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Abstract

Background: The current practice of histopathology review is limited in speed and accuracy. The current
diagnostic paradigm does not fully describe the complex and complicated patterns of cancer. To address these
needs, we develop an automated and objective system that facilitates a comprehensive and easy information
management and decision-making. We also develop a tissue similarity measure scheme to broaden our

understanding of tissue characteristics.

Results: The system includes a database of previously evaluated prostate tissue images, clinical information and a
tissue retrieval process. In the system, a tissue is characterized by its morphology. The retrieval process seeks to find
the closest matching cases with the tissue of interest. Moreover, we define 9 morphologic criteria by which a
pathologist arrives at a histomorphologic diagnosis. Based on the 9 criteria, true tissue similarity is determined and
serves as the gold standard of tissue retrieval. Here, we found a minimum of 4 and 3 matching cases, out of 5, for
~80 % and ~60 % of the queries when a match was defined as the tissue similarity score 25 and 26, respectively.
We were also able to examine the relationship between tissues beyond the Gleason grading system due to the

tissue similarity scoring system.

Conclusions: Providing the closest matching cases and their clinical information with pathologists will help to
conduct consistent and reliable diagnoses. Thus, we expect the system to facilitate quality maintenance and quality

improvement of cancer pathology.
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Background

Quality assurance in diagnostic histopathology plays a
critical role in development of a treatment plan for pa-
tients with prostate cancer [1]. Methods to integrate
quality development, maintenance, and improvement of
diagnostic accuracy are, hence, critical to cancer man-
agement in any setting. In diagnostic prostate pathology,
Gleason grading [2] is the most commonly used grading
system that is based upon the structural patterns of the
tumor. The Gleason grade is a primary determinant in
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treatment planning [3]. However, it is well known that
the grading of prostate tissues suffers from intra- and
inter-pathologist variability [4—6]; for example, the exact
intra-pathologist agreement was achieved in 43-78 % of
the instances, and 36—81 % of the exact inter-pathologist
agreement was reported. It is also known that the vari-
ability of the grading can be reduced with focused
retraining. There could be many ways to educate pathol-
ogists such as meetings, courses, online tutorials, and
etc [7], but these are not time- and cost-effective and
rarely implemented. Therefore, building an automated,
fast, and objective method to aid pathologists in evaluat-
ing prostate can improve prostate cancer diagnosis.
When a pathologist evaluates a tissue sample, he/she
looks at a stained tissue and mentally compares it
against a fund of knowledge and experience and may
consult publications when needed. In essence, the path-
ologist is matching structural patterns with samples they
have seen earlier and mentally recalling the diagnosis
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made such that they can make the same diagnosis in the
specific test case. Despite training, intra- and inter-
observer variation and controversial areas still exist [8].
To aid and improve the diagnostic process, there have
been several research efforts to develop automated sys-
tems for the detection and grading of prostate cancer.
The majority of the previous methods have used mor-
phological features [9-16] to characterize and classify
tissue samples into correct classes, and others have also
used Fourier Transform ([17], Wavelet Transform
[13, 18, 19], and Fractal Analysis [13, 20] to extract
texture features. Though these methods claim to be
accurate, the information that pathologists will ob-
tain by using such methods may be limited since
these only provide the predicted grade in general.
The prediction also relies on the conditions of the
training and testing datasets such as acquisition set-
tings [15, 19] and staining [21].

Alternatively, content-based image retrieval (CBIR)
systems [22-24] have been proposed to aid cancer path-
ology. The main objective is to effectively and efficiently
manage an enormous amount of image data and to pro-
vide similar cases to a new test case that is examined. In
addition to clinical usage, CBIR systems can help med-
ical research, education, and training [22, 24]. The simi-
lar cases can be determined as owning the same grade
[25-28] or sub-structures [29, 30]; for instance, single
lumen glands, multi-lumen glands blood vessels, and
lymphocytes in prostate [31]. The basic premise of such
systems in diagnostic histopathology is that tissue sam-
ples that have the same grade or similar characteristics
and patterns with the sample of interest will afford
useful information to pathologists and improve the
decision-making process. Similar to cancer detection
and grading systems, tissue is represented as several
quantitative features such as morphology [26, 32, 33],
histogram [30], color [28, 34], and texture [27-29, 32-35].
The similar samples can be retrieved by computing dis-
tance metrics or similarity scores between a new case and
the previously diagnosed or examined cases. In order to
improve tissue representation and retrieval, features are
often post-transformed and/or their weights are adjusted
in an implicit or explicit manner; for example, kernel
function [30], simplex method [32], manifold learning
[26, 36], boosting [25, 27], and self-organizing map
(SOM) [35].

Previous retrieval systems have been measured against
a gold standard of diagnostic category and grade of
tumor, defined by a pathologist. Prostate cancer is, in
particular, a multifactorial disease and a mixture of het-
erogeneous growth patterns [37], and hence tissues be-
longing to the same Gleason grade may possess different
cellular, nuclear, or glandular sub-patterns. A number of
histological variants, in fact, exist in prostate carcinoma
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and some of the variants cannot be addressed by the
Gleason grading system [38]. Moreover, the Gleason
grading system results in a tumor grade that correlates
with overall outcomes (survival), but fails to provide
information on risk of metastasis, and correlates
poorly with the clinical decision making process. Fur-
ther, the Gleason grading system has gone through
several refinements over time [8, 39-41] and may
undergo further changes [42, 43]. These changes re-
sult variations among pathologists in practice [7] and
disrupt developing robust automated grading and re-
trieval systems.

Here, we report developing a new computer informa-
tion and management and decision-support system that
consists of a database of pre-defined prostate tissues and
a retrieval process (Fig. 1). The database retains tissue
images, clinical information, and one or more measure-
ments of the structure of tissue. The retrieval process
utilizes the structural/morphological features of the
tissue sample image and provides tissue samples similar
to the sample under consideration from the database. In
assessing tissue morphology, we utilize infrared (IR)
chemical imaging for providing cell type information in
tissue [44]. We previously reported its utility in stabiliz-
ing and improving the automated cancer detection [45].
As a retrieval function, we adopt a machine learning
ranking approach, called Ranking-support vector machine
(Ranking-SVM) [46] in conjunction with a two-stage
“feature selection” step [47]. Ranking-SVM learns a rank-
ing function of high generalization due to maximum-
margin property [48]. Feature selection step finds the most
informative subsets while preserving the essential charac-
teristics of the data. Moreover, we propose to determine
the ground truth tissue similarity based on various
structural properties of tissue, not solely on Gleason
grade or a single structural component. Here, the
structural properties are examined by pathologists.
Combining different structural components of tissue
ensures better characterization of tissue structure, and
thus more accurate measurement of tissue similarity
can be made. Thereby, the automated and computer-
ized analysis and human experts’ assessment of tissue
morphology are correlated through a machine learn-
ing approach.

The rest of the paper is organized as follows. In
Methods section, we begin with a description of the
dataset and data preparation process. In the following
subsections, we describe the three key components of
our new system — tissue similarity measure, tissue
morphological feature extraction, and tissue retrieval
function. Then, feature selection and balanced training are
described. In Results section, the experimental results, in-
cluding tissue similarity measure and tissue retrieval, via
cross-validation are demonstrated. In Discussion section,
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the implications and limitations of our study are dis-
cussed. Finally, we conclude in Conclusions section.

Methods

Samples and data preparation

This study and protocols were approved by the University
of Illinois Institutional Review Board (IRB) and was
conducted as per the permission of the IRB in
accordance with relevant guidelines and regulations.
We have obtained 114 prostate cancer tissue samples
(Tissue Array Research Program, National Cancer
Institute and Clinomics Inc.), composed of 19 (Gleason 6),
26 (Gleason 7; 16 Gleason 3 +4, 10 Gleason 4 + 3), 22
(Gleason 8), 10 (Gleason 9; 1 Gleason 4 + 5, 9 Gleason 5
+4), and 37 (Gleason 10) samples. Both hematoxylin and
eosin (H&E) stained and FT-IR images are available for
the samples. Tissue samples were first sectioned to ~5um
thick sections, with a section being placed on a standard
glass slide and a serial section on IR transparent BaF,
slide. Stained with H&E, tissue images were acquired on a
standard optical microscope at 40x magnification, and the
size of a pixel is 0.963um x 0.963um. On IR transparent
BaF, slides, FT-IR images were acquired at a spatial pixel
size of 6.25um x 6.25um and a spectral resolution of
4 cm™ at an undersampling ratio of 2 using Perkin-Elmer
Spotlight imaging system. The spectral profile of a pixel
was truncated to a spectral range of 4000-720 cm™’. De-
tailed description of sample preparation and data acquisi-
tion for FT-IR imaging are available in Fernandez et al.

[49]. Clinical information (Gleason grade, age, surgery
type, etc.) of the samples were prepared by pathologic re-
view, and 308 morphological features were also extracted.
The database we build here, therefore, contains 114 tissue
images (of two different modalities) and their clinical in-
formation and 308 morphological features.

Morphologic criteria and tissue similarity measure

We define 9 criteria to describe the architectural proper-
ties of tissue: 1) Gland crowding, 2) Gland roundness, 3)
Stromal reaction, 4) Nuclear grade, 5) Clefts 6) Lumen/
gland ratio, 7) Gland continuity, 8) Cell separation, and
9) Gleason score. The details of the criteria are listed in
Table 1. Some of the properties are the criteria used in
the Gleason grading system, and others were adopted
from the literature. Although some criteria are over-
lapped with the Gleason grading system, their import-
ance and interpretation in our system may vary. The
Gleason grading system may be also able to describe cer-
tain properties of tissues that cannot be characterized by
the overlapping criteria. In the Gleason grading system,
gland arrangement (Gland crowding), variations in size
and shape of gland (Gland roundness), sheets of cells
(Gland continuity), and single cells (Cell separation)
are examined. Nuclear morphometry (Nuclear grade)
[50-52], reactive stroma (Stromal reaction) [53-55],
and retraction clefting (Clefts) [56] have been re-
ported to be useful for prostate diagnosis and progno-
sis. In the digital and computerized tissue analyses,
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Table 1 Description of 9 Morphologic criteria
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Criteria Description Score
0 2 3
Gland crowding Gland tightness and cohesiveness N/A Sparse Moderate Very tight
Gland roundness Roundness of external perimeter N/A Very round Moderate Serrated contours or spindle
of gland shaped contours
Stromal reaction Swollen, plump cells in stroma and N/A No reaction Little -
splayed collagen fibers
Nuclear grade Prominent nucleoli, variation in N/A Normal Some prominent nucleoli, Many prominent nucleoli,
nuclear diameter and amount of moderate variation large variation
chromatin
Clefts Cleft formation or retraction artifact N/A <30 % 230 % -
around cancer glands
Lumen/gland ratio Ratio between lumen area and total N/A Wide lumen Moderate lumen Tiny lumen
gland area
Gland continuity Continuous sheets of cells N/A <30 % 230 % -
Cell separation Individual cells separated by stroma N/A <10 % 210 % -
Gleason Score Predominant and secondary 6-10°

Gleason score

?Gleason score is the sum of predominant and secondary scores. In our set, it ranges from 6 to 10

structural features describing gland arrangement [11, 36]
and shape [11, 19, 36, 45] and the size of gland and lumen
(Lumen/gland ratio) [12, 45, 57] have been adopted to
characterize tissue. Individual cells also showed a moder-
ate correlation with patient outcomes [58].

For each of the criteria, a pathologist examines a tissue
sample (H&E image) and assigns a score ranging from 0
to 2 (Stromal reaction, Clefts, Gland continuity, and Cell
separation) or 0 to 3 (Gland crowding, Gland roundness,
Nuclear grade, and Lumen/gland ratio) except Gleason
score which in our set of tissues ranges from 6 to 10.
The score range from 0 to 2 may be interpreted as none,
low, and high, and the range from 0 to 3 may be consid-
ered as none, low, mid, and high. Due to its qualitative
nature, it is difficult to highly stratify, and the impact
and measurability of each criterion varies. Restricting
the score range to none, low, mid, and high (or none,
low, and high), in general, the scores are intended to be
specific to differing morphologic patterns as well as to
be reproducible by other pathologists. Using the scores
of the 9 morphologic criteria, tissue morphologic simi-
larity (TMS) between tissue samples is measured. Al-
though well-defined and measured, the importance or
relevance of each criterion differs. For example, the sig-
nificance of Gland crowding score 1 may differ from that
of Gland roundness score 1, and the difference between
two samples having Gland crowding score 1 and 2 may
not be identical to the difference between two samples
owning Stromal reaction score 1 and 2. In these cases,
the absolute values of the scores and the difference of
the scores are identical. Recognizing the intrinsic rela-
tionship between scores and criteria, we utilize the dis-
tribution of each criterion score over the samples in the

database. Regardless of the absolute value of a score, two
samples away from each other in the distribution of the
scores of a criterion are likely dissimilar in terms of the
criterion, and vice versa. In other words, tissue similarity
between two samples with respect to a morphologic cri-
terion is related to the number of samples between them
as ordered by the score for the criterion. Accordingly, let
TMS(dy, d,) be the tissue morphologic similarity be-
tween two tissue samples d; and d, and computed as
follows:

9
i=1

TMS(dy,dy) = TMS'(dy,d>)

where TMS!(d,, d») is the morphologic tissue similarity
for ith criteria. TMS'(d;, d) is calculated as follows:

Z?;:Hhi(s) +1 (hi (siil) + K (sﬁiz))

TMS'(dy,dy) = 1- =

where s} is the ith morphologic criterion score of a tis-
sue sample d, /'(s) is the number of samples having ith
morphologic criterion score s, and Z is a normalization
factor. Due to normalization, TMS'(d,, d») ranges from 0
to 1, 1 <i<9, thereby TMS(d;, d5) ranges from 0 to 9. In
this study, TMS scores represent the true similarity be-
tween tissue samples and serve as the gold standard of
tissue retrieval.

Morphological feature extraction

In prostate cancer, epithelial cells [59], which line ducts
and acini in intact tissue in three-dimensional structures,
are of great interest. As cancer grows, epithelial cells
grow (or invade) in and out of the glands in an
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uncontrolled way, and thus the structure of tissue, espe-
cially the local glandular structure, is distorted. We also
note that the role of stroma cells, connective cells sup-
porting epithelial cells, in cancer tissue has been recently
recognized [53, 54]. To quantify the alterations in tissue
morphology, we focus here on the nuclear and cellular
morphology of epithelial and stromal cells and lumens
(empty space inside a gland). In order to quantify the
nuclear and cellular morphology of epithelial and stro-
mal cells and lumens (Fig. 2a), we first segment epithe-
lium and stroma in tissue by adopting Fourier transform
infrared (FT-IR) spectroscopy imaging due to its ac-
curacy and robustness [44]. FT-IR has been exten-
sively validated in classifying histologic cell types in
tissue [49, 60, 61] and provides a color coded cell
type image of tissue. Cell type segmentation in H&E
images is challenging due to limited information,
color variations, etc. Rigid-body image registration overlays
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the epithelium and stroma segmentation from FT-IR
imaging with the corresponding H&E image by using
outer shape and empty space (lumens) in tissues [45].
Second, lumens and nuclei are identified from H&E
images by considering their color intensities and geo-
metric properties [45]. Using the segmented nuclei
and lumens, we finally define a number of quantities
measuring the morphologic changes in tissue, and the
quantities include the size, number, distance, spatial
distribution, and shape of epithelial nuclei and lumens
(Fig. 2b). Detailed description of the quantities is
available in Supplementary Information. In total, we
defined 26 quantities, of which 17 quantities were
previously shown to be effective in detecting prostate
cancer tissue with high accuracy [45]. Computing
average, standard deviation, sum total, minimum, and
maximum of all or some of these quantities, 308
morphological features are extracted from a tissue
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Fig. 2 Morphologic Feature Extraction and Morphologic Criteria. a Cell type segmentation from FT-IR imaging is overlaid with a tissue image
(H&E). Lumen (white) and nuclei (blue) are segmented using tresholding and applying shape, size, and intensity constraints. b Using the
segmentation results, a number of morphological features are computed. ¢ A pathologist examines and scores tissue images (H&E) for
the 9 morphologic criteria. The segmented tissue images are also shown for comparison
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sample. The details of tissue segmentation and feature
extraction process are described elsewhere in Kwak et
al. [45].

Tissue retrieval

Given a query (unknown tissue sample image), its mor-
phological features are extracted and used to search for
similar pre-examined samples from the database. To re-
trieve the most similar samples, we adopt Ranking-SVM
[46], which learns a function mapping onto a ranking in
a pair-wise fashion (see Supplementary information for
details). That is, Ranking-SVM provides a complete
ranking of the entire samples in the database for the
query. Since TMS score serves as the gold standard of
the tissue similarity (or ranking), Ranking-SVM attempts
to learn and reproduce the human experts’ interpret-
ation of the tissue samples. The feature vector difference
between a query and the samples in the database is used
for retrieval. We note that if a sample in the database is
highly ranked to the query, then the query should be
highly ranked for the sample (if we switch the highly
ranked sample with the query). Ranking-SVM is an
asymmetric measure, i.e., the ranking of a sample to the
query would not be equal to the ranking of the query to
the sample. Combining the two rankings, we seek to at-
tain the more symmetric rankings between the query
and the samples and to achieve the more accurate and
specific retrieval (the samples that are similar to both
the query and other samples in the database will be pe-
nalized, and the samples that are similar to the query
and dissimilar to others will be boosted). We define the
ranking of a sample to the query as

Ranking(q,d;; D) = Ranking-SVM(q,d;; D) + Ranking
-SVM(d;,q; D dvg), i=1,....m

where Ranking - SVM(q, d; D) denotes the ranking of
the sample d; in the database D to the query g and
Ranking - SVM(d;, q; D\d;u q) is the ranking of the
query g to the sample d; in the database D when the
query g is switched with the sample d;. Based on
the ranking, Top-T samples are retrieved. Since it is
the sum of two rankings, it is likely that several
rankings are tied. In such cases, the final ranking is
determined by the ranking of the sample to the
query, i.e., Ranking - SVM(q, d;; D), which is intuitive
because the retrieval is done for the query.

Feature selection

Feature selection is the step where the retrieval algo-
rithm examines all available features (308 in our case)
with respect to the training samples, and selects a
subset to use on test data. This selection is generally
based on the criterion of high accuracy on training
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data, but also strives to ensure generalizability beyond
the training data. We adopt a two-stage feature selec-
tion approach here. In the first stage, we order the
features by their individual retrieval performance and
sequentially measure the retrieval performance of a
feature set by adding a new feature one at a time
according to the order. In the second stage, feature
selection continues with the feature set resulting the
best retrieval performance in the first stage as the
starting point, following the sequential floating for-
ward selection (SFFS) method [62]. This method se-
quentially adds new features followed by conditional
deletion(s) of already selected features.

Throughout the feature selection procedure, the re-
trieval capability of a feature set is measured by normal-
ized discounted cumulative gain (NDCGQG) [63, 64], which
is a popular measure to evaluate ranking algorithms with
multiple levels of relevance. NDCG utilizes the relevance
(TMS score in our study) and ranking of the retrieved
samples and is based on two assumptions: 1) highly rele-
vant samples are more valuable when they are retrieved
earlier 2) highly relevant samples are more valuable than
marginally relevant samples to the query. Given a data-
base D and TMS scores, the performance of the retrieval
function f for a query g at rank position 7' is computed
as follows:

DCG

r 2TMS(gr)_1

DCG(q.f;D, TMS) = o, (110
where r, indicates the tth closest sample to the query ¢,
retrieved by the retrieval function f, from the database
D, and IDCG denotes a normalization factor that is com-
puted with the ideal (or optimal) rank of the retrieved
samples, scaling the optimal retrieval to 1.

Balanced training

Ranking-SVM tries to learn an overall ranking of the
training dataset. When trained on biased or unbal-
anced training dataset, Ranking-SVM may be biased
towards dominant dataset, and thus its retrieval
capability may be limited. To prevent this, we sought
to take roughly balanced sub-samples of the training
dataset and trained Ranking-SVM on the sub-
samples. To obtain the roughly balanced training
dataset, we first divide the total TMS score range
into P equal-width partitions. Then, Np number of
pairs of samples from each partition was randomly
selected. We set Np to the smallest number of pairs
of samples in a partition.
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Results

Tissue morphologic similarity measure

For 114 prostate cancer samples, we asked a pathologist
(A.K.-B) to score them according to the 9 morphologic
criteria. The pathologist was not involved in preparing
the tissue samples and kept blind to the previous diag-
nosis and clinical information of the samples. Provided
with the scores for the 9 morphologic criteria, tissue
morphologic similarity (TMS) was measured for all pos-
sible pairs of 114 tissue samples (Fig. 2c and Fig. 3a) and
used as the gold standard for training and validating our
approach. We noted that TMS score, ranging from 0 to
9, is not evenly distributed, and mid-range score (5~ 6)
is mostly dominant. Notably, only small number of pairs
of samples gained a high TMS score, e.g., ~2 % of pairs
of samples scores >8 (Fig. 3b).

Tissue retrieval system provides good matching cases

To evaluate the tissue retrieval system, we performed
K-fold cross-validation (K =10; maintaining a suffi-
cient number of tissues in the database). The entire
dataset was divided into K roughly equal-sized parti-
tions, one partition was left out as “test data” (or
queries), the union of the remaining K — I partitions
(the “training data”) was used to build the database
where top-T similar samples are retrieved for each
query (T'=5). This was repeated K times with differ-
ent choices of the left-out partition. In each repeti-
tion, the 2-stage feature selection was carried out on
the training data via a cross-validation (5-fold). The
average NDCG at rank position T of the tissue re-
trievals for the queries, across all K repetitions, was
computed to measure the performance of the re-
trieval. To handle the imbalance of TMS scores in
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the dataset, a roughly balanced training dataset was
formed by dividing the entire score range into P
equal-width partitions (P =10; allocating a sufficient
number of tissues per partition in regard to the num-
ber of retrieved samples) and randomly taking equal
number of samples from each partition. The method
was implemented in IDL (tissue segmentation and
morphological feature extraction) on 1 1.67GHz Intel
Core Duo machine running Windows 7 with 2GB
memory and C++ (feature selection and tissue re-
trieval) on a 2.5GHz Intel Core 2 Duo machine run-
ning Redhat Linux 4 with 2GB memory. The average
processing time for tissue segmentation and morpho-
logical feature extraction is ~8 min per sample, and
the tissue retrieval time is ~1 s. The Ranking-SVM
training and the feature selection took ~3 s and ~90 min,
respectively.

Although we have computed TMS scores and used
them to train and test the retrieval process, it is unclear
what similarity score is sufficient to provide useful infor-
mation with pathologists when evaluating unknown
samples. Setting a threshold TMS too high score is un-
realistic because there are not enough samples available;
as mentioned above, only ~2 % of the training samples
have similarity score 28 for a query (Fig. 3b). Setting the
TMS threshold lower is not beneficial to pathologists.
We therefore adopted a new data management ap-
proach: In order to examine the retrieval performance
in a broad sense, we changed a threshold similarity
score thy from O to 8, and designated a sample as a
good match (or relevant sample) to a query if their
similarity score is > th,. Then, we counted the num-
ber of good matches (Ng) among the retrieved sam-
ples for each query and plotted the fraction of the
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Fig. 3 Tissue Morphologic Similarity Scores. a Tissue morphologic similarity scores are computed and drawn for all possible pairs of tissue
samples. b The frequency and cumulative density of similarity scores are plotted. Mid-range scores (5 ~ 6) are mostly dominant, and high scoring
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queries retrieving > Ng(Ng=1,...,T). Ng among the
retrieved samples is equivalent to the fraction of the
retrieved samples that are relevant to the query (“pre-
cision”). That is, Fig. 4a shows the fraction of the
queries achieving a precision level equal to or higher
than 0.2, 0.4, 0.6, 0.8, and 1. It is noticeable that
~80 % and ~60 % of the queries retrieving >4 and =3
good matching cases (or >0.8 and >0.6 precision) as
setting th; to 5 and 6, respectively. Compared to the
random chance of retrieving >4 and >3 good matches,
both were increased by two-fold, and the retrievals
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were statistically significant (p-value <1.0e-10) by a
binomial test (Table 2). As shown in Fig. 4b, it was
obvious that TMS scores of pairs of the query and its
top-7 matching samples are higher than those of
pairs of the query and all the samples in the database,
especially TMS scores are 5 or greater.

Moreover, we performed the tissue retrieval by using
the k-Nearest Neighbor (kNN) algorithm (k = 5), instead
of Ranking-SVM. Examining the number of good
matches, Ranking-SVM consistently outperformed kNN;
for instance, setting th; to 5 and 6, Ranking-SVM
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-1 0.15} 11.0 —+— Training
-2 —e— Ranking-SVM
——3
4 Cumulative
g —t—5 %‘ Density
= [ - #- Training
g ——7 50'10 B § - +- Ranking-SVM
o —3 c N 3
S505f [as é’_ 105 >
c - .- .
S - 4- R2 g z
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- *- R8
: 4 0.00 - 410.0
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0 2 4 6 8
Tissue Similarity Score
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—1 015} 11.0 —e—KNN
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s 7 50-10 - & |- o- Ranking-svM
o — c ?‘ 5
505} [ “g'_ {052
c - - -
o - K2 2 z
b - v- K3 Y- 0.05f £
® K4 =]
[ - K5 o
K8
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(c) (d)
Fig. 4 Tissue Retrieval Performance. The number of queries retrieving at least Ng number of good matches by our system (Ranking-SVM),
out of T retrieved samples, is computed (Ns=1,...,7), and compared to a the random chance (RO ~R9) and ¢ kNN retrieval (KO ~K9)
obtaining that number of good matching cases. The frequency and cumulative density of similarity scores are plotted for b the entire
training samples and T matching samples by our system, respectively. d The frequency and cumulative density are also plotted for kNN
retrieval. A good matching case is defined as a pair of samples whose similarity score is 2 th;, th,=0,...,8. Random chance of retrieving
<N55> <NS_N55>
X T—x
= Ng good matching cases is computed as Pr(X=Ng) = Zp%ﬁ where Ns and Nss denote the number of samples in
(7
the database and the number of samples whose TMS with the query 2 th, respectively
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Table 2 Statistical significance of tissue retrieval

ths
5 6 7
Ng 3 101 <0.001 66 <1.e-10 12 <0.0001
4 91 <1e-16 33 <le-11 3 <001
5 43 <le-12 6 <0.001 01

The number of queries (N,) retrieving at least Ng number of good matching
cases as a good match is defined as TMS > th, and its statistical significance.
Assuming the number of good matches follows a binomial distribution,

p-value is computed as Pr(XzNg) = (T)p"ﬂ—p)m"‘ where p is a
2Ng

random chance of retrieving > N; good matches (TMS > thy). (top) the
number of queries and (bottom) its statistical significance

demonstrated a 1.5-fold increase in the fraction of the
queries retrieving >4 and >3 good matches, respect-
ively (Fig. 4c). We investigated the distribution of
TMS scores of pairs of the query and top-7 matching
samples by Ranking-SVM and kNN (Fig. 4d).
Ranking-SVM showed higher TMS scores than kNN
(TMS score >5). Further, the retrieval results were
evaluated by using NDCG (Table 3). Considering top-
T matching samples, Ranking-SVM achieved the aver-
age NDCG of 0.35, and 0.29 NDCG was obtained by
kNN on average. NDCG was computed for the rank-
ing of the entire samples in the database; Ranking-
SVM and kNN showed the average NDCG of 0.75
and 0.68 NDCG, respectively.

TMS score reveals the complicated relationship between
tissues

We examined the utility of TMS scores in retrieving
similar tissue samples by a visual comparison between
tissue H&E images. The relationship between TMS score
and Gleason sum score was also investigated since Glea-
son sum score is the only definite information available
in prostate pathology today. In Fig. 5, the examples of
queries and their matching cases are presented. A pair
of samples belonging to the same grade tends to have a
(relatively) high TMS score, for example, in the second
row of Fig. 5, three retrieved samples with Gleason sum
score 7 have >6.5 TMS score for the query whose Glea-
son sum score is 7. Other two samples have different
Gleason sum score as well as lower TMS scores (<5.6).
However, high TMS scoring sample pairs are not neces-
sarily to be the same grade. In the last row of Fig. 5,
none of the retrieved samples are diagnosed with the
same Gleason sum score with the query, but their TMS

Table 3 Tissue retrieval performance

Top-T All samples
Ranking-SVM 035+0.13 0.75+0.06
kNN 029+0.14 0.68 +0.06

Data represent average + standard deviation of NDCG
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scores are generally high. Four of them have >6.6 TMS
score, of which each has identical scores with the query
for at least 4 morphologic criteria except Gleason score,
demonstrating the capability of TMS scoring system in
examining the relationship between tissues beyond the
Gleason grading system. These types of relationships be-
tween tissue samples can never be retrieved or assessed
if an automated system is built solely on the Gleason
grading system. Thus, TMS scoring system may help to
analyze the complicated and complex tissue morphology
and to broaden our understanding.

Discussion

Herein, a tissue retrieval system has been developed and
tested for prostate cancer. This approach is particularly
well suited for cancer and other diagnostic situations
where there are multiple parameters applied to defining
a grade. In the system, a database allows pathologists to
easily manage and maintain the previous cases and out-
comes, and immediate access to them is available due to
efficient retrieval algorithm. Accordingly, the perform-
ance of tissue retrieval is reliant on both a database and
a retrieval process. Hence, further study on matching al-
gorithm, performance measure, and data handling, e.g.,
data normalization, would be necessary, and a large-
scale validation study should be conducted to optimize
and stabilize the system for various queries, tasks and
users’ demands.

The size of the database may substantially affect the
performance of the retrieval system. In tissue retrieval, it
is assumed that the database contains enough number of
similar samples to any kind of query. That is, the re-
trieval system will benefit from the large-scale database,
including a variety of patterns of tissue samples from
multiple institutions. The retrieval system with the
large-scale database will not only serve for various quer-
ies and tasks but also improve and stabilize TMS scores.
The similarity score for a criterion between two samples
is dependent on the number of samples between them
according to the criterion. The distribution of the sam-
ples will become more realistic, leading to the more ac-
curate and reliable similarity measure. Moreover, scoring
tissue samples by multiple pathologists will further aid
in improving TMS scores. However, with the limited size
of the database, the distribution of TMS score for one
query differs from another (Fig. 3a). Some may have
many high scoring sample pairs, but some may have few
of them. In the latter cases, the retrieval system may re-
turn the most similar samples, i.e., the retrieval is valid
and useful, but it is a seemingly bad retrieval due to rela-
tively lower TMS score. The overall distribution of TMS
score also affects the retrieval. In our study, a limited
number of tissue sample pairs show a high or low TMS
score (Fig. 3b), i.e., it is likely that the system retrieves
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Dissimilar
Sample

™S 5.98 6.61 7.24 6.69 6.67 2.52
Gs 9 8 8 10 10 8 6

Fig. 5 Examples of queries and their matching cases. For each query (left column), 5 closest matches are retrieved. The least similar sample is also
vshown (right column). TMS denotes tissue morphologic similarity score for a pair of samples. GS indicates a Gleason sum score which is a sum of

predominant and secondary Gleason scores

tissue samples owning mid-range TMS scores. In fact, as
we trained Ranking-SVM on the entire training dataset,
i.e., without balanced training, less number of samples
owning higher TMS scores was retrieved for the query
(Additional file 1: Figure S1), for example, TMS score
>6. Accordingly, taking a roughly balanced subset of the
training dataset is a valid decision and helps to provide a
more effective and robust retrieval process.

Gleason grades in the dataset are not evenly distrib-
uted. A lack of a sufficient number of samples per grade
may result in a loss of information of certain patterns in
prostate cancer. However, the imbalance of the distribu-
tion in this study is not likely to have a significant im-
pact on the retrieval system. The system is still able to
retrieve matching cases from the database. A high TMS
score does not indicate that a sample pair has the same
grade. The effect of each grade on the retrieval system
may be further studied to improve and stabilize the re-
trieval system.

We only retrieved the 5 closest samples to a query.
The more samples we retrieve, the higher probability the
system provides well matched cases with pathologists.
However, retrieving many samples (e.g., >10) will be bur-
den to pathologists due to additional time and effort to
decide what samples are relevant and useful. Hence, pro-
viding the most similar samples would be more helpful
and effective. It necessitates little time and work from

pathologists to judge on the retrieved samples, however
deliver good matches. We note that if a pathologist
would like to retrieve more or fewer samples from the
database, then the retrieval system (Ranking-SVM)
should be re-trained by adjusting the number of re-
trievals. If more samples are added to the database, then
the whole system should be re-trained (or updated) by
computing TMS scores and morphological features and
constructing a new Ranking-SVM. Moreover, as one or
more morphological properties are of interest to a path-
ologist, the similarity score can be re-computed and
used to train the retrieval system. The pathologist may
indicate that certain matches were better than others,
resulting in an updating of the database (e.g., changing
TMS score) and matching algorithms as needed. The
updating may be conducted in real-time. Therefore, the
system is potentially adaptable to users’ demand and
purpose.

The 9 morphological criteria were manually scored by
a pathologist and used to measure TMS score. Like
Gleason grading, it is still a qualitative measure. Based
on the qualitative measure, the pathologist categorizes
(or scores) tissue samples per criterion. It is well known
that such qualitative measure is subject to inter- and
intra-observer variability, i.e., likely mis-score (or mis-
classify) tissue samples, in particular for the borderline
cases. Poor scoring (or mis-scoring), in our study, will
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disrupt the similarity measure. However, the impact of
mis-scoring on the retrieval system may not be as sig-
nificant as that of Gleason grading. Mis-scoring in
Gleason grading may give rise to a totally different pat-
tern and outcome prediction. Unlikely, TMS score is a
combined measure of the 9 different properties and var-
ies in a continuous fashion. Some mis-scorings of the 9
criteria clearly affect the similarity measure but may not
cause a complete change in the tissue similarity. Never-
theless, a follow-up study is desirable to examine the in-
fluence of mis-scorings among the 9 criteria on the
similarity measure and the tissue retrieval performance.

Conclusions

We have presented an efficient and effective tissue man-
agement and decision-support system. TMS score offers
an alternate means of assessing tissue characteristics and
similarities as well as developing and testing computer-
ized methods. Next steps in development would be the
validation and application of this system with additional
users. The system can be applied to a diversity of diag-
nostic entities in histopathology. The approach is adapt-
able in scale, including reference dataset, scoring metrics
and matches presented to the pathologist. We anticipate
that this approach will open a new direction for the de-
velopment of automated methods for cancer pathology.
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