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Abstract

Background: Aptamer-protein interacting pairs play a variety of physiological functions and therapeutic potentials
in organisms. Rapidly and effectively predicting aptamer-protein interacting pairs is significant to design aptamers
binding to certain interested proteins, which will give insight into understanding mechanisms of aptamer-protein

interacting pairs and developing aptamer-based therapies.

Results: In this study, an ensemble method is presented to predict aptamer-protein interacting pairs with hybrid
features. The features for aptamers are extracted from Pseudo K-tuple Nucleotide Composition (PseKNC) while the
features for proteins incorporate Discrete Cosine Transformation (DCT), disorder information, and bi-gram Position
Specific Scoring Matrix (PSSM). We investigate predictive capabilities of various feature spaces. The proposed
ensemble method obtains the best performance with Youden’s Index of 0.380, using the hybrid feature space of
PseKNC, DCT, bi-gram PSSM, and disorder information by 10-fold cross validation. The Relief-Incremental Feature
Selection (IFS) method is adopted to obtain the optimal feature set. Based on the optimal feature set, the proposed
method achieves a balanced performance with a sensitivity of 0.753 and a specificity of 0.725 on the training dataset,
which indicates that this method can solve the imbalanced data problem effectively. To evaluate the prediction
performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly,
our proposed method performs better than previous study with a sensitivity of 0.738 and a Youden'’s Index of 0.451.

Conclusions: These results suggest that the proposed method can be a potential candidate for aptamer-protein
interacting pair prediction, which may contribute to finding novel aptamer-protein interacting pairs and
understanding the relationship between aptamers and proteins.
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Background

Aptamers, first reported by Ellington and Gold in 1990
[1, 2], are single stranded DNA/RNA molecules or pep-
tide molecules [3]. They can fold into specific three-
dimensional configurations that bind to targets with a
high specificity and regulate their activities [4, 5]. The
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targets include proteins, nucleic acids, drugs, organic
dyes, metal ions, and even whole cells or organisms
[6, 7]. Figure 1 depicts the structures of two aptamers
binding to specific targets. With a deeper understand-
ing of aptamers in terms of their conformational and
protein-binding properties, aptamer-protein interacting
pairs have a potential to perform a variety of functions
[8, 9]. Aptamers exhibit significant advantages over anti-
bodies in flexibility of selection, chemical stability [4], and
post-modifications [10].

Since they were discovered, aptamers have garnered
tremendous attention and found wide applications in
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Fig. 1 The structures of aptamers binding to specific targets

Neomycin

biosensing, target imaging, diagnostics, and therapeutics
[11, 12]. In the field of therapy, aptamers are thought to
have an excellent potential in treating Age-related Mac-
ular Degeneration (AMD) [13], thrombus [14], glomeru-
lonephritis, pulmonary hypertension, and chronic dis-
eases [15, 16]. In the food industry, some aptamers can act
as pesticides [17]. What’s more, aptamers have a potential
in cancer diagnosis and developing target-based therapeu-
tic drugs delivery to cancer cells, which can reduce side
effects of most chemotherapeutic drugs [12].

Due to the physiological functions and practical applica-
tions of aptamers, designing aptamers binding to certain
interested proteins is crucial to gain insight into mech-
anisms of aptamer-protein interacting pairs and develop
aptamer-based therapies for various diseases. Generally,
aptamers can be artificially generated in vitro by a process
commonly referred to as SELEX (Systematic Evolution
of Ligands by Exponential Enrichment) [18], which con-
sists of several repeated rounds of binding, partition, and
amplification [2]. In SELEX experiments, aptamers are
identified for their abilities to bind a protein of inter-
est from libraries containing up to 10'° different RNA or
DNA sequences [19]. Obviously, it is time-consuming and
costly to design aptamers for specific proteins using exper-
imental methods. Therefore, it would be of help to develop
a computational method for rapidly and effectively pre-
dicting the aptamer-protein interacting pairs based on
sequence information.

To the best of our knowledge, only one machine
learning method has been reported to predict aptamer-
protein interacting pairs. Li et al. [20], utilized random
forest to establish the prediction model, which inte-
grated information from nucleotide composition, amino
acid composition, pseudo-amino acid composition. The
maximum Relevance Minimum Redundancy (mRMR)
combined with Incremental Feature Selection (IFS) strat-
egy was applied to select high discriminative features.
This method has its own merits and does facilitate

the development of this field, but achieves severely
imbalanced performance with a high specificity and a
low sensitivity, which may be attributed to the follow-
ing shortcomings. (1) Previous study merely extracted
composition-based features based on the alphabetic
sequences, and failed to capture some sequence-order
information. Some useful features based on structural
and evolutionary information are also missing. It has
been a major focus in bioinformatics to integrate het-
erogeneous features (in some cases coupled with feature
selection to remove redundant and irrelevant features
from the original feature sets). For example, Li et al.
[21] integrated various sources of features including pro-
tein functional domains, protein subcellular locations,
and protein-protein interaction information to improve
the prediction accuracy of kinase-specific phosphoryla-
tion sites. In another work, Wang et al. [22] combined
heterogeneous features with a two-step feature selection
procedure to improve the prediction performance of cas-
pase substrate cleavage sites. In another recent work, Li
et al. [23] attained a promising result for glycosylation site
prediction by using heterogeneous feature selection. Gen-
erally, multiple features can not only preserve enough dis-
criminative information for protein attribute prediction,
but also complement each other to enhance the perfor-
mance and robustness of a predictor [24]. Therefore, the
combination of various features from different sources
(heterogeneous features) is a good strategy for construct-
ing classifiers [25]. (2) The existing method was based
on an individual classifier whose own inherent defects
would lead to unsatisfactory prediction performance [26].
In general, an ensemble predictor that integrates diverse
learning policies of multiple basic classifiers can outper-
form its component classifiers [27]. Therefore, the ensem-
ble predictor has been considered as a promising strategy
to improve the prediction performance. (3) The previ-
ous method did not deal with the serious class imbalance
problem, which would lead to a high prediction accuracy
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for the majority class but a poor prediction accuracy for
the minority class [28]. When there is a big difference
between the number of positive samples and the number
of negative samples, machine learning algorithms will not
have sufficient information to learn a function to distin-
guish the classes due to the inherent learning biases of
the imbalanced dataset [29]. Therefore, balanced dataset
is needed for avoiding biases in the machine learning [30].

To address the above limitations and further improve
the prediction performance, an ensemble method is
developed in this paper to predict the aptamer-protein
interacting pairs with Pseudo K-tuple Nucleotide Compo-
sition (PseKNC), Discrete Cosine Transformation (DCT),
disorder information, and bi-gram Position Specific Scor-
ing Matrix (PSSM). In order to reduce the computa-
tional complexity and enhance the prediction accuracy,
the Relief-IFS method is employed to select high discrim-
inative features. The ensemble random forest classifier is
introduced to deal with the imbalanced dataset problem
that exists in predicting the aptamer-protein interacting
pairs. 10-fold cross validation is carried out to evaluate
the performance of the proposed method. Our method
achieves promising prediction performance with a bal-
anced sensitivity and a specificity. Further analysis of the
optimal features provides insights into the mechanisms of
aptamer-protein interacting pairs.

Methods

Data collection

In order to evaluate the proposed method and facili-
tate its comparison with previous studies in predicting
aptamer-protein interacting pairs, we use the benchmark
dataset constructed recently by Li et al. [20]. The dataset
is obtained from Apatmer Base [31]. It is divided into a
training dataset and an independent testing dataset. The
training dataset consists of 580 positive and 1740 negative
samples while the independent testing dataset consists of
145 positive and 435 negative samples. The samples in the
independent testing dataset are not in the training dataset.
The training dataset and independent testing dataset are
given in Additional file 1.

Feature extraction

An important issue in designing a predictor is how to
convert an input sample sequence into a set of numer-
ical features that are fed into a classifier. Appropriate
input representations make it easier for the classifier to
recognize underlying regularities, which is vital to the
success of classifier learning [32]. In general, an individ-
ual feature extraction strategy can only represent par-
tial sample’s characteristics, which may limit the predic-
tion performance. Multiple feature extraction strategies
can complement each other to enhance the prediction
accuracy.
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Since each sample in the current dataset consists of an
aptamer (DNA or RNA) and a target protein, PseKNC is
adopted to formulate the aptamer sequences while hybrid
features extracted from DCT, disorder information, and
bi-gram PSSM are utilized for encoding target protein
sequences.

Represent aptamers with pseudo K-tuple nucleotide
composition

Suppose a DNA/RNA sequence D with L nucleic acid
residues, i.e.

D = RI’R2’ e )Riy ttt ,RL;
R; € {denine (A) , cytosine (C) , guanine (G), (1)
thymine (T) oruracil (U)},

where R; denotes the ith nucleic acid residue along the
given sequence.

Nucleic Acid Composition (NAC) is the most simple
feature to encode a DNA/RNA sequence. The sequence D
can be formulated by NAC as the following feature vector:

Fr=[f(A),f(C).f(G),f (T)orf(L)], 2)

where f (A),f (C),f (G),f (T) orf (U) are the normalized
occurrence frequencies of the corresponding nucleotides.

In this type of representation, the sequence order infor-
mation is completely lost which in turn affects the predic-
tion performance. In order to capture local order infor-
mation and global sequence-order information, Pseudo
K-tuple Nucleotide Composition (PseKNC) [33, 34] is
introduced here. Recent studies indicate that PseKNC
have been successfully applied in identifying recombina-
tion spots [35], promoters [36], and nucleosomes [37].
In this paper, K is set as 2 for dinucleotide and 3 for
trinucleotide, respectively.

As known, DNA physicochemical properties have been
proved to play a significant impact on gene expression
regulation [38]. Therefore, physicochemical properties of
nucleotides are used to formulate PseKNC for DNA/RNA
sequences. Results in [34] have shown that DNA/RNA
dinucleotide physical structures, including twist, tilt, roll,
shift, slide and rise, contribute to dealing with DNA/RNA
sequences. Therefore, these six dinucleotide physical
structures are employed to encode the pseudo 2-tuple
nucleotide composition. Meanwhile, 12 physicochemical
properties of trinucleotides are all included to encode the
pseudo 3-tuple nucleotide composition. The values for
both the 6 physicochemical properties of dinucleotides
and the 12 physicochemical properties of trinucleotides
can be referred to [33].
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For PseKNC, the sequence-order information of a
DNA/RNA sequence can be reflected by a series of corre-
lation factors, defined as

1 L-K
th = I-K Z Opit1
i=1
1 L-K-1
0 = I—K=1 Z Ojit2
i=1
, LK A=Lmin—K, (3)
03 = I—K—2 Z Oiit3
i=1
1 L—K—A+1
0=k 2 Oiir
i=1

where

N
2
Oiirj = 3 O [Hn RiRiz1 - Riyx—1) — Hyn (RigjRigjs1 -+ - Rigjak—1)]

n=1 >

i=1,2  L—K+Lj=12-,A
(4)

where 6, is the Ath tier correlation factor that reflects
the sequence order correlation between all the Ath most
contiguous K-tuple nucleotides along a DNA sequence.
A is the highest rank of correlation factor along the
DNA/RNA sequence, and Ly, is the length of the
DNA/RNA sequence with minimum length in the train-
ing dataset. Here, we set A = Lmin — K . ©;;4; is the
correlation function; H, (R;R;+1---Ri1x—1) denotes the
normalized value of the nth physicochemical property
for K-tuple nucleotide R;R; 11 - - - Ritx—1 at position i and
Hy(Ri1jRiyjy1 - - Riyjyx—1) the corresponding value for
K-tuple nucleotide R;jR; 11 - - - Ritjyx—1 at position i+j.
N is the total number of physicochemical properties for K-
tuple nucleotides. Here, N equals to 6 for pseudo 2-tuple
nucleotide composition and N equals to 12 for pseudo
3-tuple nucleotide composition.

Finally, a DNA/RNA sequence can be represented by a
(4X + 1)-dimensional feature vector using the PseKNC,

Dpsexnc = [d1 -+ dyc dgeyy -+ dax i3] (0 = Linin—K),

(5)
where
K—tuple
Su (1< K
u <4 )
—tuple — —
d, = | TR e
WO,,_4K 4K K ’
+1<u<4®+Ar
Z;}fl iK*Luple_._W Z}:l 9]‘ ( )
(6)
K—tuple . .
where f, tuP'e is the normalized occurrence frequency of

the uth K-tuple nucleotide. w is the weight factor.

Represent target proteins with hybrid features
Discrete cosine transform A protein sequence occa-
sionally shows periodicity of hydrophobicity and
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hydrophilicity, which plays a significant role in protein
attribute prediction [39]. To achieve this goal, hydropho-
bicity and hydrophilicity of amino acids along the protein
sequence are employed and transformed into a discrete
frequency domain. Then, the frequency information
reflecting the periodicity, is merged into a set of discrete
components which can be used to identify the distribu-
tion of the power contained in a protein sequence over
the frequencies [40].

Discrete Cosine Transform (DCT), proposed by Ahmed
et al. [41], is a real-valued and quasi-orthogonal trans-
formation approach converting numerical values into fre-
quency domain with lower computational complexities.
The strong capability of the DCT to compress energy
makes the DCT a good candidate for pattern recognition
applications [42].

Based on the hydrophobicity or hydrophilicity of amino
acids, the DCT of a given protein sequence with a length
of L is formulated as

L—1
Gk = a(k) Y H (pn) cos [(2"“)/(”]

0 2L (7)
k=0,1,2,---,L—1,
%,k:O
ﬂ(k): ) (8)
2
Z’k # 0

where G(k),k = 0,1,---,L — 1 represents the spectral
characteristic of the sequence. G(0) denotes the constant
component and the remaining represent the harmonic
components of the sequence.

The low-frequency components of DCT, which pre-
serve the global information along with some sequence
order information, contain more biological significance
than high frequency noisy ones [39]. As the minimum
length of protein sequences in the dataset is 52. For the
hydrophobicity or hydrophilicity of amino acids, we use
52 low frequency DCT components to represent protein
sequences.

Bi-gram position specific scoring matrix According to
molecular evolution, protein sequences stem from a very
finite number of ancestral species, which evolves undergo-
ing changes, insertions, and deletions of single or several
residues [43]. With the accumulation over a long period
of time, many similarities between original and resul-
tant protein sequences are gradually eliminated, but the
corresponding sequences may still share some structure
similarities and the same functions [44]. It is indicated that
protein sequence evolutionary conservations serve as evi-
dence for structural and functional conservations. There-
fore, evolutionary conservations can determine impor-
tant biological functions and are important in biological
sequence analysis [45].
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The position-specific score matrix (PSSM), derived
from the Position-Specific Iterative Basic Local Alignment
Search Tool (PSI-BLAST) [46], is adopted to obtain the
evolutionary conservations. For a given protein sequence
with a length of L, the corresponding PSSM profile is
composed of L * 20 elements defined as:

[E1»1 E152 --+ E1j -+ E1520 |
Ey 1 Exo - Easj - Easno
p _ : : : : R
PesM Eis1 Eisy -+ Eisj -+ Eisno ©)
LErs1 Ers2 -+ ELj - Ep 20 |

where the rows and columns of the matrix are indexed
by the protein residues and the 20 native amino acids,
respectively. The values in the ith row denote the prob-
abilities of the ith residue in the given protein sequence
mutating to the 20 native amino acids during the evolu-
tion process. PSSM generally contains positive or negative
integers. Positive scores indicate that the given amino acid
substitution occurs more frequently than expected occa-
sionally while negative scores indicate the opposite [47].
What'’s more, large positive scores often represent active
sites required for other intermolecular interactions [48].

We extract bi-gram features from PSSM [49] to repre-
sent protein sequences, which are defined as

L-1

Bm,n = Zpi%mPH»l*)m (mx n= 1; 2) ) 20);
i=1

(10)

where By, denotes the frequency of transition from the
mth amino acid on the ith position to the nth amino acid
on the (i41)th position. These features incorporate neigh-
borhood information of amino acids and evolutionary
information from PSSM.

Eventually, 400 frequencies can be obtained and formu-
lated as

Fpsspr =[B1,15 -+ »B1,20, B, -+ 5 B2205 -+ -+ - ,
Bao1, -+, Baoo] -

Disorder information Protein segments are defined as
unstructured or disordered if they lack stable three-
dimensional structures or if they have a large number of
conformations under physiological conditions [50]. Such
disordered regions of proteins allow for more modifica-
tion sites and flexible interaction partners. Therefore, the
information of disorder regions is of great importance for
the functions and structure forming of proteins [51]. In
this study, VSL2 [52], which is one of the best disorder
predictor and can accurately predict both long and short
disordered regions in proteins, is employed to calculate
the disorder score for each residue. Disorder score reflects
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the disorder status of each amino acid in a given pro-
tein sequence. The disorder score ranges from 0 to 1. The
higher score represents the corresponding residue is more
likely to lack fixed structure.

The length of disorder scores for each protein sequence
is varying, which is inappropriate to develop a predic-
tor. Auto covariance (AC), depicting the average interac-
tions between two residues, has been successfully adopted
to grasp the local discriminative information [53]. To
solve the variable dimension problem, AC descriptors
are adopted here to acquire more local sequence order
information.

For a protein sequence with the length of L, disorder
scores are obtained with the same length from VSL2,
defined as

[dl!"'rdir"'yd[,]} (12)

where d; denotes the disorder score of the residue on the
ith position along the given protein sequence.

To extract features from the disorder score, AC is
defined as

AC),

TL-nE

L—A _ _
; (d; — d) * (d(izr) — d), as)

()" =12,.., Lmin - 1):

where d is the average value of the disorder score vec-
tor; A is the distance between two considered amino acid
residues, which is closely related to sequence order infor-
mation and plays an important role in the performance
of a predictor. L,,;, is the length of the protein sequence
with the minimum length which equals to 52 in this
study. From the above equation, 51 order-based features
are calculated. To extract more disorder-based feature,
the following features can be obtained. (i) mean/standard
deviation of all residues disorder scores (2 features); (ii)
number of disorder/non-disorder segments (2 features);
(iii) minimum/maximum length of disorder/non-disorder
segments (4 features). Therefore, 59 disorder-based fea-
tures can be obtained to represent proteins.

Feature selection

After carrying out the above feature extraction meth-
ods, all the aptamer-protein interacting pairs with vari-
ous lengths are converted into numerical feature vectors
with the same dimension. However, not all the extracted
features can contribute equally to classification. There
may have some uncorrelated and redundant informa-
tion among the extracted features, which can affect the
speed and prediction performance of a predictor [54].
Feature selection techniques are essential to pick out
informative features and gain deeper insights into intrin-
sic properties of protein sequences, which can prevent
overfitting, improve the prediction quality, and build a
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robust prediction model [55]. In this study, the Relief algo-
rithm combined with Incremental Features Selection(IFS)
is employed to acquire more discriminative features for
predicting aptamer-protein interacting pairs.

Relief The Relief algorithm, originally proposed by Kira
[56], is considered one of the most successful algorithms
for depicting the relevance between the features and class
labels. It is noise-tolerant and requires only linear time.
The Relief algorithm can be used to estimate feature
weights according to the ability of the feature to dis-
tinguish the near samples [57]. The Relief algorithm is
executed iteratively. During each iteration process, the
Relief algorithm endows each feature with a weight as
formulated by

W}i—i—l — W;J _ dl.[f(Yr xi)H(xi)) + déff(srxi’M(xi)),
m m

(14)

diﬁ’(*,x,y):“‘)x_y‘”zii, (15)

where W;, W;‘H denote the current and next weight val-
ues, respectively; p represents a given feature; x; stands
for the ith sample; H(x;) represents the nearest neighbor
samples from the same class label against x; (termed the
nearest hit); M(x;) stands for the nearest neighbor samples
from different class labels against x;, (termed the nearest
miss). Y and S denote the sample sets with the same and
different class labels against x;, respectively; m is the num-
ber of random samples; The function of diff (x, x, y) is used
for calculating the distance between the random samples
to find the nearest neighbor one.

Relief endows each feature a weight value within range
[0, 1]. The feature with a larger weight value indicates that
it is a more highly relevant one for the target to be pre-
dicted. In other words, predicted targets have a stronger
correlation with the jth feature than that with the ith
feature if Wy > Wy,

The ranked feature list can be obtained based on feature
weight values, represented as

E={ffo-- fnh (16)

where f is the feature with the highest value of W, f, with
the second highest value of W,...,fy with the lowest value
of W.

The WEKA (Waikato Environment for Knowledge
Analysis) software package [58] is used for the feature
selection algorithm of relief, where default parameters are
employed.

Incremental feature selection Base on the ranked fea-
ture list according to the relevance to the class evaluated
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by the relief algorithm, the incremental feature selec-
tion (IFS), one of the well-known searching strategies of
feature selection, is employed to determine the optimal
features [59]. The IFS procedure starts with an empty sub-
set, and adds features one by one from higher to lower
rank into the feature subset. A new feature subset is gener-
ated when another feature has been added. The ith feature
subset can be formulated as

For each feature subset F;, an ensemble predictor is con-
structed and evaluated using 10-fold cross validation test.
The IFS curve can be drawn with Youden’s index values as
the y-axis and index i of F; as the x-axis. The feature subset
that yields the best prediction performance is determined
as the final input of the classification system.

(17)

Ensemble learning method

As illustrated in 'Data collection, the data imbalance prob-
lem exists in predicting aptamer-protein interacting pairs.
Previous research has shown that imbalanced datasets
are problematic when constructing classifiers [60], which
would result in a high prediction accuracy for the majority
class but a poor prediction accuracy for the minority class
[61, 62]. For example, the predictor in [20] yields serious
imbalance performance, with a high specificity of 0.922,
but a very low sensitivity of 0.488, and even a relatively
high accuracy of 0.813. Many researches [63, 64] extract
a very small fraction of the negative samples randomly as
the training data, which has changed the distribution of
positive and negative samples. This method can't take full
advantage of the most information in the original data,
which will lead to a biased estimate of the accuracy. There-
fore, the ensemble learning method is used to resolve the
imbalanced problem.

An ensemble classifier is a collection of multiple basic
individual classifiers with diverse learning policies, which
is supposed to significantly improve the performance of a
prediction method due to the fact that ensemble classifier
is able to make use of the different decision boundaries
generated from the individual classifiers to strategically
combine the classification results [65]. Hansen [66] has
demonstrated why an ensemble method gives a much bet-
ter performance than its component individual classifiers
in theory. In order to improve the prediction performance
and deal with the data imbalance problem, we employ an
ensemble classifier to predict aptamer-protein interacting
pairs. The negative samples are divided into N parts, and
N is determined by

N = Nnegative/NpaSi[ivg, (18)

where Njegative and Nposisive are the numbers of negative
and positive samples, respectively. Here, N equals to 3.
Then, each negative part with the same number of positive
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samples is combined with the positive samples to con-
struct a sub-training dataset. Three RF models are trained
by the 3 sub-training datasets, respectively. The ultimate
prediction result of the ensemble RF classifier is deter-
mined by the average probability of the outputs of the 3 RF
models. This method takes advantage of the information
available in the non-aptamer-protein interacting pairs as
much as possible to construct the prediction model, so the
prediction result is more objective. The whole procedure
of the construction of the ensemble RF classifier is shown
in Fig. 2.

Performance measures

In the statistical prediction, there are 3 cross-validation
methods often used for examining the accuracy, including
independent dataset test, sub-sampling test (e.g. 5-fold or
10-fold cross validation), and jackknife test [67]. Among
these three methods, the jackknife test is deemed the most
objective and rigorous one that can exclude the memory
effects during the entire testing process and can always
yield a unique result for a given benchmark dataset, as
elucidated in [68] and demonstrated by Eq. 50 of Chou
and Shen [69]. Therefore, the jackknife test has been
increasingly and widely adopted by investigators to test
the power of various prediction methods [70, 71]. To
reduce the computational complexity and compare with
the existing method objectively, 10-fold cross validation is
implemented in this study.

"= Positive samples

Negative samples

w

Bi-gram
PSSM

Average
probabili

Result

Fig. 2 The whole procedure of the ensemble RF classifier. PseKNC:
Pseudo K-tuple Nucleotide Composition; DCT: Discrete Cosine
Transform; Bi-gram PSSM: Bi-gram Position Specific Scoring Matrix;
IFS: Incremental Feature Selection; RF: Random Forest
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During the procedure, the training dataset is randomly
separated into 10 equally-sized parts. Each time, one part
is for testing and the other nine parts form the training
dataset. This process is repeated ten times to test each
part. The ultimate result is the average of the 10 prediction
results. To assess the performance of the predictor intu-
itively, sensitivity (Sn), specificity (Sp), accuracy (Acc), and
Matthew’s Correlation Coefficient (MCC) are employed,
which are defined as

TP

n=———-, (19)

FEN + TP
Sp = N (20)

P = P+ IN’

TN + TP
Acc = + , (21)
TN + FP+ FN + TP
TP+« TN — FP x* FN
MCC

~ /(TP Y EN)(IP + FP)(IN 1 FP)(IN + EN)’
(22)

where TP, FP, TN and FN represent true positive (cor-
rectly predicted aptamer-protein interacting pairs.), false
positive (non aptamer-protein interacting pairs incor-
rectly predicted as aptamer-protein interacting pairs),
true negative (correctly predicted non aptamer-protein
interacting pairs), and false negative (aptamer-protein
interacting pairs incorrectly predicted as non aptamer-
protein interacting pairs), respectively.

Additionally, due to the distinct numbers of positive
samples and negative samples in the training dataset,
Youden’s Index [72] is used for gaining insights into the
relative performance of predictors in general, defined as

J=Sn+Sp—1. (23)

Youden’s index gives the probability of an informed deci-
sion and is advantageous as it offers comparison of
aptamer-protein interacting pair prediction quality by
means of a single informative parameter [73].

Results and discussions

Performance analysis of ensemble learning method using
different feature spaces

In order to explore the effectiveness of various feature
spaces, the prediction results obtained by hybrid fea-
ture spaces using 10-fold cross validation are listed in
Table 1. The feature space of DCT and PseKNC iden-
tifies aptamer-protein interacting pairs with a sensitivity
of 0.621 and a Youden’s index of 0.261. DCT, incor-
porating global information along with some sequence
order information, results in an acceptable discrimination
power. The feature space of PseKNC and bi-gram PSSM
discriminates aptamer-protein interacting pairs with the
best performance among the first 3 feature spaces with
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Table 1 Prediction performance of the ensemble RF models using various feature spaces by 10-fold cross validation
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Features Sn Sp Acc MCC Youden's index
PseKNC+DCT 0.621 0.641 0.636 0.229 0.261
PseKNC+Bi-gram PSSM 0.660 0.673 0.670 0.293 0333
PseKNC+Disorder 0.103 0.321 0.267 -0.499 -0.575
PseKNC+DCT+Bi-gram PSSM 0.693 0.666 0673 0315 0359
PseKNC+DCT +Disorder 0.597 0616 0611 0.186 0213
PseKNC+Bi-gram PSSM+Disorder 0.671 0.675 0.674 0.304 0.345
PseKNC+DCT+Bi-gram PSSM+Disorder 0.7 0.680 0.685 0.334 0.380

a sensitivity of 0.660 and a Youden’s index of 0.333. Bi-
gram PSSM, considering evolution and order information
of the protein sequences, yields a satisfactory predic-
tion performance. The bi-gram PSSM information also
has shortcomings. The generation of PSSM of a protein
depends largely on the searching dataset. If no homol-
ogous sequence is found in the searching dataset, the
PSSM can not be obtained [74]. In the implementation
process of our proposed method, when there is no homol-
ogous of a given protein in search dataset, we assign a
zero matrix to the PSSM of the protein. As a minor-
ity of sequences have no homologous sequences in the
benchmark dataset, the overall prediction performance
of the ensemble method will not be affected. In Table 1,
the discrimination power of disorder is weaker compared
to that of the other two feature spaces, due to the fact
that the sequence order information based on disorder
along the sequence may not have enough information for
identifying aptamer-protein interacting pairs.

As shown in Table 1, the hybrid feature space of
PseKNC, DCT and bi-gram PSSM achieves a better pre-
diction performance compared to that of PseKNC+DCT
and that of PseKNC+bi-gram PSSM. The same result
occurs in the hybrid feature space of PseKNC, bi-
gram PSSM and disorder. However, the hybrid feature
space of PseKNC, DCT and disorder obtains a sensi-
tivity of 0.597 and a Youden’s index of 0.213, worse
than those of PseKNC+DCT, but better than those of
PseKNC+disorder. This phenomenon may be due to that
disorder introduces some redundancy features in the
hybrid feature space of PseKNC, DCT and disorder. Fur-
thermore, the hybrid feature space of PseKNC incorpo-
rating DCT, bi-gram PSSM and disorder yields the high-
est sensitivity of 0.7 and the highest Youden’s index of
0.380, indicating the powerful discriminant ability of the
ensemble method using the hybrid feature space. Other
measures also show the case. These results reveal that dif-
ferent feature spaces extract diverse types of information
from different sources and contribute to the prediction
accuracy differently. Any feature spaces that may show a
poor performance on certain protein attribute prediction
cannot be declared as non-discriminative features. They

may contain some important information that might be
missed by other powerful feature extraction techniques.
The hybrid feature spaces can complement each other to
enhance the prediction performance of a predictor. There-
fore, this study uses the hybrid feature space of PseKNC
combining DCT, bi-gram PSSM and disorder to construct
the prediction model.

Solving imbalanced dataset problem
Based on the results of individual RF modules, the ensem-
ble RF classifier attempts to combine different models into
a consensus classifier by the average probability of the out-
puts of the 3 RF models. To evaluate the effectiveness of
our ensemble method to overcome the imbalanced prob-
lem, Table 2 shows the prediction results with or without
the ensemble method by means of the hybrid feature space
of PseKNC combining DCT, bi-gram PSSM and disorder.
As shown in Table 2, without the ensemble method,
the accuracy and specificity achieve as high as 0.819 and
0.993, respectively. But the sensitivity and Youden’s index
are only 0.3 and 0.293, respectively. The ensemble method
achieves a more balanced sensitivity of 0.7 and speci-
ficity of 0.680. The value of Youden’s index is 0.380, better
than that without ensemble method. The accuracy and
MCC obtained with the ensemble method are lower than
those without ensemble method, which may be due to the
imbalanced data size. For the classification of imbalanced
data, accuracy and MCC are both not appropriate mea-
sures because they may be still high when the sensitivity is
very low. These results suggest that the ensemble method
can solve the imbalanced problem effectively.

Feature selection results
The ranked feature list of the hybrid feature space of
PseKNC combining DCT, bi-gram PSSM and disorder is

Table 2 Prediction results with or without the ensemble method
Method Sn Sp Acc MccC
With ensemble 0.7 0680 0685 0334 0380
Withoutensemble 03 0993 0819 0465 0293

Youden'’s index
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obtained according to their relevance to the classes based
on the Relief method. Within the list (see Additional file
2), a feature with a smaller index represents a more impor-
tant one for aptamer-protein interacting pair prediction.
The feature list is utilized to select the optimal feature sub-
set in the following IFS procedure. Based on the ranked
feature list, adding the ranked features one by one, individ-
ual predictors for different feature subsets are constructed
using the ensemble FR classifier and evaluated by 10-fold
cross validation. The IFS results are given in Additional
file 3. Then, the IFS curve is plotted in Fig. 3, which
shows the relationships of feature indices against Youden’s
index. The curve reaches its peak at 0.479 when the top
304 features in Additional file 2 are selected. Thus, these
304 features are regarded as the optimal features for the
ensemble RF classifier.

To investigate the influence of feature selection on the
performance of the ensemble RF classifier, the prediction
performance of the ensemble method with and without
feature selection based on hybrid feature space of PseKNC
combining DCT, bi-gram PSSM and disorder is shown
in Table 3. As can be seen from Table 3, the ensemble
method with feature selection achieves a sensitivity of
0.753, a specificity of 0.725, an accuracy of 0.732, a MCC
of 0.424, and a Youden’s index of 0.479 based on the 304
features, which are all superior to those of the ensemble
method without feature selection. These results demon-
strate that the original feature set really contains redun-
dant information or noise. The Relief-IFS method can sig-
nificantly remove these useless features to greatly improve
the performance of the ensemble model. The ensemble
learning method with feature selection is determined as
the final predictor for aptamer-protein interacting pair
prediction.
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Analysis of the optimal features

The feature type distributions of the original features
and the optimal features are investigated and shown in
Fig. 4. There are 57 PseKNC features, 57 disorder fea-
tures, 104 DCT features, and 86 bi-gram PSSM features
in the optimal feature set, indicating that all kinds of
features contribute to the prediction of aptamer-protein
interacting pairs. The percentages of the optimal features
accounting for the corresponding feature types are also
investigated, which are 0.626 for PseKNC, 0.966 for dis-
order, 1.00 for DCT and 0.215 for bi-gram PSSM. It is
interesting to note that all DCT features are in the optimal
feature set, indicating that DCT based features play a cru-
cial role in predicting aptamer-protein interacting pairs.
This is the first attempt to employ DCT based features for
aptamer-protein interacting pair prediction, which may
help provide new annotations for the properties of these
interaction pairs. An overwhelming majority of disorder
features (0.966) are selected as the optimal features. It is
suggested that disorder based features act an irreplace-
able role in the prediction of aptamer-protein interacting
pairs. These results indicate that disordered regions of a
protein are closely related with the formation of the inter-
action of an aptamer and a protein, which is in accordance
with the statement that disorder information of proteins
are of great importance for the functions and structure
forming. More than half of features are selected from
PseKNC (0.626). This implies that the nucleotide compo-
sition and order information play some roles in predicting
aptamer-protein interacting pairs. It is noted that a minor-
ity of bi-gram PSSM features (0.215) are selected from
the original bi-gram PSSM features, due to the fact that
the number of this feature type in the original feature set
is the most of all those of other feature types. Results in
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Fig. 3 The IFS(Incremental Feature Selection) curve. The values of Youden's index against the number of features
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Table 3 Performance of the ensemble FR classifier with and without feature selection

Method No. of features Sn Sp Acc McC Youden's index
Without feature selection 654 0.7 0.680 0.685 0334 0.380
With feature selection 304 0.753 0.725 0.732 0424 0479

"Performance analysis of ensemble learning method using
different feature spaces’ indicate that they perform a non-
negligible role in improving the prediction performance of
the ensemble method.

Comparison with existing method

The existing method for identifying aptamer-protein
interacting pairs [20] present prediction results by using
the same size dataset (580 positive and 1740 negative sam-
ples) and same validation method (10-fold cross valida-
tion). To evaluate the prediction performance objectively,
we compare our method with reference [20] on the train-
ing dataset. The performance comparison based on the
same dataset is much more reliable, which can reflect
the performance of a predictor more objectively. Table 4
reports the detailed prediction results obtained by the
aforementioned 2 methods. As we can see from Table 4,
[20] obtains an imbalanced performance with a low sen-
sitivity of 0.488, but a high specificity of 0.922, indicating
that positive samples tend to be identified incorrectly as
the negative ones. This study achieves a balanced perfor-
mance, with a sensitivity of 0.753 and a specificity of 0.725.
The sensitivity of this study is far better than that of ref-
erence [20]. It is noted that due to the large number of
negative samples, the negative samples tend to be iden-
tified correctly, which will lead to a large Acc value and
a large MCC value as given in [20]. As mentioned above,
Acc and MCC are not proper and objective indexes for
this serious data imbalance problem. In addition, Youden’s

index of this study is better than that of [20]. Overall, the
proposed ensemble method achieves a satisfactory per-
formance and can play a complementary role to identify
aptamer-protein interacting pairs.

To further assess the prediction performance of the pro-
posed method, it is essential to compare the performance
of the present method with that of the previous predictor
on the same independent testing dataset. The prediction
results are summarized in Table 5. In Table 5, though the
specificity (0.871) yielded by [20] is better than that (0.713)
obtained by our method, the sensitivity (0.483) of [20] is
far worse than that (0.738) of our method, which indicates
that the imbalance between sensitivity and specificity
exists in [20]. Our method achieves a balanced perfor-
mance with sensitivity of 0.738 and specificity of 0.713,
which is also proved by the Youden’s index of 0.451. It is
worth pointing out that the proposed ensemble method
has a fairly good prediction performance and prediction
robust in predicting aptamer-protein interacting pairs.

Case study

In the case study section, we select two aptamer-protein
interacting pairs identified correctly by our proposed
method and analyze their physiological functions. For
example, 17155909-human interleukin-23-2 interacting
with human-interleukin-23 [75], an aptamer-protein
interacting pair, can perform functions in congenital
immunity and make a response to infection in organ-
isms. It may not only be responsible for autoimmune
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Table 4 Performance comparison with the existing method on
the training dataset by 10-fold cross validation

Method Sn Sp Acc MccC Youden's index
[20] 0488 0.922 0813 0461 0410
This study 0.753 0.725 0.732 0424 0479

inflammatory diseases but also be important for tumori-
genesis [75]. Another aptamer-protein interacting
pair, 20387790-PAI-1-2 interacting with plasminogen-
activator-inhibitor-1 [76], may function as a major control
point in the regulation of fibrinolysis and blood coagula-
tion system, regarded as a key marker for cardiovascular
diseases [77]. Our proposed method can effectively
identify aptamer-protein interacting pairs annotated
and reviewed using experimental methods, which is
of great theoretical significance in guiding research on
aptamer-protein interacting pairs and relevant therapy.

Conclusions

In this paper, an ensemble method has been presented
with a combination of sequence descriptors extracted
from PseKNC, DCT, disorder information, and bi-gram
PSSM to predict the aptamer-protein interacting pairs.
To solve the dimension disaster and improve the pre-
diction capability of the model, the Relief-IFS method is
adopted to obtain the optimal feature set. By investigating
predictive capabilities of various feature spaces, the pro-
posed ensemble method obtains the best sensitivity of 0.7,
specificity of 0.680, and Youden’s Index of 0.380, with the
hybrid feature space of PseKNC, DCT, bi-gram PSSM, and
disorder information by 10-fold cross validation. These
results indicate that the hybrid feature space can comple-
ment each other to enhance the prediction performance
and the ensemble method can solve the imbalanced prob-
lem effectively. The Relief-IFS method can significantly
remove useless features to greatly improve the perfor-
mance of the ensemble model. Analysis of optimal fea-
tures reveals that all feature types play roles in the deter-
mination of aptamer-protein interacting pairs, which may
help understand the mechanism of aptamer-protein inter-
actions and provide guidelines for experimental valida-
tion. To evaluate the prediction performance objectively,
the proposed method is compared with previous study
on the same training dataset and independent testing
dataset, respectively. Our method obtains a balanced per-
formance. The sensitivity yielded by our method is far

Table 5 Performance comparison with the existing method on
the independent testing dataset

Method Sn Sp Acc MCC Youden's index
[20] 0483 0.871 0.774 0372 0.354
This study 0.738 0.713 0.719 0.398 0451
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better than that achieved by the previous method. In addi-
tion, Youden’s index of this study is better than that of
the existing method. It is convinced that the proposed
method is an effective and powerful approach for predict-
ing aptamer-protein interacting pairs. Since user-friendly
and publicly accessible webservers represent the future
direction for developing more practically predictors, we
will attempt to provide a webserver in our future work for
the method presented in this paper.

Additional files

Additional file 1: The benchmark dataset. The training dataset contains
580 positive and 1740 negative samples while the independent testing
dataset consists of 145 positive and 435 negative samples. (XLS 441 kb)

Additional file 2: The ranked feature list given by the Relief algorithm.
Within the list, a feature with a smaller index indicates that it is more
important for aptamer-protein interacting pair prediction. Such a list of
ranked features are used to establish the optimal feature set in the IFS
procedure. (XLS 56.5 kb)

Additional file 3: The Incremental Feature Selection (IFS) result. By adding
features one by one from higher to lower rank, 654 different feature
subsets are obtained. The ensemble predictor is then accordingly built for
each feature subset and evaluated by 10-fold cross validation. (XLS 125 kb)
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