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Generalized enrichment analysis improves
the detection of adverse drug events from
the biomedical literature
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Abstract

Background: Identification of associations between marketed drugs and adverse events from the biomedical literature
assists drug safety monitoring efforts. Assessing the significance of such literature-derived associations and determining
the granularity at which they should be captured remains a challenge. Here, we assess how defining a selection of
adverse event terms from MeSH, based on information content, can improve the detection of adverse events for drugs
and drug classes.

Results: We analyze a set of 105,354 candidate drug adverse event pairs extracted from article indexes in MEDLINE.
First, we harmonize extracted adverse event terms by aggregating them into higher-level MeSH terms based on the
terms’ information content. Then, we determine statistical enrichment of adverse events associated with drug and drug
classes using a conditional hypergeometric test that adjusts for dependencies among associated terms. We compare
our results with methods based on disproportionality analysis (proportional reporting ratio, PRR) and quantify the
improvement in signal detection with our generalized enrichment analysis (GEA) approach using a gold standard of
drug-adverse event associations spanning 174 drugs and four events. For single drugs, the best GEA method
(Precision: .92/Recall: .71/F1-measure: .80) outperforms the best PRR based method (.69/.69/.69) on all four adverse
event outcomes in our gold standard. For drug classes, our GEA performs similarly (.85/.69/.74) when increasing the
level of abstraction for adverse event terms. Finally, on examining the 1609 individual drugs in our MEDLINE set, which
map to chemical substances in ATC, we find signals for 1379 drugs (10,122 unique adverse event associations) on
applying GEA with p < 0.005.

Conclusions: We present an approach based on generalized enrichment analysis that can be used to detect associations
between drugs, drug classes and adverse events at a given level of granularity, at the same time correcting
for known dependencies among events. Our study demonstrates the use of GEA, and the importance of choosing
appropriate abstraction levels to complement current drug safety methods. We provide an R package for exploration
of alternative abstraction levels of adverse event terms based on information content.
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Background
Motivation and significance
In 2000 the annual cost of drug-related morbidity and
mortality was estimated to be $177.4 billion and rising
[1]. In 2012 alone (the most recent year for which this
data is available from the Agency for Healthcare
Research and Quality) there were more than 1.9 million

emergency department visits in the United States for
adverse drug reactions [2]. Adverse drug events (ADE)
are often missed in pre-market approval clinical trials
due to small patient cohort sizes, exclusion of high-risk
populations, and short follow-up times [3, 4]. The latter
is of concern, since the risk for some adverse events in-
creases with the time of exposure and the cumulative
dosage of the drug [5]. Furthermore, adverse events
might be caused by several drugs interacting with each
other when administered concomitantly, and it is infeas-
ible to systematically test a given drug for adverse
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interactions with each of the approved and experimental
drugs via in vitro and in vivo methods [6].
Traditionally, drug safety monitoring relies on data

from spontaneous reporting systems (SRS), such as the
US Food and Drug Administration (FDA) Adverse Event
Reporting System (FAERS) [7], which contain reports of
suspected ADEs submitted by healthcare providers,
manufactures, and patients. The reports in SRS are
analyzed for drug-adverse event associations (also called
safety signals) via statistical methods based on dispro-
portionality measures, such as the reporting odds ratio
(ROR) and the proportional reporting ratio (PRR), which
quantify the magnitude of difference between observed
and expected rates of particular drug-adverse event pairs
[8, 9]. The FDA screens the FAERS database for the
presence of an unexpectedly high number of reports of a
given adverse event for a drug product using the empir-
ical Bayes multi-item gamma Poisson shrinker (MGPS)
data mining protocol, which includes stratification steps
to minimize false positive signals [10]. Montastruc et al.
list benefits and strengths of the disproportionality ana-
lysis for identification of ADEs in a pharmacovigilance
database [11]. However, there are known limitations of
such systems, such as the varying quality of reports and
underreporting [12, 13].
As a result, increasingly there are efforts to use other

data sources, such as electronic health records (EHRs),
for detecting potential new ADEs [14] and complement
signals seen in FAERS [15, 16]. Researchers have also
used billing and claims data for active drug safety
surveillance [17, 18] as well as turned to social media
[19], clinical trial repositories [20], and literature mining
for drug safety [21, 22]. In addition, there is work on
aggregating ADEs at the level of drug classes [21, 23],
learning drug interactions [24], and reasoning over lit-
erature to discover drug-drug interactions based on
properties of drug metabolism [25]. In previous work
using the literature for detecting drug safety signals [21],
in which the proportional reporting ratio (PRR) was used
to detect adverse drug class effects, one key problem was
the choice of an appropriate level (in the hierarchy of
a terminology) at which adverse event terms associated
with drugs should be grouped into. This problem, of the
lack of an appropriate, consistent, hierarchical abstraction
level of adverse events, has also been noted before [8, 22].
Given the similar nature of disproportionality analysis

and enrichment analysis (EA), we explore solutions to this
abstraction level problem based on recent developments
in EA. EA is commonly used to determine whether the
Gene Ontology (GO) terms [26, 27] representing specific
biological processes, molecular functions, or cellular com-
ponents are over- or under-represented in the annotations
of the genes deemed significantly altered in an experiment
[28]. EA examines for disproportionality among the

expected and observed counts of genes with a specific
function or activity using a hypergeometric distribution
model. While the GO has been the principal focus
for EA, it is possible to perform EA using disease
ontologies—such as SNOMED CT (Systematized
Nomenclature of Medicine—Clinical Terms) [29]. For
example, by annotating protein mutations with disease
terms, Mort et al. identified a class of diseases—blood
coagulation disorders—that are associated with a
significant depletion in substitutions at O-linked
glycosylation sites [30]. We can also apply the EA
methodology to other datasets—such as patient cohorts.
We refer to EA applied to non-traditional use cases as
generalized enrichment analysis (GEA) [31, 32]. For ex-
ample, GEA can detect specific co-morbidities that have
an increased incidence in rheumatoid arthritis patients—a
topic of recent discussion in the literature and considered
essential to provide high quality care [33–35].
We believe that GEA can also be used to analyze drugs

or a set of drugs, e.g., from a drug class, for associated
adverse event terms. Counts of associated adverse event
terms and single drugs can be gathered from the litera-
ture (e.g., based on MEDLINE indexing of drug related
articles) and compared against expected counts based on
background frequencies from a large reference set (e.g.,
all articles in the MEDLINE corpus). When using GEA,
it is possible to address the issue of inconsistent
hierarchies in terminologies via the use of abstraction
levels [36]. An abstraction level is a subset of terms from
a terminology that have similar specificity of meaning,
and are independent of one another. Note that terms in
a single abstraction level are not required to be at the
same hierarchical level in a terminology—terms at a
given abstraction “level” are just a set of terms that are
statistically independent and have the same specificity.
In this paper, we develop an approach based on gener-

alized enrichment analysis to examine associations
between drugs and adverse events at multiple levels of
granularity and simultaneously correct for known
dependencies among predicted events. Our main contri-
bution is the transfer of an established methodology in
functional genomics to pharmacovigilance to address the
problem of picking the right granularity of terms and
the implementation of this approach as an R-package.
As part of this effort, we have developed a compiled ref-
erence set of MeSH term frequencies from MEDLINE
that can be used for EA studies in other use cases. We
also provide a set of reusable adverse event terms by
grouping the corresponding MeSH descriptors onto
abstraction levels with uniform information content.
We validate our work using an established gold standard

for drug safety signaling and comparing our results to an
established drug safety signal detection method from the
literature. We demonstrate improvement in the detection
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of associations between drugs and adverse events from the
biomedical literature, by using the appropriate level of
specificity for the adverse event terms. We highlight the
potential and limitations of our approach on an example
of a drug that is currently being investigated for its poten-
tial association with bladder cancer. As the published
literature increasingly becomes a complementary source
for post-marketing surveillance, our findings should be of
interest to the curators of ADE repositories and drug
safety professionals.

Methods
Our approach for using generalized enrichment analysis
(GEA) for detecting adverse drug events (ADE) is
depicted in Fig. 1 and can be summarized as follows:
First, we acquire candidate associations between adverse
events and drugs from MEDLINE articles from previous
work in the form of MeSH term pairs. We precompute
term frequencies and information content (IC) for all
MeSH descriptors using the 2015 MEDLINE®/PubMed®
baseline corpus (1). We then determine the level of
granularity for the disease terms, using the precomputed
information content (IC) for all MeSH descriptors in the
entire MEDLINE 2015 reference set. We establish
several abstraction levels by aggregating adverse events
into higher-level MeSH disease terms based on their IC
(2). For each drug, using the corresponding MEDLINE
abstracts, we perform GEA to identify adverse events
mentioned at an unexpectedly higher rate as compared
to the reference set, which provides the expected fre-
quency of the event being mentioned in the MeSH

annotations of a set of MEDLINE abstracts. We perform
a conditional hypergeometric test to calculate p-values
that are corrected for known co-occurrence relationships
between adverse event terms at several abstraction levels
(3). Finally, we quantify the improvement in detecting
true signals using a gold standard and comparing with
standard methods (4).

Acquiring candidate drug – adverse events from the
literature
Efforts to extract ADEs from textual sources such as
EHRs, social media, and the literature can rely on either
natural language processing (NLP) (e.g., [37]) or simpler
entity recognition of drug and disease terms, followed by
supervised learning (for example, to distinguish the ad-
verse events of a drug from the drug’s indications [38]).
In addition, there are approaches that extract ADEs
from articles in MEDLINE based on the manually
assigned Medical Subject Headings (MeSH) terms for
MEDLINE indexing (e.g., [22, 39, 40]).
For the first step in this study, the acquisition of candi-

date ADE pairs, we use the set of candidate ADE pairs
between individual drugs and adverse events extracted
from MEDLINE index terms from [40]. The goal is to
prevent testing millions of associations that would need
to be tested if we examined associations among all drugs
(~5000) and all events (~10,000). This dataset consists
of candidate ADE pairs extracted from MeSH term in-
dexes of all 360 k articles in MEDLINE that are indexed
with certain combinations of MeSH terms and qualifiers.
The creation of this dataset (i.e., the MEDLINE query

Fig. 1 Overview on our approach for using generalized enrichment analysis for detecting adverse drug events
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and subsequent recognition and filtering steps) is de-
scribed in detail in [40], but in essence, from all index
terms for a given article, ADE pairs were generated from
combinations of a MeSH descriptor (or supplementary
concept) and a qualifier, where one represents a drug
involved in an ADE (e.g., ofloxacin/adverse effects) and
the other represents a manifestation of an ADE (e.g.,
tendinopathy/chemically induced). Of note, in this
example, ofloxacin and tendinopathy are MeSH descrip-
tors, adverse effects and chemically induced are qualifiers
that denote the context of the respective descriptor, and
the resulting ADE pair is (ofloxacin, tendinopathy). All
pairs of such qualified drugs and events that co-occur in
the index of a given article in the set of 360 k articles are
used as candidate ADE pairs.
In our study, we extract drugs and events into two

separate files with the article ID as provenance informa-
tion so they can be separately filtered and mapped to
higher-level terms or classes, and later re-consolidated
into ADE pairs (e.g., ofloxacin – tendinopathy or ofloxa-
cin – muscular diseases) based on shared article IDs.
Overall, we examine 105,354 unique ADE pairs (377,974
instances) from the full data set between 3057 event
terms and 1609 drugs that are deemed clinically relevant
according to RxNorm and can be mapped to ATC ingre-
dients as described in [40]. RxNorm is a standardized
nomenclature for medications produced and maintained
by the U.S. National Library of Medicine (NLM) [41].
ATC is the Anatomical Therapeutic Chemical classifica-
tion system of active ingredients of drugs developed by
the World Health Organization Collaborating Centre for
Drug Statistics Methodology (WHOCC) [42].

Mapping drugs to drug classes
We map all drugs from the drug-manifestation pairs ex-
tracted from MEDLINE to our target terminology, ATC.
As described in [21], we map drugs through RxNorm in-
gredients, which are linked in RxNorm to ATC and
MeSH identifiers. For example, the RxNorm drug
rosuvastatin (RxCUI: 301542) is linked to both the
MeSH drug rosuvastatin (MeSH ID: C422923) and the
5th-level ATC drug rosuvastatin (ATC code: C10AA07).
A given drug can be represented multiple times in

ATC. Typically, topical drugs and systemic drugs have
different ATC codes for the same active moiety. For
example, the anti-infective ofloxacin has two codes in
ATC, depending on whether it is classified as an antibac-
terial drug for systemic use (J01MA01) or as an ophthal-
mological drug (S01AE01). However, we consider
unique ingredients when we associate drugs with their
ADEs. We only use the codes to link drugs to their clas-
ses. For example, we would aggregate ofloxacin into the
two Fluoroquinolones drug classes (J01MA and S01AE).

Preparing a reference annotation set
For performing enrichment analysis, we need a large
reference annotation set that provides us with expected
MeSH term frequencies (also called background fre-
quency). In addition, these frequency counts also allow
us to calculate the information content of each term
which is used to define a set of MeSH terms with similar
specificity, referred to as an abstraction level. We also
calculate pairwise co-frequencies of MeSH terms from
the reference set as a basis for quantifying known
dependencies among adverse event terms. For our work,
the MeSH annotations for the entire 2015 MEDLINE
serve as the reference annotation set. Of note, the set of
interest and the reference set in our study are not mutu-
ally exclusive. The idea behind generalized enrichment
analysis is that a small, specific set of interest is com-
pared against a much larger, general reference set, which
is why mutual exclusiveness is not a requirement.

Calculating term frequencies
We calculate term frequencies for all MeSH descriptors
by counting the number of articles that are indexed with
a given term in the MEDLINE 2015 baseline set1 divided
by the total number of articles in the set. First, we calcu-
late the sets of article IDs to which a given MeSH
descriptor is assigned based on the file MH_items.gz. For
each descriptor, we also assign the corresponding articles
to all ancestor terms along the MeSH tree number hier-
archy.2 For example, whenever an article is indexed with
the term Depressive Disorder (tree number F03.600.300)
we add the article ID also to the article sets of its
ancestor terms, i.e., Mood Disorders (F03.600) and
Mental Disorders (F03). Finally, we update the article
counts for all MeSH descriptors according to the
aggregated article sets.

Calculating Information Content (IC) scores
The information content of a given term t, IC(t), is
defined as shown in Eq. (1), where p(t) is the normalized
probability distribution for the term with respect to all
terms (calculated as shown in Eq. (2)).

IC tð Þ ¼ − log2p tð Þ ð1Þ

p tð Þ ¼ a tð Þj j
∪ia ið Þj j ð2Þ

In practice, we calculate the IC for each MeSH term
by taking –log2 of the number of articles annotated with
this term and all its descendants, a(t), divided by the
total number of articles in the MEDLINE baseline refer-
ence annotation set, ⋃i a ið Þ. As a result, the IC quantifies
the specificity of a term in the context of the large refer-
ence set, where terms annotating many articles, such as
Brain Diseases, are expected to be general terms and are
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assigned a low IC. Terms annotating only a few articles,
such as Ischemic Attack, Transient, are specific terms
with a high IC.

Calculating term co-frequencies
Enrichment analysis and measures of “unexpectedness”
assume that the probabilities with which two terms
appear are independent of each other. However, that
assumption is not always true. For example, mentions of
Diabetes and Metformin are not independent because
Metformin treats Diabetes. Statistical tests need to be
cognizant of the degree to which two terms are expected
to co-occur because of such dependencies. Terms that
frequently co-occur in a large reference set are also
expected to co-occur in the results of enrichment ana-
lyses by chance. This is especially true for hierarchically
related terms (since annotations are also attributed to
ancestor terms) but also non-hierarchical relations, e.g.,
common co-morbidities. One way to quantify such
dependencies is by using the terms’ co-frequencies in a
reference annotation set.
In this study, we calculate the pairwise co-frequency

for a pair of MeSH terms by intersecting their sets of
aggregated article IDs that are annotated with each term.
The resulting co-frequency counts are stored in a co-
frequency table. Theoretically this would have resulted
in approx. 750 million co-frequencies for 27,455 MeSH
descriptors. In practice, many terms never co-occur and
the co-frequencies are undirected, so we only calculated
the upper diagonal matrix and for only those terms that
co-occur at least once. This way the total number of
stored co-frequencies for our reference set is approx. 75
million term pairs.

Aggregating adverse events into higher level disease classes
Adverse events can be expressed at different levels of
granularity. In MEDLINE, the specificity of terms used
for annotating a given article is subject to the findings in
that article and to the availability of MeSH terms for a
particular adverse event at annotation time. For analytical
purposes, i.e., data mining on a large corpus of articles, it
is advantageous to group individual specific terms into
broader categories of related terms, because variation in
the usage of highly specific terms will even out. Another
advantage of abstracting from specific terms is the reduc-
tion of the total number of terms used for enrichment
analysis (i.e., feature reduction) and minimization of
hierarchical dependencies between these terms (ensuring
feature independence). The same aggregation strategy is
applied to both the terms from the set of interest (i.e., arti-
cles supporting ADEs for a given drug) and those in the
reference set (i.e., all MEDLINE). We consider aggregation
approaches based on the hierarchical levels in an ontology
as well as those based on the information content.

Aggregating at a fixed hierarchical level in MeSH
The MeSH hierarchy has multiple levels. In a previous
study [21], the 2nd level was selected as an appropriate
abstraction level for adverse events. The level of a given
MeSH term is reflected by its tree number. For example,
we would aggregate the 3rd-level terms Tendinopathy
(tree number C05.651.869) and Rhabdomyolysis
(C05.651.807) to the 2nd-level descriptor Muscular
Diseases (C05.651).

Aggregating using information content-based abstraction
levels
An abstraction level is a subset of terms that have simi-
lar specificities and are ontologically independent of one
another. Terms at a given abstraction level are not
required to be at the same hierarchical level in the
ontology hierarchy. For example Tennis Elbow and Bone
Diseases, which are both terms at the 2nd level in the
MeSH tree hierarchy, are of different specificity. Thus,
instead of selecting terms at a specific hierarchical level
we will use information theory to define abstraction
levels.
Information content (IC) [43] provides a measure for

characterizing the true distribution of information at
various, perhaps uneven, levels of the ontology. We
described how to compute the IC of MeSH terms based
on their usage in a large reference corpus (MEDLINE)
above. Ideally, only terms with one specific IC value
should be selected to ensure independence. However,
doing so would reduce the number of available terms
drastically; therefore, in practice, terms within a certain
range of IC are selected (Fig. 1) and the remaining
dependencies between terms are corrected using the
expected co-frequency information.
The appropriate range of IC scores will depend on the

given use case and the ontologies used therein and has
to be determined empirically. Typically, for diseases used
in the context of patient cohort definitions or drug
safety profiles, terms with IC < 3 tend to be too general
and terms with IC > 10 tend to be too specific for en-
richment analysis efforts. In this study, we tested several
abstraction levels all with an upper limit < 10 and com-
pared their impact on the results.
In the following, we will explain the term aggregation

approach exemplarily, using an abstraction layer with a
range from IC 4–7.5.
Among all MeSH descriptor terms, we aggregate terms

that have an IC higher than the upper limit of our target
range (IC ≥ 7.5) to ancestor terms with IC within our
target range (see Fig. 2). For example, we would aggre-
gate both Aneurysm, Ruptured (IC 10.65) and Aneurysm
(IC 7.79) into Vascular Diseases (IC 4.03). Under the
given abstraction layer all three terms would be consid-
ered (left blue box in Fig. 2) but represented by Vascular
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Diseases (green circle). The term Cardiovascular
Abnormalities (IC 7.14), which has two direct ances-
tor terms from two different branches in the MeSH
C-tree, would be kept together with Congenital
Abnormalities (IC 5.55) but not Cardiovascular
Diseases (too general, IC 3.53). Both terms are
considered (center blue box) and represented by
themselves (green circles). Terms that cannot be
aggregated into terms within the IC target range or
that have an IC that is lower than the lower limit
(e.g., IC < 4) are excluded. For example, neither the
term Demyelinating Diseases would be considered (IC
of 8.13 is too specific) nor its only direct ancestor
term Nervous System Diseases (IC of 3.40 is too
general).

Detecting signals
Several signal detection methodologies for drug safety
management exist [9], of which most are targeted at
databases of spontaneous postmarketing adverse event
reports, which include FDA FAERS in the US [7], the
global WHO Vigibase [44], or EudraVigilance [45] in
Europe. In signal detection, basic signal scores are
based on disproportionality analysis, where the
observed frequency of a drug – adverse event com-
bination is compared with the expected frequency
defined as a product of the individual frequencies of drug
and adverse event in the corpus. The proportional

reporting ratio (PRR) [46] is widely used in this context
and is defined as

PRR ¼ a= aþ bð Þ
c= cþ dð Þ ð3Þ

where a is the number of reports that mention the drug
and the adverse event, b the number of reports mention-
ing the drug without the adverse event, c the number of
reports mentioning the adverse event without the drug,
and d the number of reports neither mentioning the
drug nor the adverse event.
To compensate for the over-sensitivity of dispropor-

tionality scores to small cell sizes (e.g., very rare events,
drugs with only few reports), Bayesian methods have
been introduced that make use of a prior distribution,
representing existing knowledge with respect to the
parameter of interest [9]. For example, the Bayesian
confidence propagation neural network (BCPNN) has
been developed by the WHO’s Uppsala monitoring
centre (UMC) [47] and gamma poisson shrinker (GPS)
and multi-item gamma poisson shrinker (MGPS)
approaches are used by the FDA [10].
In this paper, we attempt signal detection using

enrichment analysis, which is related to Bayesian
methods because it also considers information on
background term frequencies. We will evaluate the
performance of our approach by using PRR as a baseline

Fig. 2 Defining an abstraction level based on information content (IC) of terms. Blue boxes denote terms that are considered under the given
abstraction layer (here at IC range from 4.0 to 7.5); green circles denote terms that are used for representing these term aggregations, crossed out
terms are ignored. Values in blue circles denote the information content (IC) of the term. Examples: Left box: Aneurysm, Ruptured and Aneurysm are
aggregated into and represented by Vascular Diseases. Center box: Cardiovascular Abnormalities and Congenital Abnormalities are considered but
Cardiovascular Diseases is ignored (too general). Demyelinating Diseases will not be considered under this abstraction layer because there is no ancestor
term into which they could be aggregated. Tree numbers in square brackets indicate hierarchical relations between terms according to the MeSH
tree hierarchy
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for signal detection on a common gold standard set of
drug-adverse event associations.

Signal detection using GEA
R packages for enrichment analysis exist, notably two
approaches which use MeSH as the term source. The
MeSH ORA framework is a R/Bioconductor packages to
support MeSH over-representation analysis [48]. DOSE
is an R/Bioconductor package for disease ontology
semantic and enrichment analysis [49]. Guided by these
efforts, we developed an R package to compute the
significance of associations between drugs (or drug
classes) and adverse events from the set of extracted
ADE candidates.
The main difference in our approach is the use of the

correction applied to the p-value calculation based on
known co-frequencies of terms. The current version of
our package works with MeSH terms and uses MED-
LINE 2015 baseline as the reference annotation set. The
package can be extended to include additional domain
specific ontologies and additional reference frequency
values, such as those based on notes from EHRs [50].

Loading reference set with abstraction level
When a GEA object is instantiated with a specified
abstraction level (e.g., IC 7–10), the corresponding
abstraction layer of MeSH terms will be materialized: for
all terms in the abstraction layer, aggregated term
frequencies, corresponding IC scores, and term co-
frequencies are loaded using values obtained from the
MEDLINE 2015 baseline reference set as described earlier.

Loading term associations for the set of interest
For a given drug (or drug class), the set of interest
constitutes all IDs of the articles in which the drug (or
the drugs of a given drug class) are discussed in the con-
text of some adverse event (step 1 in Fig. 1). These ADE
associations are loaded in form of two tables containing
the drug and event MeSH terms, respectively, which are
associated through the corresponding MEDLINE article
IDs. The terms in the set of interest are aggregated into
higher-level disease terms from the specified abstraction
level to make them comparable to the annotations from
the reference set.

Adjusted hypergeometric test for enrichment assessment
The conditionalHypergeometricTest function is called
with the set of interest (articles related to the drug and
adverse events) from the previous step. The function
returns a table of statistically enriched disease terms in
the annotations of the articles in the set of interest
corresponding to a given drug. The terms in the table
are ranked by conditional p-values that are calculated
as follows.

Step 1: Term-by-term enrichment analysis In a first
step (see Fig. 3a), p-values for each adverse event term x
are calculated based on the overlap between the set of
interest S and the reference set A performing hypergeo-
metric tests, which calculate the probability of observing
m or more articles annotated with term x in the set of
interest S of size s given that a articles in the reference
set of size n are annotated with term x. Terms that are
statistically significantly enriched (e.g., p-value < 0.05)
are deemed potentially associated with the drug in the
set of interest.

Step 2: Correction for hierarchical relations between
higher-level AE terms The issue of dependencies
among annotation terms from different branches of
MeSH results from MeSH being a directed cyclic graph
(DAG) rather than a tree and the 1:n assignment
between MeSH descriptors and tree numbers. For
example, the descriptor Stevens-Johnson Syndrome has
six different tree numbers in MeSH, being classified as
an Immune System Disease, Stomatognathic Disease,
Skin and Connective Tissue Disease (3× at different levels
within this branch), and Chemically-Induced Disorder.
As a result, terms with multiple classifications, such as
Stevens - Johnson Syndrome, will be aggregated into
several higher-level terms at a given abstraction level.
Thus, in this second step (see Fig. 3b), adjusted p-values

are calculated by determining pair-wise significance for
each term given the other enriched terms in this set, by
calculating the probability of observing m or more articles
in the set of interest S of size s annotated with terms x
and y, given that o items in the set of interest are also an-
notated with term y. The adjusted hypergeometric test
takes into account the co-occurrences of terms in refer-
ence annotation sets to identify such dependency and will
assign a larger p-value to the co-occurring term making it
unsurprising.
For a given term, the final adjusted p-value is deter-

mined by the maximum of its entire pairwise conditional
p-values. Only terms with an adjusted p-values < 0.05 (or
any other selected threshold) are considered in the final
list of enriched terms.

Performing baseline signal detection using PRR
We also use proportional reporting ratio (PRR) for
computing statistical associations between drug (and
drug class) – adverse event pairs. We compute PRR
according to Eq. (3) using the frequencies that are calcu-
lated for each drug according to the contingency table
shown in Table 1 based on the data extracted from the
360 k ADE related articles’ MeSH term indexes.
We calculate PRR-based signals for all possible combi-

nations of drugs and adverse events that co-occur in at
least one of the 360 k relevant MEDLINE article. We
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apply the usual zero-cell correction by adding 0.5 to
each count in 2 × 2 contingency tables with cells con-
taining 0. For drug classes, we count articles mentioning
any drug from this drug class (a and b) and articles
mentioning any other drug (c and d). This approach is
explained in more detail in [21].

Evaluation
Gold standards
Only few gold standard reference sets for evaluating the
accuracy of drug safety signal detection systems are
publicly available. We evaluate the performance of signal
detection using GEA at different levels of granularity
against the drug safety reference set established by the
Observational Medical Outcome Partnership (OMOP)
[51]. This set contains 398 drug-outcome pairs, covering
181 drugs from several drug classes and four significant
and actively monitored adverse event outcomes: acute
myocardial infarction, acute renal failure, acute liver
injury, and upper gastrointestinal bleeding. The OMOP
gold standard is relatively independent from MEDLINE
(the basis of our signal detection approach) because
MEDLINE was not used to identify candidate positive
controls but only to restrict the list of candidates that previ-
ously arose from product labeling and Tisdale review [51].
Other reference sets do exist, such as the also manually an-
notated EU-ADR corpus [52]. However, this reference set
might be less applicable in the context of our study because
the test cases were selected based on MEDLINE abstracts.
We compare signals retrieved from GEA with those re-

trieved from proportional reporting ratio (PRR). We apply
signal detection methods at two different abstraction

levels, for each of the four OMOP outcomes separately.
We perform the comparison based on discrimination ac-
curacy by calculating the areas under the receiver operator
characteristic (ROC) curve (AUC). We perform this
evaluation for drugs and drug classes separately.

Aligning MEDLINE data with the gold standard
We map the drug names in OMOP set to ingredients at
the 5th level in ATC via RxNorm and the four outcomes
to terms in the disease tree of MeSH. We were able to
map all but 9 of the 183 unique drugs in the set. For the
evaluation at the drug class level, we aggregated drugs
into all its ATC4 classes. Because one drug may be
mapped to multiple drug classes in ATC, the number of
positive and negative associations might increase when
mapping to the ATC4 drug class level. If drugs from the
positive and negative control for a given outcome were
aggregated into the same drug class, we removed that
class from the negative class controls. For example, since
gatifloxacin (J01MA16) is a negative control for acute
liver injury but ofloxacin (J01MA01), ciprofloxacin
(J01MA02), norfloxacin (J01MA06), levofloxacin
(J01MA12), trovafloxacin (J01MA13), and gemifloxacin
(J01MA15) are positive controls, we consider the drug
class Fluoroquinolones (J01MA) as a positive control at
the ATC4 class level. Table 2 shows the number of
positive and negative controls that we consider for the
four outcomes.
The four adverse event outcomes in OMOP were

manually mapped to MeSH descriptors at the relevant
IC and tree hierarchy levels corresponding to the differ-
ent abstraction levels used in this study. We chose the
ranges for the three abstraction levels in such a way, that
each outcome is represented by a different term (with
different IC) at each level. Table 3 shows the MeSH
terms (together with their descriptor IDs, level in the
MeSH hierarchy, and their IC) that correspond to the
four OMOP dataset outcomes at different levels of aggre-
gation. For example, the two MeSH terms representing
acute kidney injury in the literature, namely acute kidney

Fig. 3 Differences between term-by-term enrichment analysis (a) and conditional enrichment analysis (b). See main text for details

Table 1 2 × 2 contingency table used for calculating associations
between drugs and adverse events (AE) with proportional
reporting ratio (PRR)

With this AE Without this AE

Articles mentioning the drug a b

Articles not mentioning the drug c d
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injury and kidney tubular necrosis, acute, are represented
by the MeSH descriptor acute kidney injury with an IC of
9.34 at the LOW IC abstraction level, kidney diseases with
an IC of 5.73 at the MEDIUM IC abstraction level, and
urologic diseases with an IC of 5.16 at the HIGH IC
abstraction level as well as at the 2nd level in the MeSH
hierarchy.

Results
Effect of using different abstraction levels on drug and
adverse event counts
Table 4 summarizes the ADE data extracted from
MEDLINE (in the ORIGINAL column) and the different
“views” on these data resulting from different aggrega-
tion strategies. As can be seen in the ORIGINAL
column, the original dataset contained 105,354 unique
co-mentions of a drug and an adverse event, comprised
of 3057 unique adverse event (AE) terms and 1609
unique drugs that map to 565 drug classes at the 4th
level in ATC.
The number of unique higher-level AE terms into

which the 3057 original AE terms group into, ranges
from 607 terms using IC 7–10 to 99 using IC 1–5.5.
Upon aggregation to the 2nd level in the MeSH tree-
hierarchy, results in 297 terms. When aggregating into

the 607 terms at the LOW abstraction level, 629 (20 %)
of the 3057 original terms are not covered because the
IC for these terms and all of their ancestor terms are
outside the selected abstraction level. As expected, al-
most all original terms are captured when aggregating
up to the fixed 2nd level in MeSH (only 18 1st level
terms are ignored).
We also examined, how many drugs are affected by

these ignored original adverse event terms across all
abstraction layers (IC-based and the 2nd level tree hier-
archy). Only few drugs are affected: from 1609 individual
drugs and 565 corresponding drug classes, only 19 drugs
lose all their adverse event associations at the LOW IC
abstraction layer, 7 drugs at the MEDIUM IC abstraction
level, and one drug at the HIGH IC and at the 2nd level
MeSH tree abstraction level.

Calibration of signal detection threshold using a gold
standard
We evaluated the performance using the OMOP reference
standard and by varying levels of granularity (abstraction
levels) for the adverse event terms. In the following we
describe the evaluation of signals for individual drugs. For
the evaluation at the drug class level we refer to the
Additional files.
We quantify performance of the signal detection using

ROC curves summarizing all achievable combinations of
true positive and false positive rates for each method for
each of the four adverse event outcomes in the OMOP
reference set (see Fig. 4 for single drugs and Additional
file 1 for drug classes). We tested GEA (red lines) with
two IC configurations (IC 7–10 (solid) and IC 4.5–7
(dashed)) and PRR (blue) with IC 7–10 (solid) and with
fixed 2nd-level in MeSH hierarchy (dashed).
Both GEA and PRR methods perform best in detecting

associations of drugs with GI bleed (AUCs from .817 to
.972) and poorest on AMI (AUCs from .626 to .765).
GEA has the biggest advantage over PRR for acute liver

Table 2 Mapping of drugs and drug classes in the OMOP
reference set to ATC

Aggregation Drugs (ATC5) Drug classes (ATC4)

Outcome Positive Negative Positive Negative

Acute kidney injury 23 59 19 68

Acute liver injury 79 33 68 43

Acute myocardial infarction 33 61 18 72

GI bleed 24 62 19 73

Total 159 215 124 256

Positive and negative controls mapped to drugs and drug classes in ATC for
the four adverse event outcomes in the OMOP reference set

Table 3 Adverse drug event outcomes in OMOP mapped to MeSH terms at different abstraction levels

Aggregation ORIGINAL LOW (IC 7–10) MEDIUM (IC 4.5–7) HIGH (IC 1–5.5) MeSH 2nd level

Acute kidney
injury

Acute kidney injury,
Kidney tubular
necrosis, acute

Acute kidney injury
D058186

(5th level) IC: 9.34

Kidney Diseases
D007674

(3rd level) IC: 5.73

Urologic Diseases
D014570

(2nd level) IC: 5.16

Urologic Diseases
D014570

(2nd level) IC: 5.16

Acute Liver
injury

Drug-induced liver injury,
Drug-induced liver injury,

chronic

Drug-Induced Liver Injury
D056486

(3rd level) IC: 9.87

Liver Diseases
D008107

(2nd level) IC: 5.64

Digestive System Diseases
D004066

(1st level) IC: 4.01

Liver Diseases
D008107

(2nd level) IC: 5.64

Acute
Myocardial
Infarction

Myocardial infarction,
Anterior wall MI,
Inferior wall MI,

Myocardial stunning,
Shock, cardiogenic

Myocardial infarction
D009203

(4th level) IC: 7.22

Myocardial Ischemia
D017202

(3rd level) IC: 5.94

Heart Diseases
D006331

(2nd level) IC: 4.61

Heart Diseases
D006331

(2nd level) IC: 4.61

GI bleed GI Hemorrhage,
Hematemesis, Melena,

Peptic ulcer hemorrhage

Gastrointestinal Hemorrhage
D006471

(3rd level) IC: 9.00

Gastrointestinal Diseases
D005767

(2nd level) IC: 4.87

Digestive System Diseases
D004066

(1st level) IC: 4.01

Gastrointestinal Diseases
D005767

(2nd level) IC: 4.87
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injury and GI bleed. Between the two PRR variants, PRR
with fixed 2nd level terms outperforms PRR with IC 7–10.
GEA with IC range of 4.5–7 performs better than the
other methods for the AE outcomes acute kidney injury
(AUC .929) and acute MI (AUC .765), although all
methods perform poorly on the latter. PRR 2nd-level
performs almost as well as the best GEA method on acute
kidney injury (AUC .923 and .929, respectively) but worse
on the other outcomes. GEA with IC range of 7–10
outperforms (AUC .930) the best PRR-based method

(AUC .825) on acute liver injury and outperforms all other
methods on GI bleed (AUC .972).
On grouping the drugs into drug classes (ATC4), the

performance of the different approaches is similar for
each of the four outcomes, with the one exception of
PRR 2nd level on acute myocardial infarction (AUC
drops to .592) as can be seen in Additional file 1.
The overall performance of enrichment (GEA) and the

proportional reporting ratio (PRR) methods in terms of
precision, recall, and F-measure at different p-value and

Table 4 Representation of ADE information from the literature at different abstraction levels

Aggregation ORIGINAL (MeSH terms as
extracted from MEDLINE)

LOW
(IC 7–10)

MEDIUM
(IC 4.5–7)

HIGH
(IC 1–5.5)

MeSH
2nd level

# unique candidate ADE pairs 105354 87415 49696 41705 51226

# unique higher-level AE terms 3057 607 156 99 297

# unique AE terms covered 3057 2428 2760 2875 3039

# unique drugs with AE associations 1609 1590 1602 1608 1608

# unique drug classes (ATC 4) with AE associations 565 565 564 565 565

Fig. 4 Performance of selected signal detection methods for single drugs on the OMOP reference set. Performance is measured for each of the
four AE outcomes measured in terms of AUC summarizing all achievable combinations of true positive and false positive rates
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PRR thresholds based the OMOP reference set is
summarized in Table 5 (and Additional file 2 for drug class
level results). Overall, GEA-based methods outperform PRR
with a best F1-measure of .80 for GEA and .69 for PRR
across the different configurations. Best recall is achieved
using GEA at an abstraction level of IC 7–10 using a p-value
< .1 (recall of .76) and best precision with the same method
using a lower p-value (precision of .92 at p < .005).

Assuming equal importance of false positives and false
negatives, at the optimal F1-measure (.80 for single drugs
and .79 for drug classes), GEA-based methods detect sig-
nals for single drugs with very high precision (.92) but are
prone to generating false positives at the drug class level
(precision of .71). At the drug class level, precision of > .8
can only be reached with accepting a moderate recall of .51.
PRR-based methods perform overall weaker than GEA,

in particular with regard to recall. Best recall is achieved
using abstraction levels of IC 7–10 and 1–5.5 for adverse
event terms and PRR > 1 (recall of .70). Overall, PRR per-
forms slightly better when using terms at the 2nd level in
the MeSH tree hierarchy (best F1 .69). High precision
comparable to that of the GEA methods is only achievable
using PRR of >5 (precision of .87 at recall of .17).

Detecting putative adverse drug event signals
We calculate the enrichment (GEA) and the proportional
reporting ratio (PRR) of adverse events in the 105,354

candidate pairs between 1609 single drugs and 3057 AE
terms that we had extracted from MEDLINE abstracts
(see Table 4 for individual drugs and Additional file 3 for
drug classes). We select the signaling thresholds and levels
of aggregation of adverse event terms based on the best
performances on the OMOP reference set (see Table 6).
The numbers represent the distinct drug – adverse event
pairs for which signals were found for a given method, ab-
straction layer, and threshold before p-value correction.
The numbers in parentheses for the GEA-based methods
represent pairs that passed the correction for known
dependencies among enriched terms based on conditional
p-values. On applying the optimal threshold (GEA at IC
7–10 with p < 0.005), we find signals for 10,122 unique
adverse event associations (shown in bold in Table 6).

Test case: examining signal for pioglitazone and bladder
cancer
We apply our approach to retrieve information for a
possible ADE that is currently discussed in the drug
safety community. Pioglitazone is indicated to lower
blood glucose in adults with type 2 diabetes mellitus.
After tumors had been observed in the urinary bladder
of male rats in a premarketing two-year carcinogenicity
study [53] (the tumorigenic potential of pioglitazone was
also shown in a later animal study [54]), a 10-year
observational study was started in 2003 to evaluate the
potential risk of bladder cancer with pioglitazone use in

Table 5 Overall performance measured on all single drugs and outcomes in OMOP gold standard

GEA 7–10 4.5–7 1–5.5 2nd level

Threshold 0.1 0.05 0.005 0.1 0.05 0.005 0.1 0.05 0.005 0.1 0.05 0.005

TP 121 119 113 112 110 100 116 113 104 116 115 102

TN 182 188 205 191 195 205 159 164 178 186 193 198

FP 33 27 10 24 20 10 56 51 37 29 22 17

FN 38 40 46 47 49 59 43 46 55 43 44 57

Precision 0.79 0.82 0.92 0.82 0.85 0.91 0.67 0.69 0.74 0.80 0.84 0.86

Recall 0.76 0.75 0.71 0.70 0.69 0.63 0.73 0.71 0.65 0.73 0.72 0.64

F1-Measure 0.77 0.78 0.80 0.76 0.76 0.74 0.70 0.70 0.69 0.76 0.78 0.73

PRR 7–10 4.5–7 1–5.5 2nd level

Threshold 1 1.5 5 1 1.5 5 1 1.5 5 1 1.5 5

TP 112 96 48 110 93 39 111 83 6 109 90 27

TN 126 144 197 150 172 208 152 176 211 166 184 211

FP 89 71 18 65 43 7 63 39 4 49 31 4

FN 47 63 111 49 66 120 48 76 153 50 69 132

Precision 0.56 0.57 0.73 0.63 0.68 0.85 0.64 0.68 0.60 0.69 0.74 0.87

Recall 0.70 0.60 0.30 0.69 0.58 0.25 0.70 0.52 0.04 0.69 0.57 0.17

F1-Measure 0.62 0.59 0.43 0.66 0.63 0.38 0.67 0.59 0.07 0.69 0.64 0.28

Performance with GEA (top) and PRR (bottom) using different abstraction levels and thresholds. Bold numbers indicate best performance throughout all configurations
(individually for GEA and PRR-based configurations)
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humans. In a recently published research article [55], the
authors conclude that pioglitazone was not associated
with a statistically significant increased risk of bladder
cancer but did not exclude the possibility of an increased
risk. Although, this is in fact only the latest of several
articles published in recent years focusing on the safety
of pioglitazone, there is still insufficient data to
determine whether pioglitazone is a tumor promoter for
urinary bladder tumors [53].
Using our methodology to identify ADE signals from

MEDLINE, we found the candidate association between
pioglitazone and urinary bladder neoplasms in 28
articles. Although all articles were annotated with the
MeSH descriptors in the context of adverse effects and
chemically induced manifestations, a manual literature
review revealed that four articles contained results from
comparative cohort studies, another five contained
results from retrospective/meta-analysis studies, one
presented a case-report, whereas the rest comprised
letters, comments, and review articles.
From the four comparative cohort studies, two con-

cluded an statistically significant increased risk of blad-
der cancer [56, 57] whereas two did not [58, 59]. From
the retrospective / meta-analysis studies, all [5, 60–62]
but one [63] concluded an elevated risk. There is one
study that found an association between pioglitazone use
and bladder cancer based on reports from the U.S. Food
and Drug Administration (FDA) Adverse Event Reporting
System (FAERS) with a reporting odds ratio (ROR) of 4.30
[95 % CI 2.82–6.52] [61].
Based on the MeSH annotations from these 28 arti-

cles, all our signal detection methods found statistically
significant association between pioglitazone and blad-
der tumors: GEA 7–10 to Urinary Bladder Neoplasms
(p-value: 1.58e-08), GEA 4.5–7 to Urogenital Neoplasms
(p-value: 5.05e-16), PRR with IC 7–10 to Urinary Bladder
Neoplasms (PRR 93.40; 95 % CI 65.03–134.15), and PRR
at 2nd level in MeSH tree hierarchy to Urogenital
Neoplasms (PRR 38.59; 95 % CI 27.04– 55.07).

Discussion
We present an approach based on generalized enrichment
analysis (GEA) that can be used to signal associations be-
tween drugs, drug classes and events from the biomedical
literature, at multiple levels of granularity. We validate our

approach using an established gold standard for drug
safety signaling and compare our results to an existing
drug safety signal detection method. We demonstrate that
adverse drug events can be observed at different levels of
granularity, using drug class information in ATC for
grouping drugs and information content of disease terms
in MeSH for grouping adverse event terms.
While our results show a general advantage of GEA

methods over PRR in detecting signals from the OMOP
gold standard, perhaps resulting from the adjustments
based on co-frequencies, the influence of abstraction on
the performance is less obvious. The data from our
evaluation suggests that increasing the level of aggrega-
tion to more than the outcome definitions in OMOP
(e.g., IC 4.5–7) does not have a beneficial effect.
As an indirect contribution, we provide a meaning-

ful aggregation of adverse event terms extracted from
MEDLINE indexing by grouping the corresponding
MeSH descriptors onto abstraction levels with uniform
information content. The soundness of this approach is
supported by the performance of GEA with IC 7–10 on
the gold standard. However, for PRR we observed that
selecting terms with IC 7–10 showed only minimal
improvement over selecting terms at the second level in
the MeSH hierarchy.
Although GEA performs better in the retrospective

evaluation on the OMOP gold standard, it does not
prove an advantage in a real world scenario of continuous
real-time drug safety monitoring (prospective studies)
[64]. However, our evaluation on the OMOP reference set
suggests that PRR is indeed more prone to over-predicting
signals (false positives), reflected by the fact that a preci-
sion similar to the one of the GEA methods could only be
achieved at the cost of a high reduction of recall (GEA
precision of .92 at a recall of .71 vs. PRR precision of .87
at a recall of .17, see Table 5).

Varying performance across outcomes in the gold standard
We note that the performance varies significantly by
event ranging from the best of AUC 0.97 for detecting
associations with GI bleed to worst of AUC 0.69 for
associations with Acute Myocardial Infarction (AMI).
The four events are of different medical severity and
hence are known to be affected by different reporting
rates. For example, given that heart attacks are common

Table 6 Adverse event signals for drugs detected by GEA and PRR

p-value GEA IC 7–10 GEA IC 4.5–6 GEA IC 1–5.5 PRR 2nd PRR IC 7–10 PRR

<0.1 43702 (22073) 10585 (7634) 12875 (6157) 30547 61108 >1

<0.05 35953 (17140) 9249 (6840) 11453 (5356) 24834 52377 >1.5

<0.005 23059 (10122) 6867 (4931) 8594 (3623) 10810 26953 >5

Adverse event signals for drugs (ATC ingredient names) detected by GEA and PRR using different thresholds at different aggregation levels. The number in bold
indicates the unique adverse event association signals found using the optimal configuration (GEA at IC 7–10 with p < 0.005) as determined by the overall
performance assessment

Winnenburg and Shah BMC Bioinformatics  (2016) 17:250 Page 12 of 17



due to other reasons, the reporting rates for such a com-
mon event tend to be lower (this effect has also been
seen in prior work [65]).
Although underreporting is in general a well-known

problem in spontaneous reporting systems, it also affects
signal detection efforts using the biomedical literature as
a source. We found that the coverage of ADEs in MED-
LINE differs significantly across the four outcomes in
OMOP (see Additional file 4). In particular for AMI,
only 16 out of the 33 positive test cases (48 %) were
found in our set of candidate drug – adverse events
from the literature (at low abstraction level). For 17 out
of 33 drugs, there was not a single article mentioning a
relation between drug and AMI, and hence no signal
could be detected. In contrast, for GI bleed all 24
(100 %) positive test cases could be found in at least one
article, for acute liver injury 76 out of 79 (96 %), and for
acute kidney injury still 18 out of 23 (78 %). Of note,
while the presence of articles mentioning a relation does
not automatically guarantee a strong signal, the absence
of any article results in no signal.
Furthermore, MeSH does not provide a term specifically

for AMI. The closest terms are Myocardial Infarction as
well as Anterior Wall MI and Inferior Wall MI, which
both contain the term acute in one of their synonyms. We
further observed that drugs that are positively associated
to AMI in OMOP tend to be annotated in the litera-
ture (if at all) with more high-level terms, such as
Heart Diseases or Cardiovascular Diseases. Indeed, we
find that - against the general trend - the number of true
positive findings with GEA at a high abstraction level (IC
1–5.5) doubles from the number at low abstraction level
(IC 7–10) (see Additional file 5). Of note, the true positive
rate for MI is at the high abstraction level still much lower
than for the other outcomes.
Based on this examination of our results and the data

sources we used in our study, we hypothesize that the
limited availability of appropriate terminology and
MeSH indexing practices might influence signal detec-
tion for AMI more negatively than for the other three
outcomes in OMOP.

Impact of aggregation level
In this study we defined several abstraction levels,
namely high abstraction as terms with IC 1–5.5, medium
abstraction as terms with IC 4.5-7, and low abstraction
as terms with IC 7–10. This process is use-case specific.
Level and the range of the level have an impact on term
selection. At abstraction level IC 7–10, 2424 (from 3057
in total) adverse event terms are represented as 607
higher-level terms, excluding 633 terms that cannot be
represented at the chosen abstraction level. At abstrac-
tion level IC 4.5-7 the number of higher-level terms is

reduced to 156 (covering 2760 terms), excluding fewer
terms but also providing significantly less granularity.
Level and the range of the level have also an impact

on the number of detected distinct drug events (see
Table 6). It is generally expected to find more ADE pairs
at IC 7–10 than, e.g., at IC 4.5–7, because for a given
drug several specific but related terms might describe
similar (or the same) adverse events while these terms
might be aggregated into one single term at a higher
abstraction level. However, as can be seen in Table 6, the
correction for known dependencies (numbers in paren-
theses) levels this effect out to some extent as expected.
Grouping into such high-level disease terms might

hinder accurate signal detection. For example, the ad-
verse event Gastrointestinal Hemorrhage at level 7–10
would be represented as Gastrointestinal Diseases at
level 4.5 -7, combining signals for gastrointestinal
hemorrhage with those for peptic ulcer, gastrointestinal
tuberculosis, and others.
Aggregating signals at the level of drug classes

provides better recall according to our evaluation: at an
F1-measure of .79 and .80 respectively, the best GEA
method achieves a recall of .84 at a precision of .75 at
the level of drug classes, in comparison to .71 at a
precision of .92 at the level of individual drugs. For
exploratory studies, applying GEA at higher abstrac-
tion level for both drugs and adverse events might be
a feasible starting point, if followed by additional
“drill-down” studies in which the adverse events are
more accurately assessed at the level of individual
drugs as suggested previously [21].

Error analysis
In order to illustrate the kind of errors that may occur,
we discuss the cases of false positive and negative
predictions for the outcome acute kidney diseases.

False negatives
We miss signals with GEA at IC 7–10 for seven drugs
from the 23 in the positive control set for acute kidney
diseases at a threshold of p < 0.005.
The most common reason for missing a signal is the

absence of support for an ADE in MEDLINE. For five of
the seven drugs for which we cannot find a signal
(chlorothiazide, oxaprozin, etodolac, telmisartan, moexi-
pril), not a single candidate association could be ex-
tracted from MEDLINE. In the two other cases, there is
only weak or indirect support, e.g., from animal studies.
For example, there is a retrospective case–control study
of the effects of long-term dosing with meloxicam on
renal function in aged cats with degenerative joint
disease [66], in which the effect is classified as chronic
renal insufficiency rather than acute kidney injury. How-
ever, at a higher aggregation level both acute and
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chronic manifestations are classified as kidney diseases,
and indeed, at IC 4.5–7 GEA signals a significant associ-
ation for meloxicam. There is also a signal for capreomy-
cin at level 4.5–7.
In contrast, using PRR > 1.0 and 2nd level aggregation

in MeSH (detecting signals for the broader 2nd level
term Urologic diseases), five drugs in the positive control
do not have signals but two of the drugs that were
missed by GEA methods do have signals (telmisartan
2.16 (1.01–4.60), capreomycin 2.81 (1.34–5.91)).

False positives
We find signals with GEA 7–10 for three drugs from the
59 cases in the negative control set for acute kidney
diseases at a threshold of p < 0.005: flutamide, orlistat,
and retinol (vitamin A).
Often, such false positive signals are generated on the

basis of a few case reports in MEDLINE with outdated
or only indirect information. For example, for the drug
flutamide the signal (p–value 0.0017) is based on three
publications from the late 1990s and early 2000s. One
case report describes a 54-year-old man with metastatic
prostate cancer who developed nonoliguric acute renal
failure during treatment with flutamide. The authors
conclude that “although very rare, flutamide-induced
acute renal failure should be considered” [67]. In other
reports the role of the drug as the main source of the
adverse event is unclear, e.g., because the major event is
rather liver injury than renal failure [68] or the event is
observed when the drug is administered together with
other antineoplastic agents [69].
However, for one drug, orlistat, for which we find a sig-

nal with p-value 1.38e-03 using GEA 7–10, there are five
recent articles in MEDLINE that support an association
with acute renal failure, e.g., an analysis of 953 patients
from 2011 [70]. Interestingly, also the product label for
XENICAL, a branded drug of orlistat, mentions that
“cases of oxalate nephrolithiasis and oxalate nephropathy
with renal failure have been reported” [71]. This may indi-
cate that such a signal, which is also found with PRR of
3.25 (95 % CI 2.01–5.25), might not be a false positive.

Limitations
Given the size of the reference set and the performance
variation across outcomes, generalizing the results is not
straight forward. Arguably, we could have tested our
methodology on a larger test set with more outcomes.
However, as discussed earlier, other sets might be less
appropriate in this context, such as the one provided by
the EU-ADR project, which was created using the same
source (i.e., published papers). Another limitation is that
we only present a retrospective evaluation on established
ADEs which does not assess the applicability of our
methodology for prospective signal detection [64, 72].

However, with some modifications to the scripts pro-
vided in our GEA R package it should be possible to
conduct a prospective study on time-indexed reference
sets, such as the one published in [73].
While we used MeSH as the source of terms to represent

adverse events, the Medical Dictionary for Regulatory Ac-
tivities (MedDRA) offers an alternative terminology for the
same purpose. However, using that would require a vali-
dated mapping between terms from MeSH to MedDRA,
which is a problem that needs to be addressed of its own.
Another limitation is that some of the terms that GEA

based methods find to be enriched for many drugs are
rather unspecific, such as Drug-Related Side Effects and
Adverse Reactions. This “side-effect” results from the cal-
culation of enrichment in comparison to a large, general
reference set (MEDLINE as a whole) instead of a more
drug safety focused control set.
The example of pioglitazone suggests that our method

is capable of detecting the articles relevant to a specific
drug safety concern and detecting possible signals.
Although this approach allows to determine the correct
context of the drug (the adverse effect of the drug is
subject of the article) and the disease (it is chemically
induced) individually, it does not guarantee a causal
relationship between the two, in particular when there
are several drugs and/or events subject of the same art-
icle or the publications do not present original research
such as comments and reviews. These limitations can
lead to over-generating signals for some drugs, which
could be mitigated by filtering for certain publication
types (such as clinical trials or case reports) and applying
natural language post-processing (NLP) on article ab-
stracts (if available).
Finally, as stated by Montastruc et al. [11], it is import-

ant to note that disproportionality studies should be only
considered as exploratory in a context of signal detection.
Such literature mining does not replace but can comple-
ment existing pharmacovigilance efforts. It is reassuring
that our approach could identify 75 % of drug – outcome
pairs in the OMOP reference set at a precision of 82 %
(GEA, IC 7–10, p-value <0.05) based on information
published in MEDLINE alone.

Conclusions
We provide a framework based on generalized enrichment
analysis that can be used to detect associations between
drugs, drug classes and adverse events at a given level of
granularity, at the same time correcting for known
dependencies among events. Our study demonstrates the
use of GEA, and the importance of choosing appropriate
abstraction levels to complement current drug safety
methods. The soundness of this approach is supported by
the high performance of GEA with IC 7–10 on the gold
standard.

Winnenburg and Shah BMC Bioinformatics  (2016) 17:250 Page 14 of 17



We provide an R package that allows the exploration of
alternative abstraction levels for adverse event terms based
on information content. We provide a pre-computed set
of aggregations of adverse event terms extracted from
MEDLINE indexing by grouping the corresponding MeSH
descriptors onto abstraction levels with uniform informa-
tion content.
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Availability of data and material
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study available.
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