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Abstract

Background: Analyzing next-generation sequencing data is difficult because datasets are large, second generation
sequencing platforms have high error rates, and because each position in the target genome (exome, transcriptome,
etc.) is sequenced multiple times. Given these challenges, numerous bioinformatic algorithms have been developed to
analyze these data. These algorithms aim to find an appropriate balance between data loss, errors, analysis time, and
memory footprint. Typical analysis pipelines require multiple steps. If one or more of these steps is unnecessary, it
would significantly decrease compute time and data manipulation to remove the step. One step in many pipelines is
PCR duplicate removal, where PCR duplicates arise from multiple PCR products from the same template molecule
binding on the flowcell. These are often removed because there is concern they can lead to false positive variant calls.
Picard (MarkDuplicates) and SAMTools (rmdup) are the two main softwares used for PCR duplicate removal.

Results: Approximately 92 % of the 17+ million variants called were called whether we removed duplicates with Picard
or SAMTools, or left the PCR duplicates in the dataset. There were no significant differences between the unique variant
sets when comparing the transition/transversion ratios (p = 1.0), percentage of novel variants (p = 0.99), average
population frequencies (p =0.99), and the percentage of protein-changing variants (p = 1.0). Results were
similar for variants in the American College of Medical Genetics genes. Genotype concordance between NGS
and SNP chips was above 99 % for all genotype groups (e.g., homozygous reference).

Conclusions: Our results suggest that PCR duplicate removal has minimal effect on the accuracy of subsequent

variant calls.
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Background

Next-generation sequencing (NGS) has accelerated re-
search efforts in virtually every field in the life sciences.
NGS is being used to diagnose and determine the gen-
etic cause of diseases, measure gene expression, refine
phylogenetic trees, identify markers to differentiate
between morphologically similar species, and de novo
sequencing for non-model organisms [1-5]. For many
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years these types of projects were not possible because
the data were difficult and expensive to obtain. Today,
however, it is possible to sequence entire genomes for
a fraction of what it cost just 10 years ago.

Despite the many benefits of NGS, these data are chal-
lenging to work with for several reasons, including: (1)
NGS has a much higher error rate than other genotyping
methods (e.g. compared to Sanger sequencing), (2) the
most common NGS methods only produce short frag-
ments, known as “reads”, ranging from ~100-300 nu-
cleotides in length, and (3) datasets are very large,
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frequently >100 gigabytes [6]. Many experimental and
bioinformatics innovations are employed to address
these challenges.

One innovation to overcome the high error rate is to
sequence each nucleotide (position) in the target DNA
(genome, exome, etc.) multiple times. The number of times
each nucleotide is sequenced is referred to as coverage.
Coverage is variable within a sample and typical coverage
ranges from 30 or less to >1000 for typical human genetic
and cancer applications, respectively. This approach is
employed under the assumption that sequencing errors are
random, making deeper coverage more reliable to deter-
mine the nucleotide at a given position. In other words, if
each nucleotide is sequenced multiple times, most reads
will have the correct nucleotide. PCR duplicates are, at least
in theory, one possible impediment to this innovation.

To prepare DNA for NGS, DNA is sonicated, and
adapters are ligated to the end of each resulting fragment.
Fragments are then PCR amplified and PCR products are
spread across the flowcell. There are several additional
steps not pertinent to this research, but have been previ-
ously described thoroughly by Voelkerding et al. [7]. PCR
duplicates are sequence reads that result from sequencing
two or more copies of the exact same DNA fragment,
which, at worst, may contain erroneous mutations intro-
duced during PCR amplification, or, at the very least, make
the occurrence of the allele(s) sequenced in duplicates ap-
pear proportionately more often than it should compared
to the other allele (assuming a non-haploid organism).
Ideally, one PCR copy of each original DNA fragment will
hybridize to the flowcell, but there is currently no way to
enforce this. When multiple copies originating from the
same DNA molecule all bind to the flowcell, each is se-
quenced and the resulting reads are referred to as PCR du-
plicates. These duplicates occur for two reasons: (1) we
cannot control exactly which sequences from the pool of
PCR products hybridize to the flowcell, and (2) not all of
the original DNA molecules are amplified without bias
(PCR amplification bias). PCR amplification bias and in-
creasing the number of PCR cycles both increase the like-
lihood of PCR duplicates during sequencing.

Many analysis pipelines remove PCR duplicates to
mitigate potential biases on variant calling algorithms.
For example, a large number of PCR duplicates containing
an amplification-induced error may cause a variant calling
algorithm to misidentify the error as a true variant. Several
programs exist to remove or mark PCR duplicates (e.g.
SEAL [8], elPrep [9], FastUniq [10], etc.), but in this work
we focus on the two most commonly used approaches: Pic-
ard MarkDuplicates (http://broadinstitute.github.io/picard/)
and SAMTools rmdup [11, 12].

SAMTools and Picard use similar approaches for du-
plicate marking or removal, but with some differences.
SAMTools (rmdup) identifies PCR duplicates by identifying
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pairs of reads where multiple reads align to the same exact
start position in the genome, and the reverse read on the 3’
end maps at the exact same location (i.e. external mapping
coordinates are identical). The read pair with the highest
mapping quality score is retained and other read pairs re-
moved (a possible disadvantage because data is lost). Also,
rmdup does not work for unpaired reads (in paired end
mode) or read pairs where each read maps to different
chromosomes. There will also be unexpected results if mul-
tiple libraries are present in the same BAM file since rmdup
assumes all reads in the BAM file originated from the same
library [11, 12]. Picard (MarkDuplicates) is similar to
rmdup. MarkDuplicates identifies read pairs with the same
orientation that have the exact same 5’ start position in the
mapping. It takes into account clipping on the 5’ end of
the read and makes calculations based on where the 5" start
position would be if the entire read had mapped to the ref-
erence. In contrast to rmdup, MarkDuplicates handles in-
terchromosomal read pairs, and considers the library for
each read pair and keeps a read pair from each library.
MarkDuplicates also does not remove reads, but sets the
SAM flag 1024 for all but the best read pair. The best read
pair is the read pair with the highest sum of base qualities
with Q > 15 (http://broadinstitute.github.io/picard/).

We performed a three-way comparison between variant
calls generated without removing duplicates and those
removing duplicates with either Picard MarkDuplicates or
SAMTools rmdup to determine: (1) if PCR duplicate
removal improves the accuracy of variant calls, and (2) if
so, whether MarkDuplicates or rmdup produces a more
accurate variant dataset. Our results suggest that accuracy
is the same for both MarkDuplicates and rmdup, but there
are substantial performance (execution time and memory
usage) differences between the two. Our results further
suggest that removing duplicates may not be necessary in
variant calling pipelines.

Methods

Dataset

Whole-genome (WGS) data used in this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). ADNI is
the result of efforts of many co-investigators, led by Dr.
Michael Weiner, from a broad range of institutions, and in-
cludes subjects from more than 50 American and Canadian
research sites. A primary goal of ADNI is to identify bio-
logical markers for Alzheimer’s disease (AD). To date over
1,500 adults, ages 55 to 90, have participated in the study.
For up-to-date information see www.adni-info.org. Of the
809 WGS samples (average coverage ~37) available in this
dataset, we randomly selected 100 to use in our duplicate
removal analysis. During the analysis process, one sample
was removed due to low quality data and was not replaced.
Each of the remaining 99 study samples was run through
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the exact same pipeline described below (Data Analysis
subsection).

We also have matching SNP chip data for the 99 sam-
ples used in this study. Samples were genotyped using
the HumanOmniExpress BeadChip Kit by Illumina. The
SNP chip data were cleaned by removing (in order): (1)
all SNPs missing greater than 2 % of data, (2) all individ-
uals missing more than 2 % of data, (3) SNPs with a
minor allele frequency less than 0.02, and (4) SNPs out
of Hardy-Weinberg equilbrium (p < 0.000001).

Data analysis

We followed the GATK Best Practices [13] during this
process, varying only the step of how and whether we
removed duplicates during the process (Fig. 1). Genomes
used in this research were aligned by ADNI using the
Burrows-Wheeler Aligner (BWA) [14]. Three versions of
each BAM file in our dataset were generated: (1) a BAM
where PCR duplicates were left intact, (2) a BAM where
PCR duplicates were removed using SAMTools (rmdup),
and (3) a BAM where PCR duplicates were marked (and
subsequently ignored) using Picard (MarkDuplicates).
Subsequent steps are identical in each pipeline and all
steps were performed with the Genome Analysis Toolkit
(GATK, version 3.2). Following duplicate removal (or not)
we refined the mappings using GATK’s IndelRealigner and
BaseRecalibrator (BQSR), and joint called/refined variants
using the HaplotypeCaller and variant quality score recali-
bration (VQSR).

Variant Call Format (VCF) file comparisons

After completing the variant calling step we compared
the three resulting variant call format (VCF) [15] files
using Variant Tool Chest (VTC) [16]. VIC performs
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Fig. 2 We constructed a Venn diagram using the variant datasets.
The datasets correspond to the three pipelines: removing duplicates
using SAMTools, removing duplicates using Picard, and ignoring
duplicates. The blue circle is the Picard dataset, red is the no
duplicates removed dataset, and green is the SAMTools dataset

complex set operations, like intersect and complement, on
VCF files. Next, we extracted summary statistics for the
resulting intersects and complements with the variant sta-
tistics tool (VarStats) in VTC. We used R (version 3.1.2) to
analyze the information from the comparisons of the three
files, and the summary statistics [17].

Comparison between SNP chip and NGS data
We compared results between each group and the match-
ing SNP chip data, using the more accurate SNP data as
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Fig. 1 Our pipeline was identical for every sample, except for how we handled PCR duplicates. Original BAM files with mapped reads were
processed using the shown pipeline. PCR duplicates were ignored, removed using SAMTools (rmdup), or marked (left in the file, but ignored in
subsequent steps) using Picard (MarkDuplicates). After the duplicates step, all subsequent steps in the analysis pipeline were identical. The final
output of the pipeline is a multi-sample VCF file. VCF: Variant Call Format, BQSR: Base Quality Score Recalibration, VOSR: Variant Quality Score Recalibration
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Table 1 Minimal differences between Picard, SAMTools, and no duplicate removal

Subset Total Variants ~ Ti/Tv Ratio % Variants in dbSNP Avg. Population Frequency ~ % Protein Changing Variants
All Picard 16354497 2.14 72.05 0.21 040
All SAMTools 16250761 2.14 71.86 0.22 040
All No Dups 16494672 214 71.30 0.21 040

P-Value <2.60e-16 1.00 0.99 0.99 1.00

Common to all three 15688522 215 80.18 0.22 041
Unique to Picard 307486 192 66.27 0.16 033
Unigue to SAMTools 150474 1.80 69.59 0.19 0.26
Unique to No Dups 398248 1.95 54.07 0.16 0.34
Unique to Picard/SAMTools 181176 197 73.86 0.22 033
Unique to Picard/No Dups 177313 207 65.30 0.21 0.31
Unique to SAMTools/No Dups 230589 173 5217 023 024

P-Value (comparing Unique rows)  <2.60e-16 1.00 0.32 0.84 1.00

Here we present metrics from each portion of the Venn diagram (Fig. 2), including total number of variants, transition/transversion (Ti/Tv) ratios, average population
frequency, proportion of novel variants, and proportion of variants that change the protein product. In the top part of the table, variant characteristics are reported for all
the variants resulting from duplicate removal using Picard or SAMTools, or no duplicate removal. Variants from the dataset processed using Picard are referred to as
Picard, processed using SAMTools as SAMTools, and the dataset without duplicate removal as No Dups. Population frequencies are based on the 1000 Genomes Project,
dbSNP variants refer to build 138 and any variant not present in dbSNP is considered novel, and protein changing variants are missense SNVs or frameshifting InDels. We
performed a Chi-square goodness-of-fit to test for significant differences amongst values in each column. Two tests were performed for each column: (1) comparing the
values for all variants in each main dataset (“All Picard”, “All SAMTools”, and “All No Dups"); and (2) comparing values for variants across all “Unique” groups. There was a
significant difference when comparing the number of variants across groups, but none of the other measures were significantly different

truth. We measured percentage of genotypes changed
from one type to another (e.g. heterozygous to homozy-
gous variant).

The American College of Medical Genetics (ACMG) gene list
In 2013, the American College of Medical Genetics
(ACMG) published guidelines for reporting incidental
findings in large sequencing diagnostics [18], typically
defined as whole exome or genome sequencing, or se-
quencing targeted genes. Included in these guidelines is
a list of genes the working group recommends clinicians
always examine for deleterious mutations. The list was
compiled based on conditions that are verifiable using
secondary diagnostic approaches, and for which early
intervention is likely to significantly change or prevent
disease. This list is certainly not a comprehensive listing
of all clinically important genes, but it does include
genes that meet the criteria outlined above. The genes
on the recommended list are perhaps the most clinically
important known genes because there are effective treat-
ments for disorders resulting from mutations in these
genes. We refer to this gene list as the ACMG genes.

Variant annotation

We used ANNOVAR [19] to annotate each variant with
dbSNP 138 [20] identification numbers (if present in
dbSNP), 1000 Genomes Project minor allele population
frequency (if observed in the 1000 Genomes Project)
[21, 22], and separated variants by type (e.g. nonsynon-
ymous, InDel, etc.). We refer to protein changing variants
as nonsynonymous variants, InDel frameshifting variants,

or structural variants. We assumed any variant not present
in dbSNP is novel.

Duplicate removal

We calculated the percentage of duplicates removed by
both Picard MarkDuplicates and SAMTools rmdup to
quantify approximately how many reads were considered
duplicates by both softwares, by comparing the number
of reads in the BAM files before and after duplicate

34000

9 401

Fig. 3 The Venn diagram is as described in Fig. 2, except limited to
variants in the ACMG genes. The blue circle is the Picard dataset, red
is the no duplicates removed dataset, and green is the SAMTools dataset
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Table 2 Differences using only ACMG genes are also minimal
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Subset Total Variants ~ Ti/Tv Ratio % Variants in dbSNP Avg. Population Frequency ~ % Protein Changing Variants
All Picard 34285 2.29 67.75 0.20 1.08
All SAMTools 34412 2.29 6751 0.20 1.08
All No Dups 34531 229 67.34 020 1.07

P-Value 0.64 1.00 0.99 1.00 1.00

Common to all three 34000 231 76.37 020 1.09
Unique to Picard 261 1.01 19.64 0.88 0
Unique to SAMTools 2 1.00 0 NA 0
Unique to No Dups 115 1.54 2233 0.04 0
Unique to Picard/SAMTools 9 1.50 40 0.03 0
Unique to Picard/No Dups 15 1.00 0 NA 0
Unique to SAMTools/No Dups 401 0.98 15.86 0.12 0.32

P-Value (comparing Unique rows)  <2.60e-16 0.998 1.04e-13 0.74 0.90

We performed the same analyses using only the ACMG genes and found similar results

marking/removal. For MarkDuplicates, specifically, we
counted the number of reads not marked as duplicates.

Results

Whole genome variant dataset: Picard versus SAMTools
versus not removing duplicates

We processed whole genome data for each of 99 different
genomes three different times. For one set of the 99
genomes, we removed duplicates using Picard (MarkDu-
plicates), for another set we removed duplicates using
SAMTools (rmdup), and for the third we left the dupli-
cates in the alignments. Next, we called variants on each
of the alignments using the GATK pipeline (outlined
above). Finally, we pooled all of the variants for each of
the three sets of genomes for comparison. From this point
forward, variant datasets referred to as Picard, SAMTools,
or no dup refer to the union of variants from all 99 ge-
nomes with duplicates removed using Picard, SAMTools,
or no duplicates removed, respectively.

In Fig. 2, we show the overlap of called variants in each
of the datasets using a Venn diagram. There were a total of
17134081 different variants called, and about 16 million
(about 92 %) were called regardless of how duplicates were
treated (three-way intersect in the center of the Venn dia-
gram in Fig. 2). Picard and no dup had about twice as
many unique variants as SAMTools (307486 and 398248
compared to 150474), and the three two-way intersections
each had comparable numbers of variants (177313,
181176, and 230589). Approximately 31 % of all variants in
this study were rare, with a minor allele frequency less than
0.01. This is unsurprising because the 1000 Genomes Pro-
ject demonstrated that each individual has hundreds of
rare variants at evolutionarily conserved sites alone [22].

Next we analyzed the variant characteristics from indi-
vidual partitions of the Venn diagram (Table 1). Several

Table 3 Concordance between SNP chip and NGS data across
all three duplicate removal methods are nearly identical

Chip data
homref het homalt
homref 99.97 0.18 0.16
No dup het 0.01 99.81 0.13
homalt 0.02 0.01 99.71
homref 99.97 0.19 0.14
Picard het 0.01 99.80 0.14
homalt 0.02 0.01 99.71
homref 99.97 0.19 0.16
SAMTools het 0.01 99.80 0.13
homalt 0.02 0.01 99.71
homref 99.91 0.06 0.18
No dup ACMG het 0.02 99.94 0.07
homalt 0.08 0.00 99.76
homref 99.91 0.06 0.18
Picard ACMG het 0.02 99.94 0.08
homalt 0.08 0.00 99.75
homref 99.91 0.06 0.18
SAMTools ACMG het 0.02 99.94 0.07
homalt 0.08 0.00 99.76

We compared the genotypes from NGS and matched SNP chip data to see if
concordance varied by duplicate removal approaches. We performed this
comparison for all variants and for ACMG variants only. Reported values are
the percentage of total SNP chip genotypes called for a particular group
(e.g., homozygous reference) that were correctly called by NGS for a given
group. Exactly 99.97 % of genotypes called homozygous reference by SNP
chip were also called homozygous reference by NGS across no dup, picard,
and SAMTools. Similarly, 99.91 % of ACMG genotypes called homozygous
reference by SNP chip were called identically by NGS. In the Table, homref:
homozygous for the reference allele, het: heterozygous, and homalt:
homozygous for an alternate allele
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measurements can be used to assess the quality of a
variant dataset, such as total number of variants, transi-
tion/transversion (Ti/Tv) ratios, proportion of novel var-
iants, and proportion of variants that change the protein
product. The number of SNPs between sets (labeled
“All” in Table 1) and subsets (labeled “Unique” in
Table 1) were significantly different, but the Ti/Tv ratios,
percentage of variants in dbSNP, population frequencies,
and percentage of variants that are protein changing are
not significantly different (Table 1). Variants across the
full Picard, SAMTools, and no dup sets had about 16
million total variants, Ti/Tv ratios of 2.14, 28—29 % novel
variants, and 0.4 % of variants are protein-changing. Vari-
ants across the subsets (labeled “Unique” in Table 1) had
lower Ti/Tv ratios and percentage of variants changing
the protein, and higher novel variants.

To further compare these variant datasets, we com-
pared the intersections of the three variant datasets.
Most of the variants (15.6 million of ~17 million) were
called using all three approaches. Metrics for each of the
individual variant datasets and the three-way intersect
were very comparable, except that ~10 % fewer variants
were novel in the three-way intersect (Table 1). Variant
characteristics in different partitions of the datasets (e.g.
Unique to Picard/SAMTools, Unique to SAMTools/no
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dups, Unique to SAMTools, etc.) are dramatically different
than the three-way intersect. The biggest changes occur in
Ti/Tv ratios and percent novel variants. Except for the
three-way intersect and entire variant datasets for each of
the three approaches, the Ti/Tv ratios are all less than two,
in contrast to ~2.1. Additionally, a large number of novel
variants exist in each of these other partitions. There are
more novel variants in the Unique to No Dups (~46 %) and
Unique to SAMTools/No Dups (~48 %) groups.

ACMG genes variant dataset: Picard versus SAMTools
versus not removing duplicates

In 2008 the American College of Medical Genetics
(ACMGQG) compiled a list of genes known to harbor disease-
causing mutations (ie. clinically important genes). We
compared variants in only the ACMG genes to determine if
the choice of duplicate removal appears to be (more or less)
important for the study of clinically important genes.

We performed the same partitioning of variants (Fig. 3)
and comparison of variant characteristics (Table 2) as
above. Many of the results were comparable. The majority
(34000 of 34803, ~98 %) of variants were identified using
all three approaches. Again, the variants in the three-way
intersect were very similar compared to all the ACMG
variants in the each of the three individual datasets.

SAMTools: Memory Used to Remove Duplicates
Tool
0.04 - Zsamtools
0.03-
=2
20.02-
[0}
©
0.01-
0.00 -
100 110 120 130 140
Memory
Fig. 4 Density plot of memory usage by SAMTools for duplicate removal. The y-axis is memory in megabytes. Note the difference in magnitude
of memory used in this figure compared to Picard (Fig. 5)
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However, these variants (three-way intersect and whole
ACMG variant datasets) and the other partitions of ACMG
variants, were very different in every measured statistic.

Comparison between SNP chip and NGS data

We grouped variants from the SNP chip by variant type
(i.e. homozygous reference, heterozygous, or homozygous
alternate) and compared each of these genotypes to the
called genotypes in each of the three groups of NGS data.
Comparing genotypes across the NGS and matching SNP
chip data, we found that Picard, SAMTools, and not re-
moving duplicates were virtually indistinguishable (Table 3).
Exactly 99.97 % of genotypes called homozygous reference
by SNP chips were also called homozygous reference by
NGS across no dup, picard, and SAMTools. Similarly,
99.91 % of ACMG genotypes called homozygous reference
by SNP chips were called identically by NGS. NGS geno-
types were equally accurate in both whole genome and
ACMG comparisons for the other two classes of genotypes
(Table 3).

Computational performance: Picard versus SAMTools

We compared memory usage and compute time to as-
sess the relative performances of Picard and SAMTools.
Memory usage and compute time are summarized in
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Figs. 4, 5, and 6, respectively. Picard required both more
memory and execution time than SAMTools. Picard
used an average of 31000 megabytes of memory and had
an average execution time of almost eight hours. In con-
trast, SAMTools on average used 120 megabytes of mem-
ory and had an average run time of about seven hours.

Duplicate removal

The average number of reads across the 99 samples was
1313199168 with a range of 1051352190 to 1734787274.
The number of duplicates identified by both softwares
was comparable, though Picard removed more reads on
average. The average percentage of reads marked by Pic-
ard was 1.8 % and the average removed by SAMTools
was 1.1 %.

Discussion

PCR duplicate removal is a recommended step in nearly
every variant calling pipeline for NGS data. It is a both a
memory and time intensive step, and results in varying
percentages of reads being removed. There is no question
about whether or not removed reads are valid, or real, se-
quence reads. Therefore, removing or ignoring PCR dupli-
cates results in ignoring some of the generated sequence
data. Two different algorithms are predominantly used for
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Fig. 5 Density plot of memory usage by Picard for duplicate removal. The y-axis is memory in megabytes. Note the difference in magnitude of
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Time to Remove Duplicates

Tool
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Fig. 6 Density plot of execution time for both SAMTools and Picard duplicate removal. Picard is marked by the red line, and SAMTools in blue.

The y-axis is execution time measured in minutes

PCR duplicate removal (Picard and SAMTools). To our
knowledge, no one has formally compared the two differ-
ent algorithms. Furthermore, there is little data assessing
the necessity of PCR duplicate removal. Our goal was to
determine whether PCR duplicate removal meaningfully
affects the resulting variant datasets, and if the accuracy of
the variant datasets is different when using Picard and
SAMTools.

We compared the variant datasets resulting from each of
the three different pipelines. First, we compared common
measures of the variants in each dataset to assess the over-
all quality of the called variants [23]. This comparison says
nothing about any individual variant, but about the accur-
acy of the dataset as a whole. When considering the entire
variant dataset for each of the three approaches, the im-
portant characteristics we compared were nearly identical.
All three had Ti/Tv ratios of 2.14, a ratio in the expected
range [12], very similar proportions of novel variants
(27.95 % to 28.7 %) also in the expected range [23], identi-
cal minor allele frequencies for called variants (21 %), and
identical proportions of protein changing variants (0.4 %).
Therefore, using these meaningful measures to assess the
accuracy of the variant calls, the three approaches are
nearly indistinguishable. There is evidence suggesting that
the intersection of the three variant datasets results in a

more accurate dataset because the percentage of novel var-
iants decreased by a small amount (~27 % to ~20 %),
though the difference was not significant when comparing
the average of the three unique values to the intersect of all
three (p =0.49). However, when looking at all other pos-
sible intersects of the three variant datasets, the apparent
quality of the datasets drops.

We further assessed the accuracy of the three variant
datasets by comparing genotypes in the variant datasets
to genotypes from SNP chip data. All three approaches
were much more accurate than 99 % and nearly identi-
cally accurate. This comparison, however, only demon-
strates concordance amongst common variants. In this
case, we only considered variants with a minor allele fre-
quency greater than 0.02.

As NGS is being moved into a clinical setting, we
wanted to verify that our results are consistent in clinic-
ally important genes so we performed the same tests in
parallel in only the ACMG genes. The ACMG recom-
mended a set of genes that should be assessed when
analyzing the whole genome/exome of a patient in a
clinical setting. We make no assumption that this gene
set contains every clinically important gene, but it does
contain all the genes considered most important by the
ACMG. We performed the same analyses on variants
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from only the genes recommended by the ACMG, and
our findings are nearly identical to those performed on
variants from the entire genome. The three individual
datasets are indistinguishable, while the intersection of the
three again appears to be slightly better, and there is still
nearly perfect concordance with SNP chip data.

Next, to assess computational performance differences
between Picard and SAMTools, we measured the memory
and compute time required for each to remove duplicates.
Picard required substantially more memory (31000 versus
120 megabytes) and slightly more time (seven versus eight
hours) than SAMTools.

Removing duplicates is intended to reduce noise dur-
ing the variant identification process and minimize false
positives. Our results suggest removing duplicates has
little effect on the results. As sequencing technologies
continue to advance, PCR duplicate removal will become
less of an issue. For example, single-molecule sequencing
technologies such as PacBio’s Single Molecule, Real-Time
(SMRT) sequencing and Oxford Nanopore Technologies’
Minion perform sequencing on non-amplified DNA.

Conclusions

In summary, we compared the effect on the resulting
variant datasets when using Picard for duplicate removal,
SAMTools for duplicate removal, or not removing dupli-
cates. We performed these comparisons across the entire
genome, and then limited our analyses to variants located
in clinically important genes. Our results suggest that in
deep sequencing whole genome data, removing or ignoring
PCR duplicates has non-significant effects on the accuracy
of subsequent variant datasets. Furthermore, our results
demonstrate that when PCR duplicates are handled using
either SAMTools or Picard, the resulting variant datasets
are very comparable. In some settings, PCR duplicate re-
moval/marking may be preferable. For example, our data
show that the most accurate variant dataset may be ob-
tained by using each of the three approaches and then
intersecting the three datasets (assuming any variant out-
side the intersect is a false positive). Since NGS library
preparation is different for sequencing genomes, exomes,
transcriptomes, etc. additional studies will be necessary to
know if our results extend to the exome or other sequenced
partitions of the genome.
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