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Abstract

Background: Model checking has been recently introduced as an integrated framework for extracting information
of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes
restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system
modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA
can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological
property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a
counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the

phylogeny.

Results: In this paper, we repair the limitations of the previous framework for including and handling quantitative
information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions
of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also
present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology
according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum
likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the

computation of maximum likelihoods.

Conclusions: We have shown that probabilistic model checking is a competitive framework for describing and
analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the
definition of models and specifications. Besides, the existence of model checking tools hides the underlying
technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set

of benchmarks justify the feasibility of our approach.
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Background

A phylogenetic tree is a description of the evolution pro-
cess which is discovered via molecular sequencing data
and morphological data matrices [1]. Computer science
tools have upgraded the capabilities of biologists for their
construction as well as for extracting and analyzing the
implicit biological messages embedded in them [2, 3].
Nowadays, more and more applications rely on the exis-
tence of a support phylogenetic tree for the confirmation
of biological hypotheses that are valuable for the scien-
tific community. For example, a small but representative
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portion of these researches combine phylogenetic trees
(constructed via the mentioned tools using the informa-
tion of the genome) with fossils, geographical or phe-
notypical data in order to find any mismatch, to trace
the human migrations [4] and to inspect the distribu-
tion of endemic diseases [5]. In this sense, they use a
phylogenetic tree for testing biological hypotheses about
evolution in a similar way to [6]. Indirectly, the evaluation
results and counterexamples help to feedback the phy-
logeny and increase its quality. However, the wide range of
diverse methods and tools used by biologists for studying
phylogenetic properties recommended the research of a
generic framework for heterogeneous hypotheses testing
over trees.
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Model checking is a paradigm stemming from com-
puter science based on temporal logics which has been
successfully applied in industry for system modeling and
verification [7]. The basic principle allowing the use of
the model checking framework in the context of phy-
logeny is the interpretation of the phylogenetic tree as a
transition system representing a computational model of
the evolution process, i.e., a rooted directed acyclic graph
describing the potential behavior of a discrete system
whose paths indicate a sequence of intermediate states
and the transitions are speciation events. The next step
consists of formulating the hypothesis that we desire to
investigate over a phylogeny using temporal logics as a for-
mal language. Finally, a model checking tool automatically
verifies the satisfaction of the property over the model in
an exhaustive way.

Model checking has been recently proposed as a generic
unifying framework that allows the phylogeneticist to
focus on tree structures, biological properties and sym-
bolic manipulation of phylogenies described using tempo-
ral logic, instead of on implementation issues concerned
with verification algorithms [8, 9]. The model check-
ing framework helps us to uncouple software tools from
the formal definition of models and the specification of
properties. Besides, it hides the underlying implementa-
tion technology to final users, enabling transparent soft-
ware upgrades of the model checking tool and removing
debugging and programming language concerns through
different platforms [10]. Standard branching-time tempo-
ral logics such as Computational Tree Logic (CTL [11])
already allow expressing biological properties referred to
the structure of the tree or the arrangement of DNA
sequences along the paths [8].

In this paper, we repair the limitations of the previous
model checking approach using standard temporal log-
ics. Some of the phylogenetic hypotheses require a more
powerful language for being described, i.e., it is neces-
sary to extended the models and specification logics with
explicit time and probabilities. Evolution is a continuous-
time and stochastic process where the branch length of
a phylogeny represents time, and the distribution of bio-
logical features is non-deterministic along the whole tree.
One of the potential applications of probabilistic model
checking is the study of the dispersion of lactose intol-
erance among populations and the temporal point when
it appeared in the tree [12]. The objective is to tolerate
more flexibility and expressiveness in the specification of
properties.

Explicit time and probabilities are not directly sup-
ported by qualitative logics, but they can be included in
the specifications of a probabilistic transition system using
discrete (PCTL [13]) or continuous-time logics (CSL™
[14]). Much more logics have been proposed according to
different metrics and time models [15] (e.g., number of
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clocks in the system or local vs global clocks), although
we will focus on CSL™ here. The interpretation of this
kind of specifications requires the modification of the tra-
ditional transition system and the algorithms that traverse
them. The models must be enlarged in order to support
these new informations.

More in detail, we present and classify a more complete
description of phylogenetic properties that are intrinsi-
cally stochastic by nature. Our aim is to show that an
extended model checking framework is suitable for solv-
ing temporal and probabilistic problems in the domain of
phylogenetics. Current probabilistic model checking tools
are generic and powerful enough for our proposal. Other
tools such as Phycas [16], RevBayes [17] or Beast2 [18] are
focused on solving a set of specific problems while our
approach can answer a wider range of questions.

The advantages of applying the probabilistic contin-
uous-time extensions of model checking techniques for
evaluating phylogenetic specifications are twofold: a) it
is possible to verify if a property is true or false accord-
ing to some temporal requirements and the probabilistic
behavior of the model and b) it is also possible to obtain
the minimum probability that makes the specification
true within an interval of time. In order to show the
feasibility of our approach, we apply our framework to
a specific problem: the probability of obtaining a phy-
logeny with a certain topology. Specially, we focus on the
computation of maximum likelihood estimations (MLE)
for a phylogenetic tree using models of DNA evolu-
tion, that simulate the changes in the genome through
the time.

The paper is arranged as follows. The next Section
“Methods” introduces the main notions of evolution and
explains how it is modeled under the model checking
framework. Besides, the logical specification of nontrivial
phylogenetic properties is described. The logic presented
in this section is used for evaluating stochastic proper-
ties and the likelihood of phylogenetic trees in the case
of study. Section “Results and discussion” introduces the
methods for managing continuous-time and probabili-
ties in model checking and current probabilistic verifiers.
After that, the case of study with maximum likelihood of
a phylogenetic tree, and the experimentation details are
presented. The key steps for implementing phylogenetic
trees and biological properties within the scope of the
PRISM tool is presented. Finally, Section “Conclusions”
gathers the conclusions drawn from this research and
details the future work.

Methodology

Analyzing models of evolution with probabilistic model
checking

The process of model checking is divided in three phases.
The first part consists of a correct modeling of the system.
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Next, a set of properties are written using a specification
logic. Finally, a model checking tool takes the description
of the model and the hypotheses, and analyze them in an
automatic and exhaustive way. The quality of the analysis
is influenced by the identification of the main characteris-
tics of the system during modeling. To this end, the next
paragraphs present the principal keystones that we try to
capture of the evolution model and how they are trans-
lated into a computational model (i.e., transition system)
suitable for the study.

Evolution as a transition system

Evolution is an infinite-time, not-ending process that
keeps introducing new traits and species forever. It can be
modeled at different levels of abstraction. Depending on
the aspects we focus on, evolution can be simulated by:

¢ Topological models. Birth-death Markovian models
describe the macroevolution process of speciation
[19, 20]. They are usually used for the generation of
random trees fulfilling the topologies and structural
characteristics that are supposed to appear in correct
phylogenies. They provide a skeleton (i.e., a
phylogenetic structure) regardless of the internal
details of the tree states. These trees would be later
enriched by complementary information (e.g., DNA).
These trees, or those constructed by inference or
maximum parsimony methods [21], are used as initial
seed in subsequent problems, for example, for the
tree exploration phase during the evaluation of the
maximum likelihood estimations [22, 23].

¢ Sequence models. On the other hand, the genome
constitutes nowadays one of the most important
traits of a species for its study. Models that describe
the modification of protein or DNA sequences
through time provide finer details about the genetic
changes operating behind the macroevolution
models. These models nuance the process from
which a sequence of characters switches into another
one. In short, the sequence models capture how the
genomic information is placed in each state of a tree
inferred from a speciation model.

Often, the phylogeneticists identify the nucleic changes
as the main source of the macroevolution process and
then associate the notion of evolution history to the con-
cept of mutation trace. Hence, DNA mutation models are
commonly referred to as the true tree generators or phy-
logenetic models in the literature: the phylogenies arise
as the result of a spanning simulation of these mutation
models embedding the complex process of speciation. At
this point, it is not surprising that biologists try to match
the tree of life that they inferred from an input align-
ment and reconstruction method with the execution of an
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instance of a DNA mutation model that could generate
it. Figure 1 illustrates a simple mutation model where
state s; represents a nucleotide at a certain position of
the sequence and it has a probability p;; of changing to
state (nucleotide) s;. Some probabilities are omitted for
readability.

In the context of molecular evolution, the phyloge-
netic tree would indicate a reachability graph or execu-
tion trace of the system, that is, a snapshot capturing
the order of occurrence of the mutations along the his-
tory of the speciation process since the beginning of
time until present day. Therefore, a phylogenetic tree will
reflect how the mutation model should act, showing the
consecutive changes in a long-term run of the model.
In other words, the phylogeny represents the behav-
ior of the system, understood as a computational pro-
cess modeling the hypothetical flow of the DNA during
the time.

Figure 2 shows a phylogenetic tree generated by the
unfolding of a mutation model for a single position of
the DNA string. A complete strand is simulated by the
concatenation of # (theoretically) independent models of
evolution, one per position. A phylogenetic tree for the
whole genome has a n-dimensional array of characters
(bases) for each state and a n-dimensional array of prob-
abilities for each transition. The probability of moving
from a state s; to a state s; is calculated according to the
vector associated to the transition. This value is equal to
ITIL, pj (i) with pjx(i) denoting the probability of chang-
ing a nucleotide s;(i) by a s¢(i) at the i'th position of the
array. Transitions with null probability are removed from
the tree.

In a computer science context, both speciation models
and phylogenies are two faces of the same coin and
they can be used as computational models expressing the
behavior of evolution (Fig. 3). Later on, a set of properties
are studied over the model using an adequate description
language such as temporal logics. A temporal logic allows,
using a certain symbolism and rules, reasoning about
propositions qualified in terms of abstract time (i.e., time
in the sense of partial ordering of the events). This kind
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Fig. 1 Model of DNA mutation
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Fig. 2 Unfolding of a DNA mutation model in a phylogenetic tree

of logics focus on the information stored in the states and
the relationship among the nodes. For example, it is pos-
sible to declare questions such as “eventually in the future,
a mutation of o to @ happens in a branch of the tree’,
or “generally, position i is conserved in this haplogroup
or subtree”. A verifier takes the propositions expressed in
temporal logic and a model described as a transition sys-
tem, and tells if they are true or not for this particular
context. It explores the reachability graph in an automatic
and exhaustive way.
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Markov chain as a data structure

In probabilistic model checking, the computational mod-
els are probabilistic transition systems (PTSs). By default,
topological and sequence models are Markov chains
whose structure and semantics matches directly with
PTSs. For example, the simpler models of evolution lead-
ing to the introduction of mutations in the genome are
a four-state Markov chain with different probabilities
for the transitions among nucleotides [24]. Commonly,
they are parameterized templates indicating the ratios
and relations between bases. Several versions of DNA
mutation models have been proposed in the literature.
By now, there are highly optimized models for specific
purposes including the special biochemical features of
the nucleotides such as physical-chemical stability of the
strands.

Markov chains accept either discrete (integer) or con-
tinuous (real) time in the modeling, thought continuous-
time is more suitable for capturing finer temporal details
of the evolution. Instead of describing explicitly the prob-
ability of change from one state to another, the transitions
are labeled with rates delimiting the time spent in that
branch.

Computational Model Specification
S0
Speciation Model
S1
S0
S§3 84
52
S0 So
56
Phylogenetic Tree 51 52 51 S9
S3 'S4 'S5 S¢¢

Fig. 3 Probabilistic model checking framework in phylogenetics

Automatic
Verifier




Requeno and Colom BMC Bioinformatics (2016) 17:235

Definition 1 (Continuous-time Markov Chain). A
continuous-time Markov chain (CTMC) is a finite tran-
sition system represented by a tuple M = (S,S0,R,L),
where:

S is a finite set of states,

e Sy C S is the set of initial states,

® R C S xS — Rsg is the transition rate matrix
between states, i.e., for every pair of states s,s' € S, a
transition occurs only if R(s,s') > 0, and the
probability of this transition being triggered in t time
units equals 1 — e R6S)t and

o L:S— 247 s the labeling function that associates
each state with the subset of atomic propositions
(AP) that are true of it.

An atomic proposition is a declarative statement telling
the properties of a state of the model. It may cover several
aspects of the evolution (location, disease or phenotype
of species and individuals), thought the simpler one is the
nucleic value. For instance, the set of atomic propositions
assigned to the states in Fig. 4 corresponds to the nucleic
values of the genome in those points.

As there exist multiple pair candidates with R(s,s") > 0
outgoing from state s, a race condition appears and the
selection of the next state determines the history of events.
A higher value of R(s, s') prioritizes the transition between
s and s'. If all the successors share the same ratio, the
transitions are equally probable. The elapsed time before
triggering affects the probability of a transition.

The computation of probabilities depends on the paths
starting in the initial state. Given an infinite path of suc-
cessive states m = s¢s18y ..., w[i] = s;, while 7 (¢) returns
the state s; of the path in which the system is found
after t € Rs¢ time units since the initial state sp (i.e.,
7[0] = 7 (0) = sp). For any set of infinite paths IT start-
ing in the initial state sp, the subset IT1(x,) selects the
paths 7 € I1 whose prefix equals to the finite sequence
Ty = S051832 - - . S of length 1 + 1 states.
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The likelihood of reaching a state s, is determined by
the probability measure Pr(I1(x,)) = Pr(I1(sps182 . . - Sx))
over all the paths sharing the prefix 7, with 7,(0) = so.
For the trivial case over I1(sp), Pr(Il1(sp)) = 1. In general
for I1(m,), Pr(Il(spsisz-..sy)) = Py(s,s,). Starting in s,
the probability of arriving to a state s” at a particular time
instant ¢ is represented by P;(s,s') = Pr{ix € I1 | n(¢) =
s}, with P; an exponential matrix indicating the transient
probabilities for time ¢ and Q the infinitesimal generator
matrix of M:

Q-

i!

_ Qt _ yoo
Pt =e = i=0

The infinitesimal generator matrix Q is used for the
calculation of transient states and it is defined as:

" [ RGss) ifs # 5
Qes,s) = { — By 25R(s, 8" otherwise

An alternative and more stable standard technique for
calculating the probability matrix P.(s,s’) is presented
in [25].

Assuming that phylogenetic trees are the state spaces
produced by the executions of evolution models, they are
also accepted as PTSs and Markov chains. Each transition
connecting two nodes of the tree has the same infor-
mation, probability and temporal requirements than the
transition connecting an equivalent pair of states of the
evolution model. Self-loops with unitary probability are
printed in final states of the tree to produce infinite traces
of present-day taxa because of uncertainty of future traits
and species (Fig. 4). This trick is necessary for evaluat-
ing temporal properties and imposing conditions for the
mathematical resolution of probabilities. The theoretical
concepts, logics and tools will be detailed in the following
sections.

Specification of phylogenetic properties over phylogenies
During the last years, new formalisms and tools have
started to accept properties expressed in probabilistic

id=X
s[11-A id=z
| s[2]=A s[1]=G
AAG d=y s[3]=G s[2]=A
! s[1]= s[3]1=G
‘ ‘ s[2]=
ATG GAG s[3]=
s[1]=A [1]=A
s[2]=T s[2]=T
ATT ATG S[3]=T S[3]=G
id=R id=S
Fig. 4 Translation from a phylogenetic tree to a probabilistic transition system
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temporal logics for capturing and analyzing the underly-
ing randomness of stochastic systems. Probabilistic model
checking combines the expressiveness for representing
paths of a computational model using temporal logics with
the calculation of likelihoods associated to the route. Our
objective is to enrich the original applications presented in
[8] with probabilities and explicit time in order to obtain
a more flexible framework capable of solving complex
problems.

Continuous-time probabilistic logic as a specification
language

Once the data structure and semantic of the model are
defined, the next step involves the presentation of the
syntax and semantics for the stochastic temporal logic.
The logic proposed here for working with CTMCs is
CSL™ [14].

Definition 2 (Continuous-time Stochastic Logic). A
temporal logic formula ¢ and a path formula © are
defined by the following minimal grammar, where p € AP,
A €[0,1] is a real number denoting a probability, and ~ in
{<, <, =,>,>} is a comparison operator:

¢ w=true|p|—¢ | ¢V ¢ | Py [P] 1
P = X¢ | [pUr9]

The formulas are checked against a structure M con-
sidering all paths 7 emerging from a state so. Notice that
M,sy E ¢ means that sy satisfies ¢. The semantics of
well-formed formulas is as follows (let 7 = sps1s3 . . .):

M,so Ep << peL(sy),

M,so E - & M, so ¥ ¢,

M,so Edp VY & M,so E¢orM,syE Y,
M, sy E P~ [®] & Prob(M, sy, ) ~ A,

The calculation of the probability Prob(M, sy, )
requires the identification of the set of infinite paths &
satisfying the path formula M, = = ®:

e M,mn EX¢p & M,n[l]E ¢

e M,k [pUry] < forsomet € [, In : M, (t) E ¢,
and M, (') E ¢ forall 0 < ¢’ < ¢ with I an interval
of reals.
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The set {w € I1 | M,m F &} is obtained by the union
of finitely many pairwise disjoint subsets I1(x,) by ([26]
Definition 3), each one characterized by the finite pre-
fix m, of all infinite sequences of the set satisfying .
Therefore, the probability function Prob(M, sg, ®) is com-
puted as the summation of probabilities in all possible
prefixes m;, by ([26] Theorem 1). That is, Prob(M, so, ) =
¥, Pr(Il(m,)) where Pr is a specialized function for
obtaining the probability of the path defined by ;. The
calculation of the probability will be detailed in a further
section.

In qualitative branching-time logics such as CTL, every
path formula imposes a reachability relation or pat-
terns among all the states that satisfy some propositional
requirements. That is, they define sequences of events
that must be found in the model. CTL reinterprets the
quantifiers of first-order logic as path quantifiers, express-
ing the fulfillment of a property throughout all computa-
tion paths (A), or at least exists one computation path (E).
These two must be immediately qualified by one of five
temporal operators, of which three express the satisfaction
of a property eventually in a future state (F), generally at
all states (@), or in the next state (X); and two are condi-
tional constructs in which a precedent is verified until a
consequent comes into force (U), or until and including
the moment when it does, if it does (R). A complete gram-
mar and semantics of CTL formulas can be defined from
a minimal subset of logical operators [27].

In probabilistic temporal logics, path quantifiers are
substituted by probabilistic operators. The satisfaction of
a propositional over all (A) paths is equivalent to max-
imize the expected probability (P>;). The existence (E)
of at least one path imposes the probability to be greater
than zero (P-). Figure 5 describes graphically the basic
semantic.

CSL™ supports timed transitions in the U operator.
Timed variants of the modal operators F and G are
obtained via U as F;¢ = true Uj¢ and G;¢p = —F;—¢.
Instead of writing probability and intervals explicitly,
they can be abbreviated with inequalities. For exam-
ple, P—o 5 [®] denotes P[o,0.5) [P]. This temporal extension
constrains the length of the computational path specified
in the logical equation. The operator X implicitly takes the
real time elapsed for a consecutive branch of the current

2

Fig. 5 Evaluation of probabilistic temporal logic operators

M, so EPso[X¢] M, sy =EPso[Gy] M, so =Pso[ Uy

S0 S0

50
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state. By now, phylogenetic properties querying about the
structure of the tree or mutation traces can be expressed
in CSL™.

Sequence properties

In a non-probabilistic temporal logic, it is already possible
to query a wide range of questions about the arrangement
of the nucleic information in the states of the tree [8].
However, what we look for here is the addition of prob-
abilistic information to the specifications. For instance, a
preliminary probabilistic study focused on lactose intol-
erance within humans [12]: it identifies the haplogroups
having a higher concentration of SNP’s associated to this
disease in the leaves of the phylogenetic tree.

In a similar way to evolution models, phylogenetic prop-
erties can be classified as sequence properties or topologi-
cal properties depending on the information they extract
from the phylogeny. In general, sequence properties are
based on the content of the states, i.e., those proposi-
tions that are evaluated within a node and without need
of temporal operators. Usually, they are composed of sim-
ple patterns whose application scope is restricted to the
surrounding nodes or the entire phylogeny. Such types of
state formulas are called patterns(p,t), being p the proposi-
tions that must be true and ¢ an optional temporal param-
eter (¢ = oo when omitted). They provide a powerful
descriptive formalism for formulating general restrictions
without the limitations of ad hoc approaches. Often, these
properties may be used not necessarily to forbid pat-
terns, but as queries and alerts to signal unusual, possibly
anomalous behavior, and mark it for further study.

Patterns in the genome. A first group of patterns repre-
sents global correctness constraints that are supposed to
hold across the whole phylogeny. They can be categorized
as follows:

e Conservation is modeled as a restriction on the
symbols that can occur at a given position in a
sequence. Commonly, the pattern is codified
according to a set of (im)permissible symbols. It is
possible to define general families of compatible
elements, not bounded to specific positions, and
restrict their usage to exactly one of these positions
when needed.

e (Covariation imposes a relation of dependence
between two (or more) positions in a sequence due to
some physical-chemical constraints or the internal
structure of the genome. It represents the set of
symbols that may appear in the second place in
association to each symbol in the first place.

A global (G) pattern thus defined is easily verified by
extending it over the computation tree.

global (p,t) = P [G=; (p)]
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The variation of the probabilistic parameter determines
the scope (i.e., width) of the pattern over the complete
state space. Lineage-specific haplogroup verification rep-
resents a further step forward, where patterns would be
used to define conditional explorations of the sets of states
of interest of the phylogeny.

Deleterious mutations. Exceptions to the aforemen-
tioned properties may in fact indicate suspicious or poten-
tially deleterious mutations, which are of great interest in
applied phylogenetic studies [28]. Furthermore, known or
suspected mutations of this kind can be explicitly modeled
as patterns and their positioning in a phylogeny assessed.
In particular, those affecting important metabolic func-
tions are expected to prevent or hinder the reproduction
of the organism, and consequently should be confined in
or near terminal leaves.

Observed and feasible deleterious mutations may be
permitted subject to certain restrictions. Specifically, it
may be demanded that, if a hazardous pattern p appears,
it has no offspring, i.e., it is a leaf in the phylogeny; or, to
provide some flexibility, it may be allowed that all descen-
dants, if any, are reached in at most time ¢ (P> [th]).

terminal (p) = P>, [G (p = leaf)]

terminal (p,t) = P>, [G (P = P> [Fst (leaf)])]

In this case, leaves (self-loops in the phylogenetic struc-
ture) must be detected without reference to any particular
sequence. This is easily achieved by performing an equal-
ity comparison between the valuations of AP of the target
state and all its successors.

leaf = )\, opeart € P21 [X (prop)]

Point mutations. Point mutations, reversions and par-
allel or convergent evolution of sequences are properties
that are arranged over local paths of the tree. Thus, they
need access to the topological structure of the tree in some
sense. It is reasonable to start considering a relatively sim-
ple properties based on a tree topology and an associated
sequence alignment, exemplified by a point mutation. For
legibility and compactness in the following example, we
will refer to the atomic propositions s[i] = o (s[i{] # o)
of a state as o; (7;). Suppose for now that the alignment
comprises a number of characters indexed 1 through /,
sequences s are words of length n over an alphabet X,
and s[i] = o (s[i{] # o) means that 0 € X appears (not)
in position i in a state sequence (recall Definition 1 and
Fig. 4). A point mutation is represented by the equation:

Py [0 A X))

which tells whether o is replaced by « at position i in the
next state with a probability greater than .
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Back mutations. It is possible to determine whether a
given tree is free of back mutations or reversions, which
we abbreviate BM. Given an internal node, there is a back
mutation in that subtree involving a position j of the align-
ment if at some point in some descending path from the
node we find a different symbol (¢;) than that found in the
root of the subtree (0}). Then, at some point in the subtree
hanging from that intermediate the symbol from the root
reoccurs.

The formula must model this condition by nesting F
operators: a node satisfies a property which a) eventu-
ally some other descendant does not satisfy, but b) it
is fulfilled once again at some point in the future. The
check is repeated for every symbol that may occur in the
node.

hasBM (col) = \/ 0coiAP~0 [F @ ot A Pso [F (020)])]

oex

Finally, the global formula detectBM iterates the check
over the positions of the alignment and extends it to all
tree nodes.

detectBM = /\;=1le [G (=hasBM (j))]

In these two formulas we present a non-trivial model-
ing example of a cladistic property with a heavy use of
sequence data. The goal is to detect if the tree is free of
back mutations (equivalently, it detects those points in the
tree where back mutations occur due to counterexamples,
if any). In the case of finite domains, such as the set of
DNA sequences, the evaluation of logical quantifiers V and
3 can be substituted by multiple instances of boolean for-
mulas connected by the /\ and \/ operators. In sum, we
have formalized the concept of back mutation in proba-
bilistic temporal logic. The addition of intervals refine the
length of the paths in the property.

Topological properties

Identifying if a phylogenetic tree reflects the correct struc-
ture of the evolution is one of the most important topolog-
ical questions. Given a phylogenetic tree inferred from an
alignment, it should be compared to the speciation model
that we use as reference, for instance, a DNA mutation
model. The computation of maximum likelihoods quan-
tifies the fitness or probability that the topology obtained
by the alignment follows the same trace imposed by a
mutation model [29].

Due to the uncertainty of the frue evolution process
generating the tree of life, the estimation of maximum
likelihoods works as a metric for comparing the topol-
ogy of two or more trees built over the same data set
(the higher value for this score, the better). The selection
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of other inferred phylogenies, alignments or alternative
DNA models modifies the probabilities of the arrange-
ments and returns different scores [30].

The computation of the likelihood score is carried out
by the following formulas, which will be later composed
as logical equations. At position [ of a sequence with
length n, the probability of changing from nucleotide i
in state X to nucleotide j in state Y is denoted by the
probability function Pjj(dxy). The variable dyy indicates
the branch (temporal) length between the states X and Y,
which is a positive value for each pair of connected nodes.
Equation 2 corresponds to the overall likelihood for the
tree in Fig. 4. The probability function P;(-) depends on
the selected mutation model [29, 31, 32]. This probability
function is determined by the model checking tool by ana-
lyzing the transitions of the mutation model that it uses
as computational model. The expression Z(/) denotes the
base of the DNA in taxon Z at position /. The constant f;
is the theoretical frequency of the base i in the alignment,
which is dependent of the mutation model.

L' = Siac6 1 Bimace) fiPi(dxy)Pizay(dxz) (2)
Piray(dyr)Pjsq) (dys)
Equation 2 can be factorized as the combination of the

likelihood of the left and right subtrees in order to avoid
the recalculation of the same subformula multiple times:

Ly = Sicucenily, 3)

Ly, = SiPyj(dxy)Ly - SiPucdxz)Ly (4)
Normally, the DNA of present-time taxa in the leaves
of the tree has maximum likelihood (i.e., L%,, 4 = 1).In

opposition, the nucleic bases of the internal nodes are
unknown and they shall be inferred with the mentioned
formulas. Due to the uncertainty in the genome of the
ancestral states, the estimation of the likelihood in X at
position / implies the summation of Lé(,i for all the possi-
ble nucleotides. The evaluation of the likelihood equation
at the root node returns the score Lg,,s for the whole tree.
The likelihood value of a complete genomic sequence cor-
responds to the product of the likelihood values of every
position since we assume that sites evolve independently
of each other. Logarithms over Lg,, are regularly used
because of the small likelihood values.

[ [
LRoot = Zi=(4,C,G,TYiLRoot,i (5)

Lroor = TI'=1L5 . (6)

Nevertheless, the search for the tree with maximum
likelihood requires the evaluation of a considerable num-
ber of equations over a great tree space, which converts
the searching process using scores in an NP-hard problem
[1]. Despite the storage of partial solutions (Lé(,i)’ more
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heuristics must be introduced in order to gain feasible
solutions.

Extra simplifications consist of a) the propagation of the
local maximum Lé(,l- instead of the four internal values Lg(,i
and b) the assignation of a preliminary character to the
internal ancestors of the phylogenetic tree (for instance,
using a maximum parsimony method when there is no
ambiguity in the selection of the nucleotide). The main
drawback of these approaches is the extraction of a local
maximum instead of the real solution. The selection of the
initial seed and the intensive sampling method of the tree
space determines the quality of the approximation to the
real likelihood value for the phylogeny [33].

In Section “Case of study:maximum likelihood of a phy-
logenetic tree” we show how a model checking tool can
test and compute the reliability of a tree according to
the defined mutation model. The mathematical equations
of MLE for evaluating the phylogeny are rewritten using
probabilistic temporal logics. Later, they are executed
over a CTMC chain corresponding to a DNA mutation
model. Finally, the model checking procedure queries
whether the probability of appearance of a particular
mutation in the tree is over or not a predefined threshold.
The evaluation of the CSL™ formulas needs the proce-
dure for computing probabilities introduced in the next
section.

Results and discussion

Algorithm and tools for model checking

The evaluation of biological hypotheses qualified with
probability and time requires the extension of the tradi-
tional model checking algorithms [27]. The first point of
this section is devoted to the introduction of functions
and numerical equations for solving the quantitative part
of the formulas, which is the main difference with respect
to previous model checking algorithms. The second point
focus on the tools implementing this extension.

Algorithm for CSL™

Given a PTS and a CSL™ formula ¢, the model checking
problem consists of identifying the set of states where ¢
is valid. The basic procedure implies a recursive compu-
tation of the state set Sat(¢) for all the states satisfying ¢.
The model checking algorithms for solving CSL™ formu-
las are mainly identical to those of classic model checking
[27] except for the resolution of probabilities in P~ [ ®].
In short, the recursive algorithm of probabilistic model
checking incorporates the new sentence:

Sat(P~; [®]) = {s € S| Prob(M, s, D) ~ A}

The computation of the Prob function sometimes
requires a discretized version of the CTMC. The embed-
ded discrete-time Markov chain (DTMC) is the same
tuple M (Definition 1) but replacing the transition rate
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matrix R by a transition probability matrix P whose
values are:

R(s,s')

/ G if E(s) #0
Pouban(s,s) =11 ifE(s)=0and s =+
0 otherwise

E(s) is known as the exit rate of state s. It is defined as
the summation of every output transition rate R(s, s'):

E(s) = ZyesR(s,s)

The value E(s) = 0 means that s is an absorbing state or
siphon. The path probability for each path operator is now
calculated as follows.

Poy[ X¢] formula. In CSL™, the next operator has no
sense as in continuous-time there is not an unique next
real number. This operator is included for compatibility.
It detects if any direct transition between a state s and
a successor s’ has probability Pe,par(s,s’) ~ A in the
embedded DTMC.

Por[ ¥ Uré] formula. The computation of the probabil-
ity for the until operator depends on the value of the
interval /. Generally, the interval I is classified as:

e [=[0,¢] witht € Rxg;

o I =[¢t,f]witht,t’ € Rygand ¢ <t

e [ =[t,o0] witht € R>o.

For the case of I = 1[0,¢], the probability

Prob(M, s, U q¢) is equal to:

(i) 1, if s € Sat(¢)

(ii) 0, if s € Sat(—y A —=¢p) ort =0

(iii) Zsesatcy)Pe(s, s'), otherwise
s'eSat(¢p)

When I = [0,00], then Prob(M,s, Yy Upec)¢) =
Prob(emb(M), s, yUg). It is calculated indefinitely as fol-
lows until a stop condition is reached (i-ii):

Prob(emb(M), s, yU¢)
=X sesat(y) Pembn) (5,8") - Prob(emb(M),s', yU¢p)

s'eSat(yve)

The embedded DTMC must be free of loops (infinite
paths) of intermediate states so as to have a finite and
solvable numerical equation system.

When I = [¢,¢], the until operator must consider a)
the time ¢ spent in states satisfying ¥ plus b) up to time
¢ — t required for reaching ¢. The first part can be
compared to Fjp;¥ and the second part corresponds to

I/fU[o,t’—t] ¢:

Prob(M, s, ¥ Upp1¢) = Ssesar(—y)Pe(s,8') - Prob(M, s, wU[op—¢)
s'eSat(yr)



Requeno and Colom BMC Bioinformatics (2016) 17:235

The last case I = [t,00] is similar to the previous
I = [t,t] but changing ¥ Ujoy_g¢ by ¥ U¢ due to the
infinity. As the until operator is unbounded, it is evaluated
in the embedded DTMC:

Prob(M, s, Y U[1,001$) = ZscSat(~y)Ps(s,5") - Prob(emb(M),s', yUg)
s'eSat(yr)

The temporal complexity of verifying a CSL™ formula
¢ against a CTMC is linear in the number of logical con-
nectives and temporal operators of the formula (|¢|) and
polynomial in the size of S. More generally, the complexity
is:

O (poly(size(S)) * q * timax * |@|)

where t,,,,, is the maximal bound of a path subformula
Y1 Uryrs of ¢, with ty,,4, = 1if it doesn’t contain any U sub-
formula. The parameter ¢q is equal to g = maxcs|Q(s, s)|.

Model checking tools

A model checking tool or verifier requires two input files
for the verification process: a first file with the descrip-
tion of the model, and a second file with the specification
of the properties. Traditionally, it returns if the specifica-
tion is satisfied in the model or not, and a counterexample
that falsifies it if required. In probabilistic model checking,
extra information shall be provided such as the minimum
probability for which the property succeed.

The modularity and independence of model and specifi-
cations allow the evaluation of several properties over the
same model and, vice versa, the test of the same phyloge-
netic requirements over different computational models.
The encapsulation of the underlying technological imple-
mentation details (e.g., multi-threading, data bases, etc.)
is one of the most important features of this kind of tools.
The main advantages of the model checking framework
are the abstract description of model and properties using
logics and mathematical formalisms, and the portability of
these files between computers that have installed the same
model checking tool.

There exists a considerable diversity of verifiers with dif-
ferent performances, qualities and designs [34]. Among all
the model checking tools developed for probabilistic sys-
tems, PRISM [35], MRMC [36] and CADP [37] are the
most important ones.

In our case, we have selected PRISM for the experimen-
tation for several reasons. PRISM is a generic state-based
model checking tool capable of handling probabilistic and
timed specifications over Markov chains. PRISM offers
Java portability, a powerful syntax for handling time and
probabilities in models and specifications, and a good sci-
entific community support. Besides, it is open source,
which allows the modification and optimization of its
code. The real performance depends on the particular
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structure of the model and specifications. This fact is
shown in the example of case of study.

Case of study: maximum likelihood of a phylogenetic tree
Formal methods help for describing mutation models and
evaluating properties over phylogenetic trees. Among all
the potential applications, we focus on the problem of
analyzing the statistical probability of a phylogeny. Maxi-
mum likelihood is one of the most common methods for
phylogenetic inference. Given a mutation model, it scores
the quality of the topology for a inferred tree. However,
the incorporation of new models into current software
tools requires an expertise in programming languages and
a deep knowledge of the source code. This fact limits
the extension, upgrade, debugging and maintenance of a
software tool with new models defined by the biologists.
To this end, we show how to define a tree and a muta-
tion model using the description language of CSL™ and
CTMCs. A phylogenetic tree is formulated as a succes-
sion of nucleotide mutations that are checked over a
mutation model. The verification process returns the like-
lihood of obtaining the tree from a particular model.
We have analyzed several phylogenies using the PRISM
model checking tool. In addition, we have adapted the
software for optimizing the computation of maximum

likelihoods.

Translation to PRISM

Our framework plays the role of worker for computing
the maximum likelihood during the evaluation of the tree
topology in current inference algorithms and tools ([38],
Fig. 2). The model checking tool returns a confidence
value between [0, 1], which represents the likelihood of
getting a peculiar arrangement of nucleotides in the states
of the tree with respect to a model of mutations. The score
provided by the result of the verification process is use-
ful for guiding the iterative refinement of the phylogenetic
tree. Our tool requires an external tree generator.

The model checking tool requires as input a) a descrip-
tion of the DNA mutation model, and b) the specification
of the tree in terms of likelihood equations. Figure 6
corresponds to the file describing the mutation model
over which the phylogenetic tree will be evaluated. By
changing the relations and the ratio of transitions, it is
possible to switch from one mutation model to another.
The logic selected for specifying properties and the
abstract language for describing Markov chains improve
the legibility of the system and make the maintenance eas-
ier. PRISM provides an user-friendly textual language for
writing the model and equations.

The computation of the probability is model-dependent.
Some of the historical mutation models are Jukes-
Cator (JC), Kimura, Felsenstein or the Generalized time-
reversible (GTR) [39]. For simplicity in this example,
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// Continuous-time Markov chain
ctmec

const double e = 2.71828;
const double nu = 1;

// Nucleotides
const int A

const int C
const int G

W N =

const int T

//3C model
formula pr_ii
formula pr_ij

nu;

nu;

module TREE
x : [A..T] init A;

[1 x=A -> pr_ii:(x’=A)+pr_ij: (x’=C)+pr_ij:(x’=G)+pr_ij: (x’=T);
[1 x=C => pr_ij: (x’=A)+pr_ii:(x’=C)+pr_ij:(x’=G)+pr_ij: (x’=T);
[1 x=G -> pr_ij:(x’=A)+pr_ij: (x’=C)+pr_ii:(x’=G)+pr_ij: (x’=T);
[1 x=T -> pr_ij:(x’=A)+pr_ij: (x’=C)+pr_ij: (x’=G)+pr_ii: (x’=T);
endmodule

Fig. 6 Description of the Jukes-Cantor model in PRISM syntax

we consider the JC model. The substitution rate nu
equals to 1. It expresses the number of ticks needed for
the activation of the transition rather than an explicit
probability.

The translation of the mathematical equations to the
syntax of the stochastic logic supported by PRISM is
exemplified in Fig. 7. It corresponds to the MLE equations
defining the tree of Fig. 4. The conversion is dealt by
a BioPerl script [40]. The unfolding of these equations
depends on the structure of the phylogenetic tree and the
genome placed in its tips. In an indirect way, the equations
specify the structure of phylogenetic tree with respect to a
DNA mutation model: they depict the trace of mutations
from the root to the leaves.

Besides asking for a particular bound, PRISM includes
iterative methods for calculating maximal (minimal) prob-
abilities of a path of the tree. For example, the operator
P=? [F<=5 x1 = A] returns the probability of reach-
ing a nucleotide A at position x1 of the alignment
within 5 time steps in the future. It is equivalent to
P_;[F.—5seq[1] = A]in CSL™A syntax, but ? is the thresh-
old calculated by the model checking tool instead of an
explicit probability.

PRISM allows the specification of the initial state.
For example, filter (min, P=? [F<=5 x1 = A],
x1 = C) returns the minimum probability taking the
sequence x1 = C as the initial state. It ensures that there
exists a path starting in x1 = C that eventually reaches
x1 = A. The properties are annotated with names for
defining the partial likelihoods Lé(,i. In case of phyloge-
netic trees with estimated nucleotides in the ancestors
(such as in the case of maximum parsimony), the interme-
diate nodes are initialized with constant values Lé(’i =1

// Markov decision process

// Notation: L_<id_state>_<seq_position>_<nucleotide>
// p_<nucleotide>

// Root likelihood

"LX": "LX4" x "LX2" *x "LX3";

"LX1": pA*"LX1A" + pCx"LX1C" + pG*"LX1G" + pT*"LX1T";

// Likelihood for the intermediate node Y
"LYi": "LY1A" + "LY1C" + "LY1G" + "LY1T";
"LY1A": (filter(min, P=7 [F=dyr x = A]l, x = A) * "LR1A"

+ ... + filter(min, P=?7 [F=dyr x = T], x = A) * "LRiT")*
(filter(min, P=7 [F=dys x = A], x = A) * "LS1A"
+ ... + filter(min, P=7 [F=dys x = T], x = A) * "LS1T");

"LYIT": (filter(min, P=? [F=dyr x = A]l, x = T) * "LR1A"

+ ... + filter(min, P=? [F=dyr x = T], x = T) * "LRIT")*
(filter(min, P=7 [F=dys x = A], x = T) * "LS1A"
+ ... + filter(min, P=? [F=dys x = T], x = T) * "LS1T");

// Terminal leaves whose nucleotide is present in the tree.

"LR1A": 1;
"LS1A": 1;
"LZ1G": 1;

// Terminal leaves whose nucleotide is not present in the tree.

"LR1C": 0O;
"LS1C": 0;
"LZ1A": 0;

Fig. 7 Representation in PRISM syntax of the MLE equations for Fig. 4

or Lé(,i = 0 for reducing the initial calculations. The
header of the file describes the notation of the variable
names. The constant dxy is the distance between states X
and Y.

However, the current release of PRISM does not store
the partial results Lé(’i in local memory, which implies a
reevaluation of Lé(,i every time it is accessed. The inabil-
ity for caching these values damages the potential opti-
mization caused by the factorization of the probabilities
Pji(-) in Eq. 3. This peculiarity, together with the inher-
ent delay introduced by the Java virtual machine, penalizes
the performance in comparison to other specific systems
for computing maximum likelihoods [22, 23]. In order to
solve this problem, we have modified PRISM for caching
the partial results LfX’i. Applying this simple change, the
model checker slightly improves its performance.

Experimentation

Figure 8 presents the experimental results with the
adapted version of PRISM. The data set used for this
experimentation is synthetic. Using this data set, we try to
cover the spectrum of small phylogenies and analyze the
cost of the evaluation of the MLE equations over there.
We have created random phylogenetic trees of up to 30
tips using a Yule backward model [20]. For each tree size
(number of tips), we have generated ten random trees
and calculated the harmonic mean time. The genomes
have a single base with an homogeneous distribution of
nucleotides. Although subject to a perfect parallelism, the
temporal cost for larger strings can be estimated linearly
by multiplying the time by the number of bases.
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All tests have been run on a Intel Core 2 Duo E6750
@ 2.66 GHz with 8 GB RAM and Linux. Memory is not
a limiting factor because the experiments have been suc-
cessfully executed with only 4GB assigned to the Java
virtual machine. The factorization of the equations and
the initialization cost in PRISM are delays that must be
considered for the judgment of the results.

The exponential trend observed in the graphic is
explained by the exploration method selected by PRISM
for calculating the probability function Pj(d). In this
way, PRISM unfolds the DNA mutation model and gen-
erates all the possible traces between the bases i and
j, applying implicitly an exhaustive searching method.
PRISM looks for all the paths of #n nodes with distance
Yk=1..ndx = d that maximize P;(d), being i (j) the ini-
tial (final) state and djy the distance between each pair
of intermediate states. The combinatorial exploration of
the paths satisfying the previous restrictions of length and
probability leads to the exponential cost for calculating
Py(d).

We propose an alternative configuration of the
equations in order to take advantage of the peculiar
procedure in PRISM for managing probabilities. Figure 9
shows this rewriting. Now, exclusively the phylogenetic
leaves are assigned with a DNA value because they are
the only values whose nucleic base we know with cer-
titude. The internal nodes are left undetermined in the
specification. The addition of the distances dxy+dyr
marks the length of the path between the root and the
leaf R. The estimation resulting from the evaluation of the
formulas in Fig. 9 places an upper bound to the real value
of likelihood. Each filter extracts independent paths with
maximum probability, presumably giving rise to a set of
disjoint routes whose only common ancestor is the root.
Although probably depicting a degenerated phylogenetic
tree, it results in a suitable heuristic for pointing out the
maximum likelihood.

Figure 10 presents the performance results of the
experiments. We continue using the same methodology
introduced in previous trials. We have created random
phylogenetic trees of up to 1000 tips using a Yule back-
ward model [20]. For each tree size (number of tips), we
have generated ten random trees and calculated the har-
monic mean time. The genomes have a single base with
an homogeneous distribution of nucleotides. The main
consequence of the new configuration in the equations
is a linear trend in the temporal cost. It grants the eval-
uation of bigger phylogenies and larger sequences than
before.

This framework becomes competitive for obtaining an
upper-bound approximation for MLE efficiently. Future
optimizations should focus on the implementation of

// Markov decision process

// Notation: L_<id_state>_<seq_position>_<nucleotide>
// p_<nucleotide>

// Root likelihood

LX": "LX1" % "LX2" * "LX3";

"LX1": pA*"LX1A" + pC#"LX1iC" + pG+"LX1G" + pT#"LX1T";

// Likelihood of reaching a certain nucleotide in the tips
// starting with a particular nucleotide in the root.
"LX1A": filter(min, P=? [F=(dxy+dyr) x = A], x = A) *
filter(min, P=? [F=(dxy+dys) x = A], x = A) *

filter(min, P=? [F=dxz x = G], x = A);

"LX1C": filter(min, P=? [F=(dxy+dyr) x Al, x = C) *

filter(min, P=7 [F=(dxy+dys) x = A], x C) *
filter(min, P=? [F=dxz x = G], x = C);

"LX1G": filter(min, P=7 [F=(dxy+dyr) x = A]l, x = G) *
filter(min, P=7 [F=(dxy+dys) x = A], x = G) *

filter(min, P=? [F=dxz x = G], x = G);

"LX1T": filter(min, P=? [F=(dxy+dyr) x = A]l, x = T) *
filter(min, P=7 [F=(dxy+dys) x = A], x = T) *
filter(min, P=? [F=dxz x = G], x = T);

Fig. 9 Rewriting of the MLE equations for Fig. 4
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Fig. 10 Time required in PRISM for the computation of the upper bound of the maximum likelihood value

more efficient libraries and dynamic programming tech-
niques that solve, or at least ease, the aforementioned
limitations and bottlenecks in PRISM.

Conclusions

Model checking is a generic framework that has been
applied for qualitative analysis over phylogenies. The
main advantages of this approach are the legibility and
soundness of formal methods based on temporal logics,
the independence of the model from the specifications
and the availability of powerful verifiers that automati-
cally analyze the specifications and find counterexamples.
Besides, the encapsulation of the implementation in a
model checking tool hides and simplifies the access to the
underlying technology.

Nevertheless, some phylogenetic properties are beyond
the expressiveness of first-order temporal logics used
in that environment. In this paper, we have completed
the previous framework including explicit time and
probabilistic information. To this end, we have applied
stochastic extensions of the model checking framework
for querying quantitative properties over phylogenetic
trees and mutation models. The inclusion of explicit time
and probabilities matches naturally with the speciation
models. In this sense, we have introduced a stochastic
logic, data structure and methods adapted for manip-
ulating and computing probabilities over continuous-
time systems. Several quantitative properties have been
specified.

In order to prove the feasibility of our approach, we
focused on the problem of analyzing the statistical prob-
ability of a phylogeny. We have studied the likelihood
of obtaining a phylogenetic tree through the evaluation
of maximum likelihood estimations over DNA mutation
models. A phylogenetic tree is formulated as a set of
paths using temporal logics (i.e., a path is understood
as a succession of nucleotide mutations that are checked

over a mutation model). The verification process returns
the likelihood of obtaining that tree from a mutation
model.

We have shown how to translate the model and spec-
ifications to the particular notation of this framework.
We have analyzed several synthetic (random) phyloge-
nies using the PRISM model checking tool. A linear-time
heuristic has been proposed for the calculation of an
upper bound of the likelihood score. We have customized
the tool in order to slightly improve the verification
costs.

This work opens the door for the review of bigger sys-
tems with quantitative properties similar to those defined
in this paper. The modularity of our framework allows the
evaluation of hypotheses and the comparison of results
for a set of phylogenetic trees by only changing the tree
file (the specification of the property remains constant).
Finally, the search for the valuations that verify a cer-
tain specification leads to an intensive exploration of the
formula space or the solution of linear systems. The intro-
duction of parametric model checking for the automatic
discovery and mining of phylogenetic information out-
lines our future work.
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