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Abstract

Background: Protein–protein interaction networks are receiving increased attention due to their importance in
understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of
such biological networks. Although clustering techniques have been proposed for clustering protein–protein
interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques
to protein–protein interaction networks in order to predict protein complexes within the networks does not yield
good results due to the small-world and power-law properties of these networks.

Results: In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of
genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the
quality of our proposed clustering algorithm using two gold-standard data sets.

Conclusions: Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data
sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the
quality of the predicted complexes. The source code and accompanying examples are freely available at http://
faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip.
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Background
Protein–protein interaction networks are known to
exhibit modular structure. A module in a protein inter-
action network could be a protein complex, an organelle,
proteins involved in a functional pathway, etc [1]. Identi-
fying the complexes within a protein interaction network
is a challenging task due to two factors: First, interac-
tion data from current high throughput methodologies
have significantly high false positives and negatives. Sec-
ond, a protein could belong to multiple complexes. We
propose a protein complex discovery algorithm that uses
genetic algorithms (GA) to identify complexes in pro-
tein interaction networks from yeast. Compared to earlier
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clustering algorithms proposed for this problem, our algo-
rithm possesses several advantages that are enumerated
below.

1. This approach recognizes that protein complexes are
not cliques or near-cliques; the method is capable of
identifying clustering with varying densities
depending on the local density of edges in
subnetworks (i.e., in dense regions of the network, it
clusters dense subgraphs; and in sparse regions of the
network, it clusters sparse subgraphs).

2. The approach is more robust and scalable. An
example of this is that the clustering algorithm is
capable of clustering large–size networks (such as the
human protein interaction network), or it can cluster
a large number of networks (hundreds of bacterial
networks) without problems by ensuring that the
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many steps of the algorithm have costs that increase
modestly with the number of nodes and edges in the
network.

3. The algorithm can be tuned using parameters to
obtain clusterings with a desired density and an
average size of clusters.

Related works
Three major graph clustering approaches have been
employed to identify protein complexes.
The first approach searches for subgraphs with spec-

ified connectivities, called network motifs, and charac-
terizes these as complexes or parts of them. A complete
subgraph (clique) is one such candidate, but other net-
work motifs on small numbers of vertices have been
identified through exhaustive searching. Due to the time-
complexities involved, this approach is restricted to
searching for small subgraphs in large networks.
In the second, graph–growing approach, a cluster is

grown around a seed vertex using graph search algorithms
(greedy algorithms). These are local algorithms that begin
with single, or several known nodes and then expand
from there. The MCODE algorithm (Bader and Hogue
[2]) starts with a single seed vertex, and adds more ver-
tices based on a pre-computed set of weights. A vertex
in the neighborhood of a cluster is added to it as long as
its weight is close (within a threshold) to the weight of
the seed vertex. Similarly, Bader [3] proposed the SEEDY
algorithm, which progressively adds proteins to a seed
protein to form complexes, based on a particular distance
metric. Another software package called Complexpander
by Asthana et al. [4] functions in this way to help iden-
tify protein complexes, including the seed proteins from
a PPI network. However, our experience comparing this
approach with the graph (global) clustering approach
that we describe next shows that this approach is less
stable than the latter (i.e., the clusters discovered depend
strongly on the seed vertices chosen).
The third approach, the graph clustering approach,

includes many variants. Algorithms in this category
attempt to maximize or minimize certain cluster mea-
sures such as connection density, edge cut, or a novel
distance metric between nodes in a cluster. In general,
these are global algorithms that seek to optimize an objec-
tive function for the whole graph. One algorithm by Spirin
andMirny [5] employs the super-paramagnetic clustering
(SPC), which is a technique based on a principle observed
in physics to maximize the cluster density. Another algo-
rithm by Przulji et al. [6] uses the concept of a minimal
cut, which is a partition of the nodes of the network into
two complementary sets such that the least number of
edges cross from one set to the other. In their method,
they perform recursive minimal cuts until they end up
with densely connected subgraphs. Another method by

King et al. [7] called restricted neighborhood search clus-
tering (RNSC) begins by randomly assigning nodes to
clusters, then reassigns nodes so as to minimize a cost
function. Yet another such method by Enright et al. [8]
uses a method called Markov clustering (MCL) to simu-
late the “flow” of the matrix. It does this by calculating
increasing powers of the network’s adjacencymatrix.With
the increased powers, the areas of high flow become
increasingly separated from those with little flow.
The methods described so far compute exclusive clus-

terings, i.e., they permit nodes to be members of at most
one cluster. However, in biological systems many proteins
and gene products participate in multiple functions [9].
Pereira-Leal et al. [10] used theMCL clustering algorithm
in order to detect overlapping clusters. Their algorithm
first turns a network with individual proteins as nodes,
into a network with protein interactions as nodes (the
line graph of the input graph). Then, the MCL algorithm
is used to cluster the network of interactions. Finally,
the algorithm re-converts the identified clusters from the
interaction line graph back to the original graph with pro-
teins as nodes. When the interaction network clusters are
converted back to the original network, the same protein
can appear in multiple clusters. Nepusz et al. [11] pro-
posed the ClusterOne algorithm in order to detect over-
lapping clusters that is very similar to MCODE by starting
from a single seed vertex. But the algorithm merges each
pair of groups where the overlap score is above a spec-
ified threshold. Finally, it removes all clusters of a size
less than three vertices or whose density is below a given
threshold. Ramadan et al. [12] used the spectral clus-
tering algorithm in order to detect overlapping clusters.
Their algorithm first find all possible exclusive clusters
using the spectral clustering method. Upon identifying
all of exclusive clusters, it defines bridges (nodes that are
significantly connected to two or more clusters) by exam-
ining the boundary nodes in the exclusive clusters (nodes
that are joined to other nodes outside the cluster). This
gives highly connected clusters, but still permits overlap-
ping clusters, as nodes in one cluster may be involved in
another cluster.
Another overlapping clustering algorithm is the

PROCOMOSS algorithm proposed by Anirban et al. [13].
The PROCOMOSS algorithm detect overlapping clusters
using the genetic algorithm technique. They rely on the
properties captured in the graph modeling the PPI net-
work, and they also utilize the GO terms to consider the
biological properties of the proteins. Their approach can
be described as follows: First, encode the chromosome
as a vector of integer numbers representing the indices
of the proteins in the proteins set. Then, initialize the
population based on applying k-means clustering on
both dimensions of the adjacency matrix A of a graph
modeling PPI network. Next, calculate the fitness values
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of each individual of the population using two objective
functions. Finally, select parents by adopting the same
method used in NSGA-II [14] and mutate the selected
chromosome as follows: select a random node and then
either remove that node or add its neighbors to the
selected chromosome with the same probability. The
main drawback of this algorithm is that the predicted
clusters cover a small percentage of the network.

Methods
Genetic algorithm
Genetic algorithm (GA) is a bio-inspired meta–heuristic
algorithm that generally founded on the theory of evolu-
tion [15]. GA searches for optimal solutions by sampling
the search space at random and creating a population
of candidate solutions. GA uses genetic operators (e.g.,
mutation and crossover) to evolve into a population of
new generations that is hopefully fitter according to a
given objective (fitness) function. Survival of an individ-
ual to the next population is normally based on its fitness;
that is survival of the fittest. However, the survival strat-
egy normally does not preclude the survival of the less fit.
Using GA to solve a given problem requires the following
problem-dependent design: genetic representation of the
problem solutions, the fitness function, candidate selec-
tion methods, and genetic operators (,e.g., crossover and
mutation). The basic steps of GA are the following [16] :

• Create an initial population of candidate solutions.
• LOOP until any/all the candidate solutions become

solution(s).

1. Compute the fitness values of each of these
candidates.

2. Select candidates based on their fitness values.
3. Create offspring from selected candidates using

genetic operators
4. Mutate each of these offspring using genetic

operators.

Spectral clustering
The graph clustering problem is that of finding the highly
connected subgraphs (HCS) within the graph. The spec-
tral clustering algorithm works by finding the minimum
cut between two HCS subgraphs (clusters). The cut is
the number of edges between the two distinct clusters.
Finding the minimum cut is solved by the eigenvector x∗
corresponding to the smallest positive eigenvalue of the
generalized eigen problem

Qx = λDx,

where Q and D are the Laplacian matrix and the diag-
onal matrix of the graph, respectively. We consider the
graph initially as one cluster, and proceed to obtain two

clusters from it. We choose the size of the two clusters
by applying the k-means clustering algorithm on x∗ with
k = 2 to choose the value of the eigenvector compo-
nent that makes the objective function value is as small
as possible. By a recursive application of this procedure,
we obtain a clustering of the entire network. The num-
ber, size, and density of the clusters is determined by the
network topology and the threshold value of the objective
function used to determine if a cluster will be split again,
and are not pre-specified [17].
We apply a spectral clustering method to identify initial

subnetworks and clusters in the Collins protein interac-
tion network.

Objective functions
In this paper, we use the following three objective func-
tions [18] to evaluate the quality of possible cluster struc-
tures. We compare the clustering achieved using these
objective functions to the one achieved by our proposed
objective function discussed later. We also compare clus-
tering of all four objective functions to two gold standards.

• Min-Max-cut:

JMcut(V1,V2) = W12
W11

+ W12
W22

.

• Ratio cut:

JRcut(V1,V2) = W12
|V1| + W12

|V2| .
• Normalized cut:

JNcut(V1,V2) = W12
d1

+ W12
d2

,

where dk = ∑
i∈Vk

di the degree of each vertex
belongs to Vk and k = {1, 2} and

Wil ≡ W (Vi,Vl) =
∑

j∈Vi,k∈Vl ,(j,k)∈E
wjk ,

where i, l = 1, 2 and wjk is the weight on edge jk.

Clustering algorithm
In this section, we present a new overlapping cluster-
ing algorithm to help facilitate the different demands and
purposes of cluster analysis. The structure of the new
overlapping clustering algorithm, Algorithm 1, is shown
in Fig. 1. Algorithm 1 employs GA for clustering the PPI
network. Starting with an initial population of individ-
uals (set of clusterings), the algorithm generates a new
set of individuals using genetic operators (selection and
mutation). The goal is to get individuals to converge to
solutions (clusterings) of maximum fitness according to
the objective function.
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Algorithm 1 Clustering algorithm high-level description.
1: Population initialization.
2: while Number of generations limit has not been

exceeded do
3: Evaluate fitness of all individuals of the current

generation population.
4: Select survivals to next generation.
5: Mutate survivals.
6: end while

Representation and initialization
We represent each individual (possible solution for the
problem) as k lists {c1, c2, c3, ..., ck}, where k is the num-
ber of clusters. Each list can store integer numbers in the
range {1, 2, ...,N}, where N is the size of the data set, as
illustrated in Fig. 2. The element j of a list is a node’s index
of the graph G modeling the PPI network. It is possible
that some elements of different lists can hold the same
value j, which means that a protein with index j can exist
in more than one cluster; this is in case of overlapping
clustering.

Fig. 1 Clustering algorithm flowchart
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Fig. 2 Population initialization

The population is composed of a number (population
size) of individuals, or possible clusterings. We use two
different methods to initialize the population. The first
approach generatesm random individuals, wherem is the
size of the population, as follows: for each individual con-
sisting of k lists, assigning an integer value j in the range
{1, 2, ...,N}, whereN is the size of the data set for each ele-
ment randomly. For example, as illustrated in Fig. 2, the
node with index 70 is assigned to the cluster c1, while the
node with index 8 is assigned to two clusters c1 and c2.
Such amethod should take into account the variety among
the individuals of the population, which is supposed to be
rather high.
In the second approach, we use the resulting cluster-

ings of the spectral clustering algorithm [18] to create the
initial population.

Density–based objective function
The objective function aims to calculate the fitness val-
ues for each individual of the population to indicate how
well each individual is suited to be the solution of a given
problem. In our case, the fitness value of an individual
reflects the intra–cohesion of each cluster proposed by the
individual, as well as the inter–cluster coupling of those
clusters. The goal is to maximize intra-cohesion and min-
imize inter-coupling. We represent intra-cohesion and
inter-coupling by the number of edges within and across
clusters, respectively. We compute the fitness of an indi-
vidual as follows:

JDcut(C1, ...,Ck) =
∑
k

Wkk
Ak + Wki

,

where Wkk is the number of edges in a cluster Ck , Wki is
the number of edges that has one endpoint inCk , andAk is
the maximum possible number of edges in the cluster Ck .

Genetic operators
The most common operations used in genetic algo-
rithms are selection, crossover, and mutation. We exclude

the crossover operation because it creates too many
explorations that disturb the potentially good solutions.
Regarding the parent–selection process, it is defined as
the process of selecting individuals from the current pop-
ulation to create offspring for the next generation. This
process aims to emphasize that the individuals with high
fitness values are chosen in hopes that their offspring
will have higher fitness as well. There are many ways to
select parents, or individuals, from the current popula-
tion for reproduction. Algorithm 2 illustrates in detail the
parent–selection process.

Algorithm 2 Selection process.
1: Sort the individuals according to their fitness values.
2: Select n individuals called - elitism parents - hav-

ing the highest fitness values to the next generation
without mutation, we set the elitism rate to 0.10.

3: Calculate the cumulative sum S, of all the individuals’
fitness values.

4: for N times do � N is the size of the population
minus the number of the elitism parents.

5: Generate a real random number r between 0
and S.

6: while s < r do
7: Go through the population and summing the

cumulative values.
8: end while
9: Select the individual corresponding to the cumu-

lative sum value s.
10: end for

The mutation operation is defined as performing some
changes in the values of a specific chromosome, or indi-
vidual. Consequently, the GA may reach to a better solu-
tion with the obtained individuals. We adapt the mutation
operator used in [13] and modify it in such a case to
be suited to, and more efficient for, our problem. This
operation can be described as follows: after selecting an
individual to be mutated, its nodes are either moved
from one cluster to another, or some nodes of the net-
work are added to the selected individual, as shown in
Fig. 3. Figure 3a shows the selected node of the clus-
ter and Fig. 3b illustrates the cluster after adding the
selected node’s neighbors from the network. Algorithm 3
illustrates in detail the mutation process.

Quality assessment
We consider an approach for quality assessment that finds
statistically significant matches between discovered clus-
ters and the reference data such as precision (P), recall
(R), and F−measure (the harmonic mean of precision and
recall) [19]. This approach measures the level of corre-
spondence between discovered clusters and the reference
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Selected Node

Selected Node

a b

Fig. 3 The mutation operation. a shows the selected node of the cluster c. b shows the cluster c after the mutation operator

Algorithm 3Mutation process.
1: for n times do � n is the number of clusters in the

selected parent.
2: Generate a real random number r1.
3: if r1 is less than the mutation rate (0.4) then
4: for N times do � N is the number of changes.
5: Generate a real random number r2

between 0 and 1.
6: if r2 is less than a threshold τ then
7: Move a random selected node from

cluster ci to another cluster cj.
8: else
9: Add the adjacent nodes of the selected

node to ci as shown in Fig. 3.
10: end if
11: end for
12: end if
13: end for

data set by computing statistically significant matches
between the two collections using hyper-geometric
p-value, and used these matches to evaluate the precision
and recall of the suggested clustering solution as follows.
Let C be the initial set of discovered clusters, and let Ĉ ⊆ C
be the subset of clusters that had a significant match based
on hyper-geometric p-value.
Here, p-value is used to determine whether a discov-

ered cluster is annotated by certain terms from the ref-
erence data set at a frequency greater than that would
be expected by chance. It is calculated according to the
following hypergeometric distribution:

p − value = 1 −
k−1∑
i=0

(
M
i

) (
N − M
n − i

)
(
N
i

) ,

where N is the total number of proteins, M is size of a
list of proteins G marked to the reference term of interest

(protein complex), k is the number of proteins in a dis-
covered cluster C, and i is the number of proteins shared
between C and G.
For each predicted cluster C, let true positive (TP) be

the set of proteins shared between the cluster C and a
reference protein complex G, while false positive (FP) is
defined as the set of proteins that exist only in the cluster
C, and true negative (TN) is defined as the proteins that
are members of the reference complex G but not found in
the cluster C. Hence, P, R, and F-measure are calculated
according to the following equations:

P = TP
TP∪FP ,

R = TP
TP∪TN ,

F-measure = 2 × P×R
P+R .

Results and discussion
Data source
We study the protein interaction network from the yeast
organism since there are abundant high-confidence data
sets for its protein interaction network. In our experi-
ment, we applied our clustering algorithm on the Collins
protein interaction network extracted from the BioGrid
data set [20]. This network has 8,319 interactions among
1,004 proteins. It has an average degree (16.57), where the
degree of a node in a network is the number of links con-
nected to the node; the density of this network is 0.016
(density is the ratio between the total number of connec-
tions and the potential connections that can exist in the
network).
High–quality data collections are needed as gold stan-

dards to validate clustering approaches. We assess the
coherence of the discovered clusters based on the Gene
Ontology (GO) [21]. We have used the cellular compo-
nent ontology from GO as the primary gold standard to
compare the clusters obtained from the interactions data.
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We used the cellular components ontology in the GO
since it includes more proteins in the protein interactions
network than the other ontologies. We have also used col-
lections of protein complexes in the yeast that have been
culled from the literature and cataloged in the MIPS yeast
genome database [22], as well as a hand-curated reference
complex set called CYC2008 [23].

Clustering comparisons
We compare the performance of our algorithm (with dif-
ferent objective functions and initializations) with some
of the methods mentioned in the related works section,
which were commonly utilized for extracting complexes
from protein interaction networks. We report the per-
formance measures that were mentioned earlier. Table 1
presents a comparison of the performance of our algo-
rithm (when the population is initialized using initial
clusters through spectral clustering or initial random clus-
ters) with other existing methods for clustering for the
Collins data set. We used CYC2008 complexes and MIPS
complexes as the reference data sets in order to compute
the performance measures.
A study by Brohee and van Helden [24] that com-

pared these algorithms (among others) showed that the
MCODE and MCL algorithms, in particular, were very
effective in identifying protein complexes from protein
interaction networks. We investigated the performance
of our method when compared to these two algorithms.
In addition, we also investigated the performance of one
of the recent algorithms for clustering (the ClusterOne
algorithm). In short, we used the MCODE, MCL, and

ClusterOne algorithms to extract clusters from the yeast
Collins network.
Clearly, our clustering algorithm (Algorithm 1), which

was based on initial spectral clustering and used density
cut as an objective function (version 1), has the lowest
discard ratio (14 %) over all the other approaches; a low
value of discard ratio indicates that a high proportion of
the proteins in the considered protein network are clus-
tered. On the other hand, the MCODE algorithm has the
highest discard ratio (40 %) because it searches for high–
density clusters only. Also clustering algorithm (version
1) yields a high precision value with CYC2008, and also
a high recall value (most complexes formed by the pro-
teins under study overlap well with the computed cluster
from the protein network). MCODE has a similar results,
but with one major drawback, which is that not all the
proteins in the network are clustered, as illustrated by the
high discard value. It can be seen that our clustering algo-
rithm outperforms theMCODE algorithm by a significant
margin in terms of discard and recall values. In addi-
tion, our algorithm with different objective functions and
initializations (versions 1–8) usually discover more clus-
ters, while MCODE predicts fewer clusters; and the other
approaches, MCL and ClusterOne, predict fewer clusters
than our method and more clusters than MCODE, as
illustrated in Table 1.
In comparison with the MCL and ClusterOne algo-

rithms, our algorithms exhibit better correspondence with
the complexes catalog within CYC2008 data set, and has
higher recall and precision levels than those attained by
the MCL and ClusterOne.

Table 1 Comparison of clustering algorithms on the Collins network. The populations in our method are initialized using spectral and
random clusterings

Method #Cls CYC2008 MIPS Discard

R P F-measure R P F-measure

MCODE 54 0.66 0.59 0.63 0.27 0.48 0.35 40 %

MCL 75 0.65 0.45 0.54 0.27 0.34 0.30 19 %

ClusterOne 114 0.55 0.43 0.49 0.20 0.34 0.25 18 %

Our method using
spectral initialization

1) Density cut 162 0.74 0.60 0.66 0.32 0.45 0.37 14 %

2) Maxmin cut 180 0.71 0.47 0.60 0.38 0.40 0.39 15 %

3) Normalized cut 193 0.67 0.50 0.57 0.39 0.37 0.37 20 %

4) Ratio cut 161 0.73 0.38 0.50 0.39 0.33 0.36 17 %

Our method using
random initialization

5) Density cut 164 0.72 0.54 0.62 0.30 0.41 0.35 18 %

6) Maxmin cut 162 0.71 0.45 0.56 0.40 0.35 0.38 17 %

7) Normalized cut 138 0.66 0.57 0.61 0.36 0.44 0.41 19 %

8) Ratio cut 154 0.61 0.55 0.58 0.34 0.43 0.38 18 %
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Table 2 A few of the clusters in the Collins network with the lowest p-values with GO components

# Size GO-ID GO-Term p-value N%

1 17 GO:0030880 RNA polymerase complex 3.30986E-39 100.0 %

2 8 GO:0044428 Nuclear part 3.70274E-05 100.0 %

3 7 GO:0030126 COPI vesicle coat 1.37069E-21 100.0 %

4 14 GO:0044428 Nuclear part 7.23152E-10 100.0 %

5 27 GO:0005739 Mitochondrion 9.82318E-22 100.0 %

7 18 GO:0000502 Proteasome complex 1.76807E-40 100.0 %

8 12 GO:0005634 Nucleus 3.90352E-06 100.0 %

9 7 GO:0030008 TRAPP complex 1.02802E-20 100.0 %

11 21 GO:0005634 Nucleus 2.04087E-10 100.0 %

12 10 GO:0044425 Membrane part 4.18992E-10 100.0 %

13 5 GO:0035097 Histone methyl–transferase complex 1.31389E-11 100.0 %

14 5 GO:0030126 COPI vesicle coat 1.18247E-14 100.0 %

15 9 GO:0016585 Chromatin remodeling complex 2.37606E-17 100.0 %

16 15 GO:0000502 Proteasome complex 2.20275E-33 100.0 %

17 13 GO:0043189 Histone acetyl–transferase complex 1.21627E-39 100.0 %

20 12 GO:0016514 SWI/SNF complex 4.98150E-37 100.0 %

21 60 GO:0005634 Nucleus 2.15384E-32 100.0 %

22 81 GO:0043227 Membrane-bound organelle 4.87516E-23 100.0 %

24 63 GO:0044464 Cell part 3.42642E-05 98.4 %

23 4 GO:0031011 INO80 complex 4.13601E-07 75.0 %

The GO component that has the lowest p-value with these clusters is listed, the number of proteins in the cluster that overlap with the GO component are listed as
percentages of the number of proteins in the cluster (N%). p-values defined in the text are also shown

Clustering quality
We assess the biological significance of the clusters in the
Collins network by comparing them with components in
the Gene Ontology. We use the GO term finder [25] to
get the most significant GO-terms, GO-id, and p-values
for a list of proteins (predicted complex). Table 2 tab-
ulates some of the clusters of the Collins network that
have a significant p−value. Each cluster is listed by its ID
used in this study, and the number of proteins in it. Also
tabulated is the number of cluster proteins in a GO com-
ponent that has the highest overlap with it. This number
is expressed as a percentage (N%). These percentages are
100 for most clusters, showing that these clusters in the
network overlap well with the corresponding GO com-
ponents. Proteins in a GO component are not found in
the cluster, mostly when the proteins are not present in
the Collins network. Table 2 clearly shows that genetic
algorithm–based methods are capable of identifying the
protein complexes.

Conclusion
In this paper, we proposed a robust approach for identi-
fying protein complexes in PPI networks. The approach
takes advantage of GA to help address the complex and
heterogeneous nature of protein networks clusterings. We

designed a new objective function to allow, overall, for
the maximizing of intra-cluster cohesion, and the min-
imizing of inter-cluster coupling. Experimental results
have shown that our objective function performs better
than other objective functions proposed in the litera-
ture to identify overlapping clusters in PPI networks. In
general, our clustering approach is found to be more
accurate and consistent than existing methods (i.e., MCL,
ClusterOne, and MCODE) when compared with two
reference sets: MIPS and CYC2008, using the Collins
network.
In conclusion, our approach outperformed competing

approaches and is capable of effectively detecting both
dense and sparsely connected biologically relevant protein
complexes with fewer discards.
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