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Abstract

Background: It is necessary to evaluate the efficacy of individual drugs on patients to realize personalized
medicine. Testing drugs on patients in clinical trial is the only way to evaluate the efficacy of drugs. The approach is
labour intensive and requires overwhelming costs and a number of experiments. Therefore, preclinical model
system has been intensively investigated for predicting the efficacy of drugs. Current computational drug sensitivity
prediction approaches use general biological network modules as their prediction features. Therefore, they miss
indirect effectors or the effects from tissue-specific interactions.

Results: We developed cell line specific functional modules. Enriched scores of functional modules are utilized as cell
line specific features to predict the efficacy of drugs. Cell line specific functional modules are clusters of genes, which
have similar biological functions in cell line specific networks. We used linear regression for drug efficacy prediction. We
assessed the prediction performance in leave-one-out cross-validation (LOOCV). Our method was compared with
elastic net model, which is a popular model for drug efficacy prediction. In addition, we analysed drug
sensitivity-associated functions of five drugs - lapatinib, erlotinib, raloxifene, tamoxifen and gefitinib- by our model.

Conclusions: Our model can provide cell line specific drug efficacy prediction and also provide functions which are
associated with drug sensitivity. Therefore, we could utilize drug sensitivity associated functions for drug repositioning
or for suggesting secondary drugs for overcoming drug resistance.

Background
It is important to predict drug efficacy by genomic disease
signatures for realizing personalized therapy. Although
people have same disease, they show different status of gen-
omic signatures, and it causes different efficacy of a drug.
For example, Gefitinib is a first-line drug for advanced non-
small-cell lung carcinoma (NSCLC) patients, but only 20 ~
30 % patients are sensitive to Gefitinib (Fig. 1) [1].
There are two types of methods for identifying the effi-

cacy of a drug; clinical trials and computational methods.
Although clinical trial is much accurate in assessing drug
efficacy and toxicity, it requires overwhelming cost and
a number of tests. Also, there is a limitation in

experimental method, for it cannot predict the efficacy of
a new drug. So, we need to conduct same overall process
of clinical trial to identify the efficacy of a new drug.
There are, accordingly, many computational methods

which predict the efficacy of a new drug using genomic
data [2, 3]. With the recent advances biological experi-
mental technologies, large collections of matched drug
screens and genomics profiles of cancer cell lines have
been published [4, 5]. These data have been used to build
drug efficacy prediction models by associating genomic
features with drug sensitivity in cancer cell lines [6–9].
These previous studies used single gene or multi genes as
associated genomic features for predicting drug efficacy.
In tumorigenesis, diverse patterns of mutation, gene ex-

pression have been observed in cancer-specific, or tissue -
specific manner [10]. Diverse patterns of genomic features
according to the biological contexts play an important role
in clinical efficacy. Recently it has been found that
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biological networks can be rewired according to biological
contexts, such as genotype and phenotype [11–14]. With
network rewiring, drug responses in each person can be
changed [15]. For example, in Gefitinib-sensitive cancers,
RAS,MEK/ERK and PI3K/AKT signaling pathways are
suppressed, resulting in cell cycle arrest and apoptosis. In
Gefitinib-resistant cancers with network rewiring, the
secondary RTK, which is not a target of Gefitinib, reacti-
vates RAS,MEK/ERK and PI3K/AKT signaling pathways.
Sustained activations of these pathways result in cell pro-
liferation and survival in the presence of Gefitinib.
Previous methods used known gene sets or known path-

ways as their features for predicting drug efficacy. There-
fore, those methods cannot consider network rewiring.
By considering network rewiring and biological

context, we can enhance the accuracy in predicting drug
efficacy. We assume that each cell line has differently
activated gene set of same biological functions, so if acti-
vated gene sets of each cell line are similar, the drug
efficacy of cell lines is similar. For instance, activated
gene sets of apoptosis are similar in cell line1 and cell
line 2. In this case, the efficacy of Lapatinib, a drug re-
lated to apoptosis, will be similar in both cell line 1 and
cell line 2. To be generalized, this method comparing
the functions of a drug and the functions associated to
the activated gene sets in a cell line explains the efficacy
and related biological functions of a drug.
Here, we aim to develop a method considering net-

work rewiring and biological context to predict the effi-
cacy of drugs. This method will suggest personalized
medicines based on genomic information.

Methods
We explained system overview in Fig. 2.

Data preprocessing
We used gene expression data of NCI-60 [16], a panel of
60 diverse human cancer cell lines. The gene expression

data of 9 different cancer types is from GSE32474 and
GSE34211 in GEO database. We normalized the gene
expression data of cancer samples from each cell line,
which passed quality check, by GCRMA. The gene ex-
pression data of 9 normal tissues are arranged from
GSE21422, GSE15824, GSE8671, GSE48060, GSE30999,
GSE11842, GSE14407, GSE55945, and E-TABM-282,
respectively, in GEO and arrayexpress databases. We
normalized the gene expression data of normal samples
which passed quality check, by GCRMA.

Biological network construction
We constructed a backbone network by integrating pub-
lic databases, which are BioGrid [17], KEGG [18], and
TRANFAC [19]. The constructed backbone network in-
cludes various types of interactions such as protein-
protein interactions and gene regulatory interactions.
The backbone network has 12,849 nodes and 300,507
interactions.

Context-specific function module
We used MCL for clustering the backbone network.
MCL is a graph clustering using flow simulation. Several
researches utilized and proved that MCL generates ro-
bust cluster functional modules from given biological
networks [20–23]. Through MCL, we could generate
MCL functional modules of the backbone network. We
assigned absolute value of PCC of the two genes con-
nected in the network as edge weights. We used 2.5 as
the inflation coefficient. For analysing the clustering re-
sult, we chose MCL modules of size greater than 8.

Function vector
A function vector is a vector containing GO terms that
are enriched on genes of a functional module. Each
functional module has multiple enriched GO terms,
which are biological functions. Therefore, it is difficult
to identify the function of a functional module.

Fig. 1 The difference of drug response. The difference of activated pathway can change the drug response
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To assign a function on a functional module, we made a
function vector. To find all function vectors, we
conducted following steps; first, we performed enrichment
analysis to find enriched GO terms of all functional mod-
ules. We made enriched GO terms as a vector. Second,
we eliminated repeated vectors of GO terms (Fig. 3).

Context-specific function detection
We could obtain module similarities between GO terms
of functional modules and function vectors by calculat-
ing Jaccard index:

JðFM; FV Þ

¼ jFM∩ FV j
jFM∪ FV j

FM : Function module;

FV : Function vector

We utilized module similarities between function mod-
ules and function vectors to map each function module
on corresponding function vector in a learning table. First,
we calculated module similarities between functional
modules and whole function vectors. Second, we mapped
functional modules on function vectors, which have the

highest module similarity between GO terms of the func-
tional module and function vectors (Fig. 4).

Regression model
We made learning tables for performing a multiple lin-
ear regression per a drug. First, we found functional
modules of cell lines. Second, we found function vectors.
Third, we mapped each functional module of each cell
line on function vectors. Forth, we calculated a functional
module score by:

Module score ¼
X

FCi

N
;

where FCi represents fold change of gene i and N repre-
sents the number of genes in a module.
Fifth, we added GI50, which is drug concentration

required to reduce growth rates to 50 % of the maximum
rate, values of drugs as drug response values.
The multiple linear regression model is defined as the

expected value of y conditioned on values of x:

y ¼ γ1x1 þ⋯γnxn þ ε;

where y represents GI50 value of a drug and xi repre-
sents score of a functional module i.

Fig. 2 System overview. 1. We constructed the backbone network. 2. We made cell line-specific networks using gene expression data of cell lines
from NCI60 and the backbone network. 3. We identified cell line-specific function modules applying network clustering algorithm on the cell
line specific network. 4. We identified context-specific functions by calculating module similarity of each functional module. 5. We assigned cell
line-specific functional modules on cell line-specific functions to make learning models for predicting the efficacy of drugs. 6. We predicted the
efficacy of drugs
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Results and discussion
Context-specific functional module
To make context-specific function modules, we first
construct context-specific networks that mean cell line-
specific networks in this work. We calculate the Pearson
correlation coefficients (PCCs) for all interactions in the
backbone network to construct context-specific net-
works. The criteria for context-specific interaction is
greater than p-value 0.01 of PCCs. Then we assign
values of PCCs as edge weights of context-specific net-
work. Next, we use network clustering algorithm, MCL
(Markov clustering) [20], to detect functional modules in
the weighted context-specific network. MCL algorithm
cluster weighted network by making strongly correlated
edges to get stronger and making weakly correlated
edges to get weaker. Thereby, only strongly correlated
edges are survived.
The MCL clusters many network modules, the major-

ity of which are very small, and contain two or three
genes only. we filtered the modules by an arbitrary
threshold n and selected n = 8 by reference [20].

Context-specific function
Context-specific functional module has more than
one enriched GO biological processes. Thereby, it is

difficult to identify related function of a context-
specific functional module. For example, “MCF
Module 1”, which is one of context-specific functional
modules, has three enriched GO biological processes,
which are “GO: 1234”, “GO:156” and “GO:3249”.
Enriched GO biological processes of “MCF Module 2”
are “GO: 1234”, “GO: 145” and “GO: 3244”. A drug
efficacy prediction model of Gefitinib suggests that
“GO:1234” is associated with efficacy of Gefitinib. Then,
we cannot identify whether related function of Gefitinib
efficacy is “MCF Module 1” or “MCF Module 2”. To avoid
this ambiguousness, we define a GO vector for mapping
one context-specific function module to a function. The
GO vector is called context-specific function vector in this
work. In this example, the context-specific function vector
of ‘MCF Module 1” is [“GO: 1234”, “GO: 156”, “GO:
3249”]. We assign context-specific function vector of
context-specific functional module by module similarity
method.
We identified 715 context specific functional modules,

and the number of modules in each cell line is shown in
Fig. 5. The number of function modules of all cell lines
is in Additional file 1. Using these context-specific func-
tional modules, we identified 594 context-specific func-
tion vectors (Table 1).

Fig. 3 Function vector. Function vectors are vectors containing enriched GO terms of functional modules

Fig. 4 Mapping a function module to a function vector. Functional module 1 mapped on a function vector 2
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Performance of drug efficacy prediction
NCI60 has drug response data of more than 2000 drugs.
We used drugs which are FDA approved and targeted
therapy. Thereby, we predicted GI50 values of 29 drugs,
which are tyrosine kinase inhibitors, hormones or inter-
leukins. We then validated predictors’ performance by
computing the concordance index, which is a

generalization of the area under the receiving character-
istics operating curve [3]. The concordance index esti-
mates the probability of how correctly the model
predicts which are the most and the least sensitive cell
lines to a drug. A random predictor would be 0.5, while
a perfect predictor would be 1. Value of c-index, which
represents correctness of the predicted drug efficacy, is
shown in Fig. 6a. We made a multiple linear regression
model of each drug to predict efficacy of a drug. We
used leave-one-out-cross-validation (LOOCV).
To validate context-specific functional modules are

significant features for predicting the efficacy of drugs,
we compared our model with elastic net, which is effi-
cient, widely used regularized regression technique [5].
As can be seen in Fig. 6a, our model gives better predict-
ive performance than elastic net for 21 out of 29 drugs
and we observed a significant good performance for 11
out of 29 drugs (Anastrozole, Bortezomib, Calusterone,
Dromostanolone Propionate, Erlotinib, Ethinyl estradiol,
Mitotane, Nelfinavir, Pazopanib hydrochloride Y, Tamibar-
otene, Tamoxifen citrate) (Additional file 2) , our model
yielding a concordance index greater than 0.586 (p < 0.05).
Elastic net gives significant performance for one out
of 29 drugs (Tamibarotene). To compare performance
result, we applied one tail paid t-test for comparing
concordance index with Person correlation [24]. Our
method outperforms elastic net (p < 2e-4 one tail
paired t-test, for comparing concordance index; p <
0.027 for comparing Person correlation) (Additional
file 3). It is shown in Fig. 6c.

Fig. 5 The number of condition specific functional modules of cell lines

Table 1 Context-specific function vectors

Function GO ID GO description

1 GO:0000377 RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

GO:0000375 RNA splicing, via transesterification reactions

GO:0006139 Nucleobase, nucleoside, nucleotide and nucleic
acid metabolic process

GO:0006396 RNA processing

GO:0000398 Nuclear mRNA splicing, via spliceosome

GO:0016070 RNA metabolic process

GO:0044260 Cellular macromolecule metabolic process

305 GO:0002520 Immune system development

GO:0002329 Pre-B cell differentiation

GO:0030097 Hemopoiesis

GO:0048534 Hemopoietic or lymphoid organ development

GO:0002327 Immature B cell differentiation

472 GO:0051056 Regulation of small GTPase mediated signal
transduction

GO:0050790 Regulation of catalytic activity

GO:0043087 Regulation of GTPase activity
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Lapatinib, Erlotinib
In our predicted result, drug efficacy related context-
specific function of Lapatinib are Function 305 and
Function 66. Function 305 is related to immune
system development and Function66 is related to regula-
tion of JAK-STAT cascade and cell proliferation. Lapatinib
blocks EGFR, which is a target of Lapatinib. So, it makes
EGFR not to transfer signal to JAK-STAT pathway.
Thereby, Lapatinib negatively regulates cell proliferation.
Among the drugs we experimented, Erlotinib has same
therapeutic function as Lapatinib. As we expected,
context-specific functions which are related to efficacy of
Erlotinib are the same with as Lapatinib.

Raloxifene, Tamoxifen
Raloxifene targets estrogen receptor and it acts as estro-
gen agoinst [25]. In our research, the context-specific
function of Raloxifene is Function 501 (Additional file
4). Function 501 is related to tissue morphogenesis [26].
One of the functions of estrogen is tissue morphogenesis
[27]. Tamoxifen, which we experimented, has same
therapeutic function as Raloxifene. The Function 501 is
on top4 context-specific function of Tamoxifen [28].

Gefitinib
GTPase activity is the context-specific function of
Gefitinib in our experiment. In cellular environment,
KRAS transfers signal to downstream pathways by
GTPase activity. If KRAS has mutation, it consistently
activates downstream pathways and causes resistance
to Gefitinib [29].

Conclusions
A clinical trial validates the efficacy of personalized
medicines, but does not predict it. To develop per-
sonalized medicines, it is necessary to predict the effi-
cacy of drugs using individual genomic information.
Therefore, many groups have studied approaches to
predict the efficacy of drugs, but they could not ex-
plain which biological functions are related to drug
activity. The context-specific function module based
approach not only predicts the efficacy of drugs but
also describes drug-related biological functions. In this
paper, we generated the model which predicts efficacy
of drugs, using 60 cell lines from NCI 60. We expect
that this model will show better performance if based
on larger amount of cell line data from databases

Fig. 6 Performance comparison of our model with elastic net. a Prediction performance of leave-one-out cross-validation (LOOCV) in the NCI60,
as quantified by the concordance index between the predicted and observed GI50 values. b Comparison of the average concordance index of 29
drugs. c Pearson correlation coefficients between the prediction and the observed data are calculated for each algorithm. The correlation coeffi-
cients from elastic net (x-axis) are compared to those from our model (y-axis). Each dot represents prediction performance for GI50 value of
one drug
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such as CCLE. The proposed approach predicts sec-
ondary drugs for resistant drugs as well as suggests
personalized drugs.

Additional files

Additional file 1: Number of functional modules (TIF 161 kb)

Additional file 2: Comparison concordance index between our model
and elastic net. It contains concordance index of our model and elastic
net in each drug. It contains p-value of concordance index of our model
and elastic net in each drug. It contains drug target information.
(XLSX 11 kb)

Additional file 3: Comparison Pearson correlation coefficient between
our model and elastic net. It contains correlation coefficient of our model
and elastic net in each drug. (XLSX 9 kb)

Additional file 4: GO terms of function vectors. Number of context-specific
functional modules of cell lines (DOCX 18 kb)
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