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Abstract

Background: Abnormalities in glycan biosynthesis have been conclusively related to various diseases, whereas the
complexity of the glycosylation process has impeded the quantitative analysis of biochemical experimental data for
the identification of glycoforms contributing to disease. To overcome this limitation, the automatic construction of
glycosylation reaction networks in silico is a critical step.

Results: In this paper, a framework K2014 is developed to automatically construct N-glycosylation networks in
MATLAB with the involvement of the 27 most-known enzyme reaction rules of 22 enzymes, as an extension of
previous model KB2005. A toolbox named Glycosylation Network Analysis Toolbox (GNAT) is applied to define
network properties systematically, including linkages, stereochemical specificity and reaction conditions of enzymes.
Our network shows a strong ability to predict a wider range of glycans produced by the enzymes encountered in the
Golgi Apparatus in human cell expression systems.

Conclusions: Our results demonstrate a better understanding of the underlying glycosylation process and the
potential of systems glycobiology tools for analyzing conventional biochemical or mass spectrometry-based
experimental data quantitatively in a more realistic and practical way.

Keywords: N-glycan, Glycosylation reaction networks construction, Glycosylation enzyme activity, Mass spectrum,
Glycobiology

Background
Glycosylation is an important and highly complex post-
translational modification that generates an extensive
functional capability from a limited set of genes and
encompasses the biosynthesis of sugar moieties in the
endoplasmic reticulum (ER) and Golgi apparatus [1–3].
Glycans are highly variable and structurally diverse com-
pounds consisting of a large number of monosaccha-
rides, including mannose, fucose, and galactose, linked
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through an enzymatic process called glycosylation [4].
Unlike protein structures, glycan structures are neither
directly encoded in the genome nor arranged in a sim-
ple linear chain [5]. Instead, the structure of secreted
and membrane-bound glycans is determined during their
assembly in the endoplasmic reticulum and the Golgi
apparatus by a controlled sequence of glycosyltransferase
and glycosidase processing reactions [6].
One of the major types of glycans attached to asparagine

residues of proteins, N-linked glycans, is determined by
a manageable number of enzymes that catalyze monosac-
charide attachment. N-linked glycosylation occurs co-
translationally in endoplasmic reticulum compartments.
Glycoproteins migrate into the Golgi apparatus once the
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protein finishes folding and some residues in the glycan
trim successfully [7]. Many of these enzymes can gener-
ally accept several N-linked glycans as substrates, there-
fore generating a large number of glycan products and
their glycosylation pathways [7]. Processing involves the
removal of mannose groups, which is facilitated by man-
nosidases, and the addition of diverse monosaccharides
driven by specific glycosyltransferases to the substrate gly-
can. Therefore, the glycosylation pathways of N-linked
glycans comprise consecutive enzymatic steps, which are
determined by the glycan structures produced by the pre-
vious enzyme, to produce a new glycan structure as the
substrate of the next glycosylation reaction [7].
From research conducted in the past decades, it is clear

that the glycosylation of diseased cells and healthy cells
often results in different glycan changes that contribute
to pathological progression, leading to the possibility that
disease-specific glycan structures exist [8–12]. This has
potential medical applications; for example, the potential
to distinguish benign forms of prostate cancer from highly
malignant cancer based on the changes in enzymes’ activ-
ities and intracellular processing events [13, 14]. Effec-
tive engineering of glycosylation pathways can potentially
lead to an improved therapeutic performance of glyco-
protein products. Considerable progress has been made
in Prostate-Specific Antigen (PSA) research; and analytic
approaches in analyzing large data sets have also been uti-
lized to expand analyses from PSA to numerous cancers
and diseases known to have abnormalities in glycosyla-
tion. However, more research is still needed in acquiring
and interpreting datasets to completely characterize gly-
cosylation, including enzymatic profiles involved in glyco-
sylation and the large quantities of glycans produced by
enzymes.
Fortunately, a wealth of data is available from

glycosylation-specific databases such as the Consortium
for Functional Glycomics (CFG) website [15] and Gly-
comeDB [16]. Also, Liquid Chromatography (LC) and
Mass Spectrometric (MS) techniques have been emerg-
ing as enabling and important techniques in glycomics.
A number of LC/MS methods have been incorporated
into glycomics workflows for permethylated and ami-
nated glycans reduction [17, 18]. Statistical methods
have been proposed to predict glycan structures from
gene expression data [19–21]. However, these traditional
and qualitative methods in biochemistry or cell biology
research do not provide a detailed understanding of the
complex glycosylation mechanism quantitatively.
Systems biology-based mathematical models have been

developed to overcome this limitation [6, 22–26]. In this
regard, the construction of glycosylation reaction net-
works in silico is an important step that can enable the
quantitative analysis of biochemical experimental data.
Whereas several studies have been done to construct

glycosylation reaction networks automatically on com-
puters, they are limited by the lack of a systematic
definition of the linkage, stereochemical specificity and
reaction conditions of enzymes that are involved in the
reactions.
Liu and Neelamegham [27] made a significant contribu-

tion by designing an open-source MATLAB-based tool-
box, Glycosylation Network Analysis Toolbox (GNAT),
for studies of systems glycobiology. This toolbox enables
a streamlined machine-readable definition for the gly-
cosylation enzyme class and the construction as well as
adjustment of glycosylation reaction networks [27].
This paper extends Liu and Neelamegham’s work [27]

to predict a wider range of glycans produced by enzymes
encountered in human cell expression systems. In addi-
tion, our model can be applied to a larger range of exper-
imental conditions that might be encountered in a cell
culture environment. We expand the scope by inclusion
of additional enzyme classes involved in gene expression
data. We extend the framework of KB2005 [6] through
involving 22 enzymes (27 enzyme reaction rules) in our
network.
To the best of our knowledge, these 22 enzymes

(27 enzyme reaction rules) are all enzymes associated
with N-glycan that exist in Golgi compartments. Net-
works constructed can be used to relate the observed
mass spectrometric measurements to the underlying gene
expression weights. This relationship can be used to quan-
titatively understand how changes in enzymes’ activities
affect the profile of glycan structures produced in the
biosynthesis process.

Methods
We apply the Glycosylation Network Analysis Tool-
box (GNAT) as the platform to facilitate the modeling.
Generated by Liu and Neelamegham [27], GNAT is a
MATLAB-based toolbox for the automated construction
of glycosylation reaction networks.

Enzyme definitions using biological experimental data
To analyze biological experimental data in the glycomics
field quantitatively, the construction of glycosylation reac-
tion networks, which can describe the glycan biosynthesis
process in silico, is rather critical. Some efforts have been
made to build systems-level cellular glycosylation reac-
tion networks on O-linked glycan [26] or N-linked glycan
[23] formation. However, this work has always been hin-
dered by the lack of a complete system for the specificity
of detailed glycosylation rules. In this paper, we address
this problem by defining enzymes in a machine-friendly
way using a MATLAB-based toolbox called Glycosylation
Network Analysis Toolbox (GNAT).
In GNAT, we can define generic enzymes using the Enz

class. Since the properties of transferases and hydrolases
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are very different, TfEnz and HlEnz are used as subclasses
of the Enz class to define them, respectively, as follows:
Transferase reaction:

donor + acceptor � donorProd + acceptorProd

Hydrolase reaction:

substrate + H2O � prod_oh + prod_h

where donor, donorProd, acceptor and acceptorProd are
variables used to specify properties in transferase (TfEnz)
reactions and prod_oh and prod_h are for hydrolase
(HlEnz) reactions as named.
In addition, variables such as resfuncgroup, linkFG,

resAtt2FG and linkAtt2FG are used to specify functional
groups and linkage specificity for enzymes. More specifi-
cally, resfuncgroup is the residue of functional group trans-
ferred, resAtt2FG is the residue attaching to functional
group, linkFG refers to the linkage between attaching
residue and functional group and linkresAtt2FG stands

for the linkage between the attaching residue and its next
neighboring residue.
Most importantly, eight substrate specificity functions

are available in the glycosyltransferase and glycosidase
classes: substMinStruct, substMaxStruct, substNABranch,
substNAStruct, substNAResidue, targetBranch, tar-
getNABranch, and isTerminalTarget. They define the
properties of substrates or products in reactions upon
which a specific enzyme acts. Only if all conditions
defined by these functions are satisfied can the cor-
responding enzyme act on the substrate; that is, the
reaction will happen. In this work, firstly, we collect 27
enzyme reaction rules of 22 enzymes from databases,
such as GlycomeDB [16], KEGG Glycan, IUBMB (Inter-
national Union of Biochemistry and Molecular Biology),
GlycoGene DataBase (ggdb), the Consortium for Func-
tional Glycomics (CFG) website [25], and previous work
by Sandra V. Bennun et al. [24] (See Table 1). Secondly,
we define enzymes by specifying their properties in

Table 1 Current enzyme reaction rules

Index Enzyme EC No. Substrate Product Constraint

1 ManI [3.2.1.113] (Ma2Ma (Ma ∼*2Ma3(...Ma6)

2 ManI [3.2.1.113] (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6)

3 ManII [3.2.1.114] (Ma3(Ma6)Ma6 (Ma6Ma6 (GNb2|Ma3 &∼Gnbis)

4 ManII [3.2.1.114] (Ma6Ma6 (Ma6 (GNb2|Ma3 &∼Gnbis)

5 FUT8 [2.4.1.68] GNb4GN GNb4(Fa6)GN GNb2|Ma3 &∼Gnbis &∼Ab

6 MGAT1 [2.4.1.101] (Ma33(Ma3(Ma6)Ma6)Mb4 (GNb2Ma3(Ma3(Ma6)Ma6)Mb4

7 MGAT2 [2.4.1.143] (GNb2|Ma3(Ma6)Mb4 (GNb2|Ma3(GNb2Ma6)Mb4

8 MGAT3 [2.4.1.144] GNb2|Ma3 GNb2|Ma3(GNb4) ∼Ab &∼Gnbis

9 MGAT4 [2.4.1.145] (GNb2Ma3 (GNb2(GNb4)Ma3 ∼Gnbis

10 MGAT5 [2.4.1.155] (GNb2Ma6 (GNb2(GNb6)Ma6 ∼Gnbis

11 iGnT [2.4.1.149] (Ab4GN (GNb3Ab4GN ∼_Ma3|Mb4

12 b4GalT [2.4.1.38] (GN (Ab4GN (∼*GNb4)(. . .Ma6)Mb4

13 a3SiaT [2.4.99.6] (Ab4GN (NNa3Ab4GN

14 IGNT [2.4.1.150] (Ab4GNb3Ab (Ab4GNb3(GNb6)Ab

15 a6SiaT [2.4.99.1] (Ab4GN (NNa6Ab4GN

16 b3GalT1 [2.4.1.62] (GN (Ab3GN (∼*GNb4)(. . .Ma6)Mb4

17 FUT3 [2.4.1.65] Ab3GNb Ab3(Fa4)GNb (Ab3* or (Fa2Ab3* or (NNa3Ab3*)

18 FUT3 [2.4.1.65] (. . . Ab4GNb (Fa3(. . . Ab4)GNb (*Ab4 or (*Fa2Ab4 or (*NNa3Ab4)

19 FUT1 [2.4.1.69] (Ab3GNb (Fa2Ab3GNb

20 FUT1 [2.4.1.69] (Ab4GNb (Fa2Ab4GNb

21 a3FucT [2.4.1.152] (. . . Ab4GNb (Fa3(. . . Ab4)GNb (*Ab4 or (*Fa2Ab4

22 GalNAcT-A [2.4.1.40] (Fa2Ab (Fa2(ANa3)Ab

23 GalT-B [2.4.1.37] (Fa2Ab (Fa2(Aa3)Ab

24 b3GALT6 [2.4.1.134] Ab4GN Ab3Ab4GN

25 b3GALT6 [2.4.1.134] Ab4A Ab3Ab4A

26 c1GALT1 [2.4.1.122] AN Ab3AN

27 st3galI [2.4.99.4] (Ab3GN (NNa3Ab4GN



Hou et al. BMC Bioinformatics 2016, 17(Suppl 7):240 Page 468 of 543

biosynthesis reactions utilizing the functions above (See
Figs. 1 and 2).

Automated construction of glycosylation reaction
networks
We integrate glycosyltransferase and glycosidase enzy-
matic data from databases into across-the-board enzyme
classes: GHEnz and GTEnz. Automated construction of
glycosylation reaction networks is enabled by the defini-
tion of the glycosidase (GHEnz) and glycosyltransferase
(GTEnz) classes. If the substrate and the enzyme are
determined, the product of glycosidase and glycosyltrans-
ferse reactions can be automatically generated by function
product inference. Here we choose the function forward
network inference, which can consider the products gener-
ated as the substrates of the next reaction so that reactions
will happen in a sequential manner if the reaction con-
ditions conform to the enzyme reaction rules. This is
repeated until no additional new products are generated
by the set of enzymes specified.
In this work, we define all enzymes in file createEn-

zDb.m (See “Availability of data and materials” section
for the MATLAB codes) and then load it in MATLAB.
Next, we place all enzymes in a CellArrayList object
called enzArray. Starting with the glycan CellArrayList
objects 9-mannose and 8-mannose as substrates, all pos-
sible reaction pathways and products are determined by

function inferGlyForwPath. This process will continue
indefinitely if there are always reactions and products.
In this process, duplicate reactions and glycan product
species are removed while being consolidated into the
Pathway object. In the network generated by our model
(called K2014), nodes represent the glycan species and the
biochemical reactions between two glycans are denoted as
edges. Setting the value of the variable count, we can easily
limit the size of the network generated as needed.

Results
We applied the 27 current reaction rules of biosynthe-
sis reactions catalyzed by 22 enzymes to define all these
enzymes. These definitions were then used to infer an
N-linked glycosylation reaction network automatically in
MATLAB. The network generated shows all enzymes cat-
alyzing each reaction in different colors. All reactions are
denoted as arrows, which are determined by the enzyme
that catalyzed them. Glycan structures involving linkages
and monosaccharides that constitute the glycan are also
visual. We call this network K2014, as shown in Fig. 3.
The comparison among previous models UB1997 [22],
KB2005 [23], and our model K2014 is shown in Table 2
(only in the first seven rounds because from the eighth
round, our network becomes too big to be presented
here). Since pathways can be generated endlessly if reac-
tions are still possible to happen according to the reaction

Fig. 1 Part of enzyme reaction rules defined in class GTEnz/GHEnz (part 1). Blank fields indicate that we do not need to define the value of this
variable of the corresponding enzyme
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Fig. 2 Part of enzyme reaction rules defined in class GTEnz/GHEnz (part 2). Blank fields indicate that we do not need to define the value of this
variable of the corresponding enzyme

rules, we can set round in the for loop and get a net-
work of the size we need. At the same time, we can also
operate the network generated by removing glycans that
do not exist in the Golgi apparatus using the pathway
class.

Discussion
As can be seen from Table 2, our model generates a much
more complex glycosylation reaction network. Here we
consider one horizontal step as one round. Take round
7 as an example. In the model UB1997 [22] where only
eight enzymes are considered, there are only four gly-
can structures in the network. Threemonosaccharides are
operated in this network: mannose, N-acetylglucosamine,
and galactose. While in 2005, 11 enzymes are involved
in the model KB2005 and 14 structures can be shown in
round 7. In this model, the network shows the glycosyla-
tion process containing fivemonosaccharides being added
to or cut from the visual glycan structures. However, in
reality, the structures of glycan can be much more com-
plicated, and more monosaccharides can be added to a
glycan during the glycosylation process regarding enzyme
specificity.
Concerning the fact that more enzyme reaction rules

have been updated by biologists, we take the most up-
to-date reaction rules into concern and involve them all
in the construction of a glycosylation reaction network.
From previous research [28–46], we know that all of these
enzymes make contributions to the glycosylation process
and should therefore be included into the construction of

a glycosylation reaction network. Thus, the model K2014
is built. There are many more glycan structures than we
have space to show here. As can be seen from Fig. 3,
31 glycan structures have been generated by the catal-
ysis of these 22 enzymes (totally 27 enzyme reaction
rules). Note that it provides a more complete under-
standing of the glycosylation process. The enzymatic rules
collected from databases and literature show that these
enzymes exist in cells and are involved in the glycosyla-
tion process. Concerning that our network includes more
enzymes than the original GNAT and the model KB2005
[23], it is closer to reality. Thus, our model provides a
result that better represents the underlying glycosylation
process.

Conclusions
In this work, we extend the model KB2005 [23] with
application of the toolbox GNAT to construct a relatively
larger N-linked glycosylation network. While GNAT
only involves the presence of 9 enzymes, we include
22 enzymes (totally 27 enzyme reaction rules) whose
information is collected from the literature, glycosylation-
specific databases such as GlycomeDB [16], the Consor-
tium for Functional Glycomics (CFG) website [25], KEGG
Glycan and ggdb. Our framework K2014 can automat-
ically construct a relatively larger glycosylation reaction
network using 27 streamlined enzyme reaction rules.
Accordingly, this framework advances the study of the
in silico cell processes and potentially has significant
benefits.
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Fig. 3 Reaction network generated by model K2014. This is the glycosylation reaction network automatically generated by our model K2014 which
takes M9 as the substrate and involves all 27 enzyme reaction rules (only the first seven rounds are shown here)
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Table 2 A comparison among the reaction networks generated
by previous models UB1997, KB2005, and our model K2014 (First
7 rounds)

Model UB 1997 KB2005 K2014

Number of enzymes 8 11 22

Number of structures 4 14 31

Number of reactions 12 26 64

With this glycosylation network and related algorithms,
a variety of network analysis strategies can be imple-
mented to analyze the components of the overall gly-
cosylation network. With our framework K2014, it is
possible to analyze conventional biochemical or mass
spectrometry-based experimental data quantitatively in a
more realistic and practical way. Examples include, but
are not limited to, a dynamic mathematical model for
monoclonal antibodies (mAbs) glycosylation to estimate
unknown enzymes and transport proteins (TPs) concen-
tration profile parameters [47], a framework to quantita-
tively understand how changes in enzymes activities affect
the profile of glycan structures produced in the biosyn-
thesis process [24], and the simulations on N-glycan
processing in accessing whether a homogeneous glycan
profile can be created throughmetabolic engineering [48].
Future research can be conducted on the above-related
issues using both conventional biochemical resources and
high-throughput MS experimental data.
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