOEDV is promising in detecting and visualizing n-order epistatic interactions. CINOEDV is implemented in R and
is freely available from R CRAN: http://cran.r-project.org and https://sourceforge.net/projects/cinoedv/files/.

Keywords: Epistatic interactions, Co-information, Single nucleotide polymorphisms, Particle swarm optimization,
Hypergraph

Background
Following the development of high-throughput sequen-
cing and genotyping technologies, there has been a rapid
increase in the availability of single nucleotide polymor-
phisms (SNPs). Hence genome-wide association studies
(GWAS) have become a routine tool in investigating the
genetic architectures of complex diseases, such as cancer,
heart disease, diabetes and many others. With these studies,
hundreds of thousands of SNPs speculated to associate with

complex diseases have been identified. However, these
SNPs have been shown to explain only a small pro-
portion of underlying genetic variance of complex
diseases, leaving the question of “missing heritability”
open for further investigation [1, 2].
Some plausible explanations should be taken into ac-

count to reveal the gaps between expectations and real-
ities of GWAS. Firstly, GWAS require p-values (or other
similar measures) of disease-associated SNPs to reach a
genome-wide significance level after several stringent
multiple testing corrections, for example, Bonferroni
correction, which may exclude many genuinely associ-
ated SNPs that have moderate or weak association
signals [3]. Secondly, rare SNPs (i.e., minor allele frequency
of each is < 5 %) are difficult to be detected, and sometimes
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even be ignored in GWAS, though they may play an im-
portant role in explaining “missing heritability” [1, 4, 5].
Thirdly, besides SNPs, other types of biological data, for in-
stance, copy number variation, DNA methylation, and gene
expression, also provide different, partly independent and
complementary, views for unraveling the mystery of
“missing heritability” [6, 7]. Fourthly, it is widely believed
that nonlinear interaction effects of multiple SNPs or
epistatic interactions could unveil a large portion of unex-
plained heritability of complex diseases [8–11]. In fact,
detection of epistatic interactions has already been a com-
pelling step in GWAS [12].
In general, detection of epistatic interactions is of great

challenge. The first challenge is the intensive computa-
tional burden mainly imposed by the “curse of dimen-
sionality” and the “combinatorial explosion”, which has
significant implications for GWAS with millions of
SNPs. For instance, search space of a 100 K SNP data
set with maximum order of three is an astronomical
number ∑k = 1

3 C100000
k , where the order refers to the

number of SNPs in a SNP combination. The second
challenge is the complexity of genetic architecture of a
disease. It may involve multiple epistatic interactions
interacting with other causative factors in a complicated
way, each displaying strong association with the pheno-
type as a whole but the contained SNPs possibly having
small or even no main effects. Limited prior knowledge
available for a disease, such as the number of epistatic
interactions, the order and the effect magnitude of an
epistatic interaction, makes their detection difficult. The
third is the association measure that determines how
well a SNP combination contributes to the phenotype. A
suitable association measure is required to be efficient in
computational cost and insensitive to both SNP combin-
ation order and effect type, and more importantly, it can
truly capture causative epistatic interactions. Though
several association measures have been widely used for
the detection of epistatic interactions, such as permutation
test and chi-squared test, developing new association
measures that can effectively and efficiently capture epi-
static interactions is still a direction. All the above are the
great challenges in genome-wide interaction analysis.
Though methodological and computational perplex-

ities of the detection of epistatic interactions have been
well recognized, the algorithmic development is still on-
going. Exhaustive methods, e.g., MDR [13], show their
successes on small scale data sets. However, for large
scale data sets, especially those for GWAS, the detection
of epistatic interactions becomes a needles-in-a-haystack
problem [14] and exhaustive methods are no longer
feasible. Recently, heuristic methods are gaining increas-
ing favor since they can retain as many informative SNPs
as possible while largely reducing computational com-
plexity. For instance, Zhang et al. developed TEAM [15]

to identify epistatic interactions, which updates contin-
gency tables by utilizing a minimum spanning tree. Wan
et al. presented an epistatic interaction detection method
BOOST [16], which involves only Boolean values and
allows the use of fast logic operations to obtain con-
tingency tables. They also proposed another method
SNPRuler [17] based on predictive rule inference.
Wang et al. used AntEpiSeeker [18] to identify epistatic
interactions, which is a two-stage ant colony optimization
algorithm. Zhang and Liu developed a Bayesian partition
approach BEAM to find groups of genotypes with large
posterior probability [19]. Tang et al. introduced the con-
cept of epistatic module and designed a Gibbs sampling
approach epiMODE [20] to detect such modules, which is
a generalization of BEAM.
Besides these methods, co-information based methods

appear promising in detecting epistatic interactions since
they have a well-developed theory, and can measure
multivariate dependence without any complex modeling.
Chanda et al. [21] developed a co-information based
metric called the interaction index for prioritizing inter-
acting SNPs. They also proposed another three co-
information based methods: AMBIENCE [22] and KWII
[23] for detecting epistatic interactions associated with
the binary phenotype, CHORUS [24] for identifying
associations with quantitative traits. Sucheston et al. [25]
demonstrated that co-information based methods are
flexible and have excellent power to detect epistatic
interactions under a variety of conditions that characterize
complex diseases.
Although many methods for detecting epistatic in-

teractions have been performed, most of them were
constrained to pairwise epistatic interactions, easily
ignoring the broader epistasis landscape [26]. Furthermore,
these methods usually output identified epistatic inter-
actions, as well as their significance levels, in flat file
formats. Hence, the correct understanding of them is
sometimes a challenge for researchers, especially for
biologists and non-expert users, who are unfamiliar
with the methods. A desirable strategy is to develop an
effective visualization tool not only to intuitively
visualize the detected interactions but also to discover
several hidden patterns [27].
However, there have been few studies focused on their

visualization. Moore et al. [28] built an interaction graph
to visualize detected epistatic interactions. McKinney et
al. [29] constructed a genetic association interaction net-
work (GAIN) to characterize detailed interactions,
whose edges quantify the synergy between pair SNPs
with respect to the phenotype. GAIN has been success-
fully used for identifying modulators of antibody re-
sponse to smallpox vaccine [30], GWAS of bipolar
disorder [31], and analyzing exome data for systemic
lupus erythematous cases and controls [32]. Hu et al.
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[33] proposed a statistical epistasis network (SEN) ap-
proach, which has been proven to be able to discover
pairwise epistatic interactions of bladder cancer [34, 35]
and prostate cancer [36]. They also demonstrated that
SEN supervised search is able to infer several 3-order
epistatic interactions with significantly high associations
at a substantially reduced computational cost [37].
Though these network-assisted methods can provide a
global map of pairwise epistatic interactions, can indir-
ectly capture higher order epistatic interactions on the
basis of observing topology structures of networks, and
can be exported for visualization in existing tools, such
as Cytoscape and Graphviz, they could not directly de-
tect and visualize n-order epistatic interactions, for ex-
ample, n = 3 or larger. More recently, Hu et al. [38]
presented a visualization tool ViSEN, which can show
both pairwise and 3-order epistatic interactions, in
addition to main effects, in one network. To the best of
our knowledge, it is the first visualization tool that
shows three orders of effects simultaneously. Neverthe-
less, different orders of effects in ViSEN are difficult to
be fairly and intuitively compared. Wu et al. [27] de-
signed another visualization tool EINVis to analyze and
explore genetic interactions, which utilizes a tree ring
view to simultaneously visualize the hierarchical interac-
tions between SNPs, genes, and chromosomes. However,
EINVis is limited in detecting and visualizing high order
epistatic interactions.
In the light of above observations, we develop

CINOEDV (Co-Information based NOrder Epistasis De-
tector and Visualizer) for the detection and visualization
of epistatic interactions of their orders from 1 to n (n ≥
2). CINOEDV is composed of two stages, namely, detect-
ing stage and visualizing stage. In detecting stage, co-
information based measures are employed to quantify
association effects of n-order SNP combinations to the
phenotype, and two types of search strategies are
introduced to identify n-order epistatic interactions:
an exhaustive search for lower order epistatic interac-
tions and/or small scale data sets, a particle swarm
optimization (PSO) based search for higher order epistatic
interactions and/or large scale data sets. In visualizing
stage, all detected n-order epistatic interactions are used
to construct a hypergraph, where a real vertex represents
the main effect of a SNP and a virtual vertex denotes
the interaction effect of an n-order epistatic interaction.
By deeply analyzing the constructed hypergraph, some
hidden clues for better understanding the underlying
genetic architecture of complex diseases could be re-
vealed, for instance, higher order epistatic interactions,
hub SNPs and connected subgraphs. Experiments of
CINOEDV and its comparison with state-of-the-art
methods are performed on lots of simulation data sets
under the evaluation measures of both detection power

and computational complexity. Results demonstrate
that CINOEDV is promising in detecting and visualizing
n-order epistatic interactions. In addition, CINOEDV
is also applied on a real data set of age-related macu-
lar degeneration (AMD), and results of which provide
several new clues for the exploration of causative fac-
tors of AMD. CINOEDV might be an alternative to
existing methods for the detection and visualization
of n-order epistatic interactions.

Methods
Co-information based association measures
Before introducing the measures, several terms and no-
tations are described. At present, the generally accepted
way of mapping SNPs is to collect them as a matrix,
where a row represents genotypes of an individual and a
column represents a SNP. Genotypes of a SNP are coded
as {0, 1, 2}, corresponding to homozygous common
genotype, heterozygous genotype, and homozygous
minor genotype. The label of an individual is a binary
phenotype being either 0 (control) or 1 (case). Based on
this numerical mapping, let N and M be the number of
SNPs and the number of individuals in the data respect-
ively. Below we will discuss the definitions of co-
information based association measures between n SNPs
S1,⋯, Sn, that randomly sampled from N SNPs, and the
phenotype C.
Co-information is one of several generalizations of

mutual information, and can measure multivariate
dependence without any complex modeling [39]. Co-
information among n SNPs and the phenotype C is
defined as an alternating sum of the joint entropies
of all possible subsets T of V using the difference operator
notation of Han [40],

CI S1;⋯; ; Sn;Cð Þ ¼ −
X
T⊆V

−1ð Þnþ1− Tj j
H Tð Þ;

where V = {S1,⋯, Sn,C}, T represents all possible subsets
of V, and H(T) is the joint entropy of T, which can be
written as

H Tð Þ ¼ −
X
t∈T

p tð Þ logp tð Þ;

and p(t) is the probability mass function.
It is seen that co-information is a parsimonious, multi-

variate measure quantifying interactions that cannot be
obtained without observing all variables at the same time
[24], and it seems promising for detecting n-order
epistatic interactions. However, it also has two confusing
properties retarded its wider adoption as an association
measure.
The first is its value. In the bivariate case, co-

information is equivalent to mutual information and its
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value is always positive. But in the multivariate case,
its value can be positive or negative, the interpret-
ation of which is generally intuitive [26]: a positive
value is an evidence of interactions among variables;
a negative value indicates the presence of redundancy;
and a value of zero denotes that variables are inde-
pendent or, more likely, interact with a mixture of
synergy and redundancy. Almost all existing applica-
tions of co-information depend upon this intuitive
explanation [21, 24, 28, 29, 33, 38], and it is also the
basis of our association measures.
The second is its sensitivity to the SNP combination

order. This property leads to difficulty in ranking
SNP combinations of different orders. As yet, it still
lacks the widely accepted normalization method. In
this study, we make use of the order-fixed averages of
co-information values to normalize them, defined as
n-order interaction effect,

NCIðS1;⋯; Sn;CÞ ¼ CIðS1;⋯; Sn;CÞ
HðCÞ ⋅

CI1
CIn

;

where H(C) is the entropy of the phenotype, CIn and
CI1 are respective averages of all considered n-order
and 1-order co-information values. The first part of
the formula provides the percentage of explaining the
phenotype by giving the knowledge of n SNPs, and
the second part is a coefficient that balances the con-
tributions of SNP combinations of different orders to
the phenotype.
However, NCI only measures contribution of a SNP

combination itself, not containing contributions of its
subsets. In fact, the effect of an n-order SNP combination
to the phenotype consists of main effects of all involved
SNPs, as well as interaction effects of itself and its all
subsets. To quantify the total contribution of a SNP
combination to the phenotype, another co-information
based association measure is presented, defined as the
summation of all involved contributions, including its
contribution, and contributions of its subsets whose NCI
values reach the user-specified thresholds. The formula
can be written as

CCI S1;⋯; ; Sn;Cð Þ ¼
X

Z⊆CS∩Z⊆ S1;⋯;;Snf g
NCI Z′;C

� �
;

where Z′ represents all SNPs in the set Z, C represents
the phenotype, and CS is a set of SNP combinations that
their NCI values pass the user-specified thresholds.

Search strategies
CINOEDV supports two types of search strategies, with
NCI as its association measure, to simultaneously detect
epistatic interactions of their orders from 1 to n (n ≥ 2).
One is an exhaustive search for lower order epistatic

interactions and/or small scale data sets. With genome
wide SNPs from thousands of individuals, it is difficult
to search high order epistatic interactions exhaustively
because of their heavy computational burden. CINOEDV
provides a PSO based search for higher order epistatic
interactions and/or large scale data sets.
The PSO is a popular member of swarm intelligence

algorithms inspired by the collective behaviors of organ-
isms, like birds (viewed as particles), which can jointly
perform many complex tasks though each individual is
very limited in its capability [41]. In PSO, the position
of a particle represents a possible solution which is
adjusted according to its velocity, and estimated by a
fitness function at each generation. A higher fitness
value implies a better position. The velocity of a particle is
updated according to three factors: its previous velocity,
its individual experience, and the common knowledge
of the swarm. The individual experience of a particle
is the best position that it has travelled. The common
knowledge of the swarm is the best one among indi-
vidual experiences of all particles. This feedback strat-
egy leads the swarm gradually converge to an optimal
solution [42].
In our PSO based search, NCI is applied as its fitness

function. That is to say, a higher NCI value indicates
a stronger association between the SNP combination
and the phenotype. Compared with the PSO, our
PSO based search has its own highlights: detecting
multiple epistatic interactions with different orders at
the same time, dynamic inertia weight, and opposition
based learning.

Suppose Positiong qð Þ ¼ Sgq1;⋯; Sgqk ;⋯; SgqKq

� �
is the

position of the qth particle at iteration g, where q∊ {1,⋯,
Q}, g∊ {1,⋯,G}, k∊ {1,⋯,Kq}, Sqk

g is the selected kth
SNP of the qth particle at iteration g, Q is the number of parti-
cles, G is the number of iterations, and Kq is the considered
order of epistatic interactions of the qth particle, which is
randomly specified within [1, n] at the initialization stage.
The velocity of the qth particle at iteration g is denoted as

Velocityg qð Þ ¼ vgq1;⋯; vgqk ;⋯; vgqKq

� �
, where vqk

g is the

velocity of Sqk
g . The individual experience of the qth particle

is written as Pbestg qð Þ ¼ PSgq1;⋯; PSgqk ;⋯; PSgqKq

� �
. The

common knowledge of the swarm is redefined as the best
ones among individual experiences of particles with the
same considered orders, i.e., Gbestg

K = (GS1
g,⋯,GSk

g,⋯,
GSK

g ), where K∊ [1, n]. During the initialization stage,
Position1(q),Velocity1(q), Pbest1(q) and Gbest1

K are randomly
initialized in their respective domains.
The PSO based search detects epistatic interactions

by continuously updating velocity and position of each
particle at all iterations. The velocity of Sqk

g is updated
according to the following two equations,

Shang et al. BMC Bioinformatics  (2016) 17:214 Page 4 of 15



~vgþ1
qk ¼ Wg

qk⋅v
g
qk þ c1⋅r1⋅ PSgqk−S

g
qk

� �
þ c2⋅r2⋅ GSgk−S

g
qk

� �
;

vgþ1
qk ¼ ~vgþ1

qk ~vgþ1
qk ∈ 1−N ;N−1½ �

rand 1−N ;N−1ð Þ ~vgþ1
qk ∉ 1−N ;N−1½ � ;

(

where acceleration factors c1 and c2 control how far a par-
ticle moves in a single iteration, r1 and r2 are random values

in (0, 1), GSk
g is the kth SNP of Gbest

Kq
g (K =Kq) at iteration

g, Wqk
g is the inertia weight regulating the impact of the pre-

vious velocity of a particle on its current velocity.
For the inertia weight, a large weight facilitates the

global exploration and thus enables the method to exe-
cute a search over various regions, while a small weight
facilitates the local exploitation, which helps to search a
promising region. In order to balance the global explor-
ation and the local exploitation, a dynamical inertia
weight is introduced, defined as

Wg
qk ¼

max countg
� �

−countg PSgqk

h i
max countg

� �
−min countg

� � ;
where countg = (ct1

g ,⋯, ctm
g ,⋯, ctN

g ), and ctm
g is a counter

that counts the number of SNP m presented in Pbest
from iteration 1 to iteration g. This strategy allows parti-
cles to cover a wider search space while the considered
SNP is likely to be a random one, and to converge on a
promising region of the search space while capturing a
highly suspected SNP.
Based on vqk

g+1, the position of Sqk
g is updated to Sqk

g+1

using the following two equations,

~Sgþ1
qk ¼ Sgqk þ vgþ1

qk ;

Sgþ1
qk ¼ int ~Sgþ1

qk

� �
~Sgþ1
qk ∈ 1;N½ �

int rand 1;Nð Þð Þ ~Sgþ1
qk ∉ 1;N½ �

;

8<
:

where rand( ⋅ ) is the random function and int(⋅) is
the rounding function. Random functions used for
updating both vqk

g+1 and Sqk
g+1 help to increase the diversity

of the search.
Another highlight introduced to the PSO based search

is the opposition based learning, basic principle of which
is the consideration of a solution and its corresponding
opposite solution simultaneously to approximate the
global optima [43]. In our PSO based search, if the
solution is Positiong(q), its corresponding opposite solu-
tion is defined as

Position
0
g qð Þ ¼ 1þ N−Positiong qð Þ;

which not only expands the search space and enhances
the global explorative ability, but also accelerates the
convergence and avoids premature convergence.
By comparing NCI values of Positiong

’ (q), Positiong(q)
and Pbestg(q), the individual experience of the qth par-
ticle at iteration g + 1, i.e., Pbestg+1(q), is updated to the
best one among them. Similarly, whether the common
knowledge of the swarm at iteration g + 1, e.g., Gbestg+1

K ,
is updated or maintained as Gbestg

K depends on individual
experiences of particles with the same order K. Specific-
ally, Gbestg+1

K is updated to Pbestg+1(q) while NCI value of
Pbestg+1(q) is the highest one among those of individual
experiences of particles with the order K, and is also
higher than that of Gbestg

K. When completing the iteration
process, the PSO based search reports the sorted PbestG
according to their descending NCI values as its detected
epistatic interactions.

Epistasis hypergraph and deep analyses
In visualizing stage, lists of all epistatic interactions
identified in detecting stage, or similar lists generated by
other methods, are exported to construct an undirected
epistasis hypergraph for refining the interpretation of
genetic basis of disease susceptibility and disease etiology,
by capturing and visualizing broader epistasis landscape.
The hypergraph is composed of weighted vertices and
unweighted edges. For weighted vertices, two types of
them are presented, that is, real vertices and virtual verti-
ces. A real vertex represents a SNP and its weight is the
NCI value between the SNP and the phenotype, corre-
sponding to the main effect of the SNP to the phenotype.
A virtual vertex denotes the n-order interaction effect of
the combination of linking SNPs to the phenotype, and
its weight is the NCI value between the SNP combin-
ation and the phenotype. In the hypergraph, each red
circle is a real vertex in which SNP name or index is
labeled, each non-red circle is a virtual vertex. Sizes of
vertices are respectively in proportion to their weights.
For unweighted edges, each of them links a SNP and an
effect of this SNP to the phenotype. From the hyper-
graph, effects of different orders, especially high orders,
as well as topology structures of SNPs, can be intui-
tively visualized and compared.
For deep analyses of the constructed hypergraph, sev-

eral useful tools are also provided in CINOEDV. For ex-
ample, epistatic interactions can be visually displayed
according to their descending effects, either NCI values
or CCI values; penetrance of an epistatic interaction can
be estimated and visualized; degree of a real vertex in
the hypergraph and connectivity of the hypergraph can
be further analyzed. More details about these tools are
available in its user manual. With the help of these tools,
some hidden clues for better understanding the underlying
genetic architecture of complex diseases could be revealed.
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Results and Discussion
Experiments on simulation data
Detection power analysis for pairwise epistatic interactions
Six commonly used models of epistatic interactions are
simulated for the study. Details of these models are
given in Fig. 1. For each model, 200 data sets are gener-
ated by the simulator epiSIM [44], which describes the
simulation steps of SNP data sets as well as true epistatic
interactions of SNPs in detail, and has been used in sev-
eral references [26, 45, 46]. Among them, each data set
contains 2000 cases and 2000 controls. In the first 100
data sets, 100 SNPs are genotyped, while in other 100
data sets, the number of SNPs is increased to 10000,
which simulates high dimensional data sets like those in
GWAS. In addition, three types of detection power are
introduced to evaluate the performance of CINOEDV,
definitions of which are given in our previous studies
[26, 47, 48] and the Additional file 1: Note 1.
Detection power of CINOEDV is evaluated by com-

parative studies with several existing state-of-the-art

methods, using above simulation data. They are TEAM,
BOOST, SNPRuler, AntEpiSeeker, and epiMODE. These
methods are recently proposed, claimed to facilitate the
detection of epistatic interactions. Their packages and
manuals are available online [47], where default param-
eter settings, as well as parameter adjustment strategies,
are described in detail. In the study, parameters of these
methods are generally set as default. Only a few are
modified according to suggestions in their respective
manuals in order to ensure a fair comparison. For
TEAM, permutation number is set to 100. For BOOST,
interaction threshold is set to 10, i.e., results of BOOST
are the epistatic interactions whose likelihood ratio test
statistic values >10 with 4 degrees of freedom. For AntE-
piSeeker, the numbers of ants and iterations are set to
500 and 10, respectively. For epiMODE, iteration num-
ber is set to 100. For CINOEDV, both the exhaustive
search (CINOEDV(E)) and the PSO based search
(CINOEDV(P)) are evaluated, and top 10 identified epi-
static interactions are recorded for each run. For

Fig. 1 Six models of epistatic interactions. Model1 and Model2 are models displaying both marginal effects and interaction effects, and Model3 ~
Model6 show no marginal effects but interaction effects. Specifically, the penetrance in Model1 increases only when both SNPs have at least one
minor allele [19, 20]; Model2 assumes that the minor allele in one SNP has the marginal effect, however, the effect is inversed while minor alleles
in both SNPs are present [19]; Model3 and Model4 are directly cited from the reference [55]; Model5 is a ZZ model [56]; and Model6 is an XOR
model [55]. Penetrance is the probability of the occurrence of a disease given a particular genotype. Prevalence is the proportion of individuals
that have a disease. MAF(a) and MAF(b) are minor allele frequencies of a and b
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CINOEDV(P), the number of particles is set to 500, and
the number of iterations is set to 10, which are the same
as those of AntEpiSeeker for a fair comparison.
Detection power of compared methods on 100-SNP

data sets is shown in Fig. 2, and that on 10000-SNP data
sets is shown in Fig. 3. It is seen that CINOEDV is
promising in detecting epistatic interactions. Specifically,
CINOEDV(E) identifies all epistatic interactions and
outperforms other methods on all cases regardless of
models and SNP sizes; detection power of CINOEDV(P)
on almost all models of 100-SNP data sets is compar-
able and sometimes superior to that of compared
methods; among models of 10000-SNP data sets, though
CINOEDV(P) has moderate detection power on Model1

and Model2, and detects nothing on other models, it is
still the runner-up; the decrease of detection power of
CINOEDV(P) from 100-SNP to 10000-SNP data sets is
because of the inevitably increased search space and the
non-change parameter settings; compared with detection
power of other methods on different models, detection
power of CINOEDV on different models is much more
stable, implying that CINOEDV is not sensitive to model
types; for Model1 and Model2, Power1, Power2 and
Power3 of a compared method usually have different
values since these models displaying not only interaction
effects but also marginal effects, leading to the method
sometimes only identifying several ground-truth SNPs
but not epistatic interactions, where ground-truth SNPs

Fig. 2 Detection power of compared methods on 100-SNP data sets
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refer to the SNPs in models; similarly, for each method
on Model3 ~Model6, Power1, Power2 and Power3 are
almost equal because single ground-truth SNPs show
no main effects.
For compared methods, their results are consistent

with and complementary to previous reported results
[47, 48]. In terms of detection power analysis for pair-
wise epistatic interactions, BOOST performs best in
most cases, especially on Model3 ~Model6 since it is a
model-based method that only focuses on identifying
models displaying no marginal effects but interaction
effects like Model3 ~Model6. However, BOOST is
constrained to pairwise epistatic interactions, can not

infer high order epistatic interactions and graph-
structure interactions, is incapable of visualizing epi-
static interactions with different orders in the hyper-
graph, which are just highlights of CINOEDV that
will be discussed later.

Inferring higher order epistatic interactions from
hypergraph
For assessing the capability of CINOEDV in inferring
higher order epistatic interactions from the epistasis
hypergraph, four models are used that have been devel-
oped previously [49, 50], namely, Three − 1, Three − 2,
Four and Five. Three − 1 is a model of 3-order epistatic

Fig. 3 Detection power of compared methods on 10000-SNP data sets. TEAM and epiMODE are not considered here due to their unaffordable
computational cost on high dimensional data sets
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interaction displaying both marginal effects and interaction
effects. Three − 2 is a pure model of 3-order epistatic
interaction, where the association to the phenotype is
only observable when all 3 ground-truth SNPs are
considered together, that is, no main effects and no
pairwise epistatic interactions. Similarly, Four and Five
are models of 4-order and 5-order epistatic interac-
tions, each displaying no main effects and no 2-order
interaction effects. For each corresponding data set
also generated by epiSIM [44], 1500 cases and 1500
controls are included and genotyped by 1000 SNPs.
We apply CINOEDV(E) on these data sets with the

specified maximum order from 2 to n, where n is the
order of embedded epistatic interaction. Their hypergraphs
are shown in Fig. 4, from which, we have the following
observations.
Though Three − 1 is a model of 3-order epistatic inter-

action, it is able to be inferred from the epistasis hyper-
graph Three − 1(2), which is constructed only by main
effects and 2-order interaction effects. In the Three −
1(2), two strong 2-order interaction effects linking 3
SNPs, 2 of which show much stronger main effects than
others, forms a connected subgraph. Under the hypoth-
esis that the sets of SNPs that are linked together by
strong low order interaction effects in the hypergraph
may indicate the existence of higher order epistatic in-
teractions, we could infer that these 3 SNPs in the con-
nected subgraph might jointly modify the phenotype. In
reality, they are indeed ground-truth SNPs of the model
Three − 1, demonstrating that the inference is correct. In
the Three − 1(3), the topology structure of the 3-order
epistatic interaction becomes clear: besides 2 strong
main effects and 2 strong 2-order interaction effects,
they also display a strong 3-order interaction effect. For
models Three − 2, Four and Five, they are difficult to be
inferred from their respective hypergraphs Three − 2(2),
Four(2), and Five(2) because there are no main effects
and no pairwise epistatic interactions in these models. In
the Three − 2(3), the combination of 3 ground-truth
SNPs only shows a 3-order interaction effect, and this
effect is far stronger than other effects, demonstrating
that Three − 2 is a pure model of 3-order epistatic inter-
action. Similarly, using the same inference strategies, we
could infer Four and Five from their hypergraphs Four(3)
and Five(4) perfectly, which implies that epistasis hyper-
graph constructed by main effects and low order inter-
action effects is a promising guide map for capturing
higher order epistatic interactions while substantially re-
ducing computational cost. In addition, 4 out of 5
ground-truth SNPs could be inferred in the Five(3) since
they make up of an attractive connected subgraph, hav-
ing 3 strong 3-order interaction effects. From these
hypergraphs, we can conclude that an epistatic inter-
action is usually characterized as a connected subgraph

or part of a connected subgraph, where vertices interact
with each other more closely. These observations show
that CINOEDV is capable of inferring higher order
epistatic interactions from the epistasis hypergraph.
Besides, four state-of-the-art network-assisted methods,

that is, GAIN, SEN, ViSEN, and EINVis, are also
applied on these data sets for the comparative analyses,
results of which are recorded in Additional file 1: Figure
S1-S4. It is seen that GAIN, SEN, and EINVis focus
on the visualization of pairwise epistatic interactions
and only Three − 1 can be inferred due to its strong
marginal effects. ViSEN is able to show three orders
of effects at the same time, and can detect models of
Three − 1, Three − 2, and Four perfectly, as well as 4
ground-truth SNPs out of 5 in model Five. Nevertheless,
different orders of effects in ViSEN are difficult to be fairly
and intuitively compared.

Computational complexity analysis
The main purpose of CINOEDV is to identify multiple
epistatic interactions with different orders from genome
wide data. Just because of this, computational efficiency
is a key issue that has to be considered. We use 100-
SNP and 10000-SNP data sets that have been simulated
before to compare computational efficiency with TEAM
[15], BOOST [16], SNPRuler [17], AntEpiSeeker [18],
epiMODE [20], CINOEDV(P) and CINOEDV(E). For a
fair comparison, parameters of them are set as those
values discussed previously. Experiments are conducted
with Intel Xeon 2.00 GHz CPUs and 6 GB of RAM run-
ning Microsoft Windows XP Professional x64 Edition
2003 Service Pack 2. The average running time of com-
pared methods on these data sets is recorded in Table 1.
For CINOEDV(P), its average running time on 100-SNP

data sets is slow, just faster than that of AntEpiSeeker and
epiMODE, even slower than that of CINOEDV(E). This is
because its search space, controlled by the numbers of
particles and iterations, is very close to the space of
exhaustive search, and it also needs extra time to deal with
the particle updating process. On 10000-SNP data sets,
CINOEDV(P) is the fastest one among compared methods
since its search space is not changed. CINOEDV(P) can
finish the search at affordable time cost, and this time cost
can be estimated and controlled by setting its parameters
freely, which enable it facilitate searching epistatic in-
teractions in large scale data sets. For CINOEDV(E),
no matter on 100-SNP or 10000-SNP data sets, its detec-
tion power is perfect, however, the exhaustive search is
heavy in time cost.
The bright spot of CINOEDV in computation com-

plexity is that the hypergraph constructed by main
effects and low order interaction effects is able to
supervise the search for higher order epistatic inter-
actions at a substantially reduced computational cost.
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Fig. 4 Hypergraphs of compared data sets. Indices of ground-truth SNPs of each model (Group Index) are recorded in the table (SNP Interaction).
Three-1 and Three-2 are models of 3-order epistatic interaction: the former displaying both marginal effects and interaction effects, and the latter
being a pure model. Sizes of vertices are respectively in proportion to their effects to the phenotype
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Even if the computational complexity of building a hyper-
graph is considered together, the computational cost is
still far less than that of the exhaustive search. This
reduction of computational complexity is even more
encouraging in the era of GWAS.

Application to AMD data
CINOEDV, as well as other competing methods, includ-
ing SNPRuler, AntEpiSeeker, BEAM, epiMODE, and
BOOST, are also applied on a real AMD data set [51],
which contains 103611 SNPs genotyped with 96 cases

Table 1 Average running time (seconds) of compared methods on simulation data sets. The method epiMODE could not deal with
data sets with 10000 SNPs at affordable time cost

Methods TEAM BOOST SNPRuler AntEpiSeeker epiMODE CINOEDV(P) CINOEDV(E)

100-SNP data sets 13.14 0.36 1.56 1146.60 50.46 48.05 23.94

10000-SNP data sets 41742.00 248.52 3495.60 6252.00 >41742.00 76.38 4872.50

Fig. 5 Epistasis hypergraph of AMD data set. SNP names are labeled in their corresponding vertices. Sizes of vertices are respectively in proportion to
their effects to the phenotype
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and 50 controls. AMD is the most important cause of ir-
reversible visual loss in elderly populations, and has been
considered as a genetic disease where multiple epistatic
interactions are exist [20, 26].
We use the PSO based search to explore epistatic in-

teractions with the maximum order specified to 3, where
the numbers of particles and iterations are set to 50000
and 1000. Top 20 SNPs with high main effects, top 20
epistatic interactions with high 2-order interaction
effects, and top 20 epistatic interactions with high 3-order
interaction effects are reported in Additional file 1:
Table S1-S3, respectively. The epistasis hypergraph built
by these effects is shown in Fig. 5. Besides, detected SNPs
and epistatic interactions of other competing methods are
recorded in Additional file 1: Table 4.
It has been widely accepted that rs380390 and

rs1329428 are believed to be significantly associated with
AMD [20]. These two SNPs are in an intron of the CFH
gene. CFH is a regulator that activates the alternative
pathway of the complement cascade, the mutations in
which can lead to an imbalance in normal homeostasis
of the complement system. This phenomenon is thought
to account for substantial tissue damage in AMD.
rs1394608, that has been implicated in AMD [20], re-
sides the intron of SGCD gene, variants of which regu-
late the degradation of extracellular matrix by facilitating
access of other degradative matrix enzymes, thus result-
ing in the pathological extracellular deposits in retinal.
Our method, BOOST and epiMODE confirm these three
SNPs successfully. BEAM identified both rs380390 and
rs1329428, but did not detect rs1394608. AntEpiSeeker
only found rs380390, and SNPRuler did not identify
these three SNPs at all.
The SNP combination rs994542:rs9298846, that identi-

fied by both CINOEDV and BOOST, has the strongest
2-order interaction effect, though each of them shows
small main effect, implying that they might be a pure
epistatic interaction [52]. Most SNPs in Additional file 1:
Table S1 have been reported in previous AMD associ-
ation studies [20, 53, 54]. But on the contrary, almost no
SNPs in Additional file 1: Table S2 and S3 have been
identified previously. This might be because existing
AMD related GWAS mainly focus more on identifying
SNPs with strong main effects, and SNPs in Additional
file 1: Table S2 and S3 are weak in main effects, showing
strong interaction effects through their combinations.
These SNPs and their combinations need further studies
with the use of large scale case–control samples to con-
firm whether they have true associations with AMD.
In Fig. 5, SNPs are grouped into maximal connected

subgraphs, which may indicate that multiple SNPs
jointly modify the phenotype. These maximal connected
subgraphs show various structural patterns, might im-
plying the existence of unique interaction patterns

among groups of SNPs. In the hypergraph, the largest
one consists of 31 SNPs displaying a tree-like structure.
Almost all these 31 SNPs have small main effects, but
their total effects may be reinforced through hub SNPs
and other connectivity structures in the hypergraph.
Hub SNPs, for example, rs10518739, may be important
to the phenotype, not because of their individual effects,
but because of overall influence in modulating the ef-
fects of other SNPs. Further analyses of these maximal
connected subgraphs are necessary, although they are
beyond the scope of this study. We hope that, from
these experiments, some clues could be provided for the
exploration of causative factors of AMD.

Conclusions
Epistatic interactions are believed to play an increasingly
important role in unraveling the mystery of “missing
heritability”, and detection of them has already become
a compelling step in GWAS. Though many works have
been done for their detection, most only focus on pair-
wise epistatic interactions due to the methodological and
computational challenges. In this study, we introduce a
methodology CINOEDV for the detection of multiple
epistatic interactions with different orders. CINOEDV is
a two stage method: detecting stage for identifying SNPs
with high main effects and n-order epistatic interactions
with high n-order interaction effects, visualizing stage
for visualizing the detected epistatic interactions and
capturing higher order epistatic interactions. In detect-
ing stage, two co-information based measures, namely,
NCI and CCI, are developed for quantifying effects of n-
order SNP combinations to the phenotype, and two
types of search strategies are provided for dealing with
different situations: the exhaustive search for lower
order epistatic interactions and/or small scale data sets,
the PSO based search for higher order epistatic interac-
tions and/or large scale data sets. In visualizing stage, all
detected SNPs and their corresponding n-order inter-
action effects are used to construct an epistasis hyper-
graph, where a real vertex denotes the main effect of a
SNP and a virtual vertex represents the n-order inter-
action effect of its linking SNPs. This hypergraph is able
to supervise the search for higher order epistatic interac-
tions at a substantially reduced computational cost. Ex-
periments of CINOEDV and its comparison with state-
of-the-art methods, including TEAM, BOOST, SNPRu-
ler, AntEpiSeeker, epiMODE, GAIN, SEN, ViSEN, and
EINVis, are performed on lots of simulation data sets.
Results demonstrate that CINOEDV is promising in de-
tecting and visualizing multiple epistatic interactions
with different orders. CINOEDV is also applied on a real
AMD data set, results of which not only show the
strength of CINOEDV on real applications, but also cap-
ture important features of genetic architecture of AMD
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that have not been described previously. These features
might provide new clues for biologists on the explor-
ation of AMD-associated genetic factors.
CINOEDV is implemented in R and is freely available

from R CRAN (http://cran.r-project.org) and the website
(https://sourceforge.net/projects/cinoedv/files/). It is a
user-friendly cross-platform software package. Its input
data are stored in a MAT format to accommodate large
data sets, and a few parameters should be set according
to their recommendation options. The generated effect
lists, or similar lists produced by other software, are
exported for epistasis hypergraph construction, which im-
plies that components of CINOEDV package can be used
independently, facilitating wide adoption of CINOEDV.
Furthermore, several useful tools are also provided for deep
analyses of the constructed hypergraph. More details of
CINOEDV package are in user manual.
CINOEDV might be an alternative to existing methods

for the detection and visualization of n-order epistatic
interactions, and has several advantages.
First, different from existing methods, such as BOOST,

AntEpiSeeker, SNPRuler, epiMODE, and TEAM, mainly fo-
cusing on the detection of pairwise epistatic interactions,
and easily ignoring the broader epistasis landscape,
CINOEDV is able to discover multiple epistatic interactions
with their orders from 2 to n simultaneously, where n is the
specified maximum order and can be set to 3 or larger.
Second, CINOEDV creates a global interaction map

that not only shows all orders of effects at the same
time, where effects can be compared intuitively and
fairly, but also distinguish interaction effects of different
orders from main effects effectively, which is important
to find the dominant effect in modifying the phenotype.
Third, the epistasis hypergraph constructed by main

effects and low order interaction effects is a promising
guide map for capturing higher order epistatic interac-
tions while substantially reducing computational cost,
which implies that CINOEDV can handle large scale
data sets. This reduction of computational complexity is
even more encouraging in the era of GWAS.
Fourth, CINOEDV is capable of visualizing detected

epistatic interactions and their interaction effects of dif-
ferent orders in the hypergraph. As far as we know, it is
the first visualization software that shows n (i.e., n = 5)
orders of effects simultaneously. Such an idea embracing
the complexity of genetic architecture underlying com-
plex diseases, may contribute to better understand the
detected epistatic interactions, capture global epistasis
landscape, depict their unique interacting patterns.
Fifth, the hypergraph may be useful for revealing more

clues to interpret the mechanism of a complex disease,
for example, hub SNPs, connected subgraphs, density
subgraphs, and many others. These graph structures
cannot be captured by traditional methods.

Though CINOEDV is a beneficial exploration in
detecting and visualizing epistatic interactions, it still
has several limitations, and needs further improvement,
innovation and development, which inspire us to con-
tinue working in the future.
First, the exhaustive search is heavy in time cost, and

the PSO based search loses the calculation accuracy
though it can finish the work at affordable time cost. How
to balance the calculation accuracy and the time cost is a
direction.
Second, hypergraph cannot supervise to infer a pure

high order epistatic interaction displaying no lower order
interaction effects and no marginal effects.
Third, hypergraph analyses are sample in the paper.

However, it is believed that more detailed analyses of the
hypergraph, for example, pathway enrichment analysis,
integrative analysis and others, might capture more im-
portant clues.
Last but not the least, current co-information based

association measures in CINOEDV only consider binary
discrete traits. It is important to extend the association
measures to continuous traits.
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