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Abstract

Background: Protein-protein interaction (PPI) extraction from published scientific articles is one key issue in
biological research due to its importance in grasping biological processes. Despite considerable advances of recent
research in automatic PPl extraction from articles, demand remains to enhance the performance of the existing
methods.

Results: Our feature-based method incorporates the strength of many kinds of diverse features, such as lexical and
word context features derived from sentences, syntactic features derived from parse trees, and features using existing
patterns to extract PPIs automatically from articles. Among these abundant features, we assemble the related features
into four groups and define the contribution level (CL) for each group, which consists of related features. Our method
consists of two steps. First, we divide the training set into subsets based on the structure of the sentence and the
existence of significant keywords (SKs) and apply the sentence patterns given in advance to each subset. Second, we
automatically perform feature selection based on the CL values of the four groups that consist of related features and
the k-nearest neighbor algorithm (k-NN) through three approaches: (1) focusing on the group with the best
contribution level (BEST1G); (2) unoptimized combination of three groups with the best contribution levels (U3G); (3)
optimized combination of two groups with the best contribution levels (02G).

Conclusions: Our method outperforms other state-of-the-art PPl extraction systems in terms of F-score on the
HPRD50 corpus and achieves promising results that are comparable with these PPl extraction systems on other
corpora. Further, our method always obtains the best F-score on all the corpora than when using k-NN only without
exploiting the CLs of the groups of related features.
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Background

Identifying protein-protein interactions (PPIs) is neces-
sary for constructing protein interaction networks and
increases the understanding of both the functional role
of individual proteins and the underlying biological pro-
cesses. Although numerous PPIs have been manually
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curated by biomedical curators into databases, such as
DIP, BIND, MINT, IntAct, and HPRD, many valuable PPIs
remain available in research articles. Since the manual
curation of relevant PPIs from millions of research arti-
cles is too time-consuming, methods of automatic PPI
extraction from articles are necessary.

Many automatic PPI extraction methods from articles
have been developed. The first, simplest kind of method,
co-occurrence, which classifies two proteins as interacting
if they exist in the same sentence or in the same abstract,
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yields high recall but low precision. Conversely, the sec-
ond kind of method, pattern- or rule-based, which often
utilizes handcrafted patterns or rules, achieves high pre-
cision but low recall. The third kind of method, machine
learning-based, can be divided into two types: feature-
based and kernel-based.

Feature-based methods represent an instance, which
is a protein pair that consists of two protein names in
a sentence, by many features, e.g., lexical, word con-
text, and syntactic features derived from the sentence
or its syntactic structure. Besides lexical and syntac-
tic features, Liu et al. [1] exploited various features
from dependency information, including predicate fea-
tures involved in dependency graphs. Landeghem et al.
[2] proposed rich feature vectors containing semantic
information from dependency graphs and lexical infor-
mation from sentences. They also first applied automatic
feature selection techniques and showed that these tech-
niques can enhance the generalization performance in
PPI extraction and make the models faster and more
cost-effective.

Recently, various kernel-based methods have been pro-
posed that provide kernel functions that measure the
similarity between any pair of instances represented by
structural representations, such as constituent parse trees
or dependency graphs. These kernel functions differ from
each other in their type of input representation and how
they compute similarity functions. Airola et al. [3] pro-
posed a graph kernel-based method in which a sentence
is represented by a combination of a dependency graph
and another graph showing the linear order of words and
considered all the possible paths connecting two enti-
ties in the dependency graph. Miwa et al. [4] proposed a
method that combines kernels based on several syntactic
parsers to retrieve the widest possible range of impor-
tant information from a given sentence. Their method,
which combines a bag-of-words kernel, a subset tree ker-
nel, and a graph kernel, assigns the same weight to each
individual kernel. Qian et al. [5] proposed a tree kernel-
based method by exploiting both constituent parse trees
and dependency graphs and further refined the tree rep-
resentation from a constituent parse tree by utilizing
the shortest dependency path between two proteins in a
dependency graph.

Feature-based methods are considered more appro-
priate to practical applications than kernel-based meth-
ods due to the computation complexity of sophisticated
kernels [1]. Moreover, feature-based methods can be
improved by applying feature selection to enhance the
generalization performance and attain faster and more
cost-effective models [2]. The latest study of Tikk et al.
[6] analyzed and compared the performances of diverse
kinds of kernels. They found that different kernels using
the same input representation perform similarly on a
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large number of protein pairs, which are identified as
misclassified by most state-of-the-art kernel-based meth-
ods. Based on their convincing experimental results, to
improve the PPI extraction performance, they argued that
we should concentrate on finding and choosing informa-
tive features suitably rather than devising novel similarity
functions encoded in kernels.

In this paper we propose a novel feature-based method
to extract PPIs from articles. We exploit various fea-
tures, including lexical features and word context fea-
tures obtained directly from sentences, syntactic features
obtained from parse trees, and features using existing pat-
terns. We arrange the related features into four groups.
For instance, we assemble two related features, which
represent the positions of two protein names that con-
stitute an instance in the sentence containing them, into
one group. We also define the contribution level (CL)
of each group, which consists of related features. Our
method differs from existing methods in two ways. First,
based on the structure of the sentence and the presence
of significant keywords (SKs), we divide the training set
into subsets and apply the sentence patterns provided
beforehand to each one. Second, after computing the CL
values of the four groups that consist of related features,
we automatically implement feature selection based on
their CLs and the k-nearest neighbor algorithm (k-NN)
through three approaches: (1) focusing on the group with
the best contribution level (BEST1G); (2) unoptimized
combination of three groups with the best contribution
levels (U3G); (3) optimized combination of two groups
with the best contribution levels (O2G). To the best of
our knowledge, this is the first method that automatically
selects the most appropriate features for each group con-
sisting of related features by combining their CLs with
k-NN.

Outline of features of protein pairs in sentences
used in extraction of protein-protein interaction
information

The automatic extraction of PPI information from articles
is regarded as a binary classification in which instances
(protein pairs) that include PPI and instances that do
not include PPI are classified as positive and negative
instances. In machine learning approaches, based on
labeled training data, extracted features, which are the
characteristics of sentences containing protein pairs, are
utilized to discriminate positive from negative instances.
Then a model is learned from the training data, and each
instance is classified as positive or negative.

Our features are categorized into four types: lexical fea-
tures obtained directly from the sentence, word context
features obtained directly from the sentence, syntactic fea-
tures obtained from the parse tree, and features that use
the existing patterns. In the following tables, P1, P2, and
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K denote the protein name that appears first, the protein
name that appears later, and the keyword in a sentence,
respectively.

e Lexical features obtained directly from sentences:
These features are outlined in Table 1.

e Word context features obtained directly from
sentences: These features are outlined in Table 2.

e Syntactic features obtained from parse trees: All
sentences are transformed into representations called
constituent parse trees, which can capture the
syntactic structures of sentences. The features

Table 1 Lexical features obtained directly from sentences
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obtained from the constituent parse tree are outlined
in Table 3.

An example of a constituent parse tree output from
the Stanford parser [7] is shown in Fig. 1.

Features using existing patterns: We prepared
thirteen syntax patterns related to the presence or
absence of PPI in Table 4 based on the syntax
patterns that were proposed by Plake et al. [8]. iNoun
and iVerb, which represent the sets of nouns and
verbs related to interaction, are improved from the
original ones used by Plake et al. [8]. The wildcard *’
represents any word or words in a pattern. The

Features Definitions/Remarks Values Examples
Keyword Words indicating relationship between two One of the 180 kinds of words In sentence IEPA.d0sO (Fig. 1), feature
proteins. obtained by stemming 642 keyword's value is ‘stimulate’.
kinds of words such as bind’,
link’, stimulate’, ‘interact’,
‘induce’, regulate’, ‘mediate’,
‘inhibit’, etc., which often exist
in sentences containing PPIs.
Negative word Check if one such negative word as ‘not’, ‘true’ or ‘false’ In sentence HPRD50.d21.51 of HPRD50

‘incapable’, and ‘unable’ appears between
keyword and one of the two protein names
or between two protein names.

Conjunctive Check if one of the following words

word indicating a conjunctive relation appears:
‘although’, ‘though’, ‘because’, ‘as’, ‘therefore’,
‘hence’, 'since’, so’, ‘where’, ‘when’, what', ‘why/,
‘how’, ‘wherein’, ‘whereas’, and ‘whereby'.

‘Which' Check if ‘which” appears. Although ‘which’
also shows conjunctive relations, because
‘which' appears more often than the
conjunctive words listed above, we
differentiate it from the above features.

‘But’ Check if ‘but’ appears. Although ‘but’ also
appears as frequently as ‘which’ to represent
conjunctive relations, ‘but” implies negation

of context.
Words indicating Check if ‘if or ‘whether’ appears between
condition or keyword and one of the two protein names
presumption or between two protein names.
Preposition of Preposition following keyword providing that
keyword the distance between it and the keyword is

within 3. If there are many prepositions, the
preposition closer to the keyword is utilized.

Second keyword Only one of seven words, bind’ ‘interact’,
‘stimulate’, ‘associate’, ‘regulate’, ‘induce’, and
’known’, is not chosen as a keyword, check
if that word appears between two protein
names. These seven words can be
considered especially significant in PPI
classification compared with other keywords.
This feature prevents these words from
being overlooked as keywords.

corpus, “In contrast to OX1R, the potency
ofdirect activation of CB1 was not affected
by co-expression with OXIR," feature
value is ‘true’.

‘true’ or ‘false’ In sentence HPRD50.d21.s1 above, fea-

ture value is false’.

‘true’ or ‘false’ In sentence LLL.d13:s50 of LLL corpus,

"Production of sigmaK about Th earlier
than normal does affect Spo0OA, which
when phosphorylated is an activator of
sigE transcription,” feature value is ‘true’.

‘true’ or ‘false’ In sentence AlMed.d55.5485 of AlMed

corpus, “LEC also induced calcium mobi-
lization, but marginal chemotaxis via
CCR5,” feature value is ‘true’.

‘true’ or ‘false’ In sentence IEPA.d0sO (Fig. 1), feature
value is ‘false’.
One of the prepositions In sentence AlMed.d55.5487 of AlMed

corpus, “The binding of LEC to CCR8 was
much less significant,” feature value is ‘of .

‘true’ or false’ for each of these In sentence IEPA.d0.sO (Fig. 1), because
seven words (If one of these 'stimulate’ was already chosen as a key-
seven words appears in the word and the sentence does not contain
sentence and is not chosen as the other six words, feature value of the
a keyword, feature value for it is second keyword (‘stimulate’) is false’ and
‘true’). feature value of the other six words is

also ‘false’.

Lexical features extracted from sentences
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Table 2 Word context features obtained directly from sentences
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Features

Definitions/Remarks

Values Examples

Distance_KP1

Distance_KP2

Distance_P1P2

Position_P1

Position_P2

Position of keyword

Comma between
keyword and protein
pair

Multiple occurrences
of keywords

Parallel expression of
a protein pair

The distance defined by number of words
appearing between keyword K and protein name
P1in the sentence.

The distance between keyword K and P2 in the
sentence.

The distance between two protein names in the
sentence.

The value adding word distance between protein
name P1 and beginning of the sentence to one.

The value adding word distance between protein
name P2 and beginning of the sentence to one.

The word order of keyword K and protein pair P1
and P2. 'Infix": order of words is [P1-K-P2]), ‘prefix":
order of words is [K-P1-P2]), or ‘postfix’: order of
words is [P1-P2-K]).

Because topic of the sentence frequently
changes before and after commas, we utilize the
information if there is a comma between protein
pair and keyword. 'x1x;": xq is 't" if a comma exists
between A and B, and x; is ‘t" if a comma exists
between B and C, otherwise x; or x> is 'f, where
A, B, and C represent a keyword and two pro-
tein names in order of their appearance in the
sentence.

Check whether there is more than one keyword in
a sentence.

Check whether the two protein names of the
protein pair are contiguous in the word order

of the sentence containing them (they are also
considered contiguous even if ~, /, ‘and’, ‘or, ('
appears between them). If two protein names are
described in parallel in a sentence, an interaction
between them is unlikely.

Integer value In sentence LLL.d33.s1 of LLL corpus, “GerE binds to
a site on one of these promoters, cotX, that overlaps
its -35 region,” keyword is 'bind" and Distance_KP1
is 0.

Integer value In sentence LLL.d33.s1 above, Distance_KP2 is 8.

Integer value In sentence LLL.d33.s1 above, Distance_P1P2 is 9.
Integer value In sentence LLL.d33.s1 above, Position_P1 is 1.
Integer value In sentence LLL.d33.s1 above, Position_P2is 11.

In sentence LLL.d33.s1 above, feature value is
‘infix’.

‘Infix’, ‘prefix’, or
"postfix’

tt’, ff, tf, or 'ft’ In sentence LLL.d33.51 above, feature value is ‘ft’.

‘true’ or false’ In sentence LLL.d33.s1 above, feature value is

false’.
‘true’ or false’ In sentence LLL.d30.s0, “In vitro, both sigma(A) and
sigma(X) holoenzymes recognize promoter elements
within the sigX-ypuN control region,” feature val-
ues of protein pairs (sigma(A), sigma(X)) and (sigX,
ypuN) are ‘true’ (only PPIs are in the remaining
protein pairs).

Word context features extracted from sentences. P1, P2, and K denote the protein name appearing first, the protein name appearing later, and the keyword in a sentence,

respectively. 't and ‘f' are abbreviations of ‘true’ and ‘false’

number of words substituted by a wildcard in a
pattern is limited to five. If an instance (a protein pair
(P1, P2)) matches (or does not match) one of these
patterns, the feature value is set as ‘true’ (or ‘false’).

Method

Figure 2 shows the framework of our PPI extraction sys-
tem, which consists of two phases: division of the training
set into subsets and PPI prediction based on evaluating
the contribution levels (CLs) of the groups consisting of
related features. In the first phase, the training data are
partitioned into subsets based on the significant keywords
described below and the feature position of keyword. In
the second phase, the related features are arranged into
groups, and cross-validation is performed on the training
data to train the k-NN classifier to generate a predic-
tive model, which is utilized to assess the CLs of the

groups that consist of related features that indicate the
efficiency in the selection of the optimal combination
of the features for each group. After the CLs of these
groups are estimated, the appropriate features are selected
automatically from the following three approaches: focus-
ing on the group with the best CL (BEST1G), unopti-
mized combination of the three groups with the best CLs
(U3G), and optimized combination of the two groups
with the best CLs (O2G). Finally, the k-NN classifier
is used to classify the candidate PPI pairs of the test
data.

Division of the training set into subsets

Significant keyword (SK)

Since the feature keyword (Table 1) performs a notice-
able role in identifying whether the sentence contains a
PP, it is utilized in the majority of research related to
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Table 3 Syntactic features obtained from parse trees

Features Definitions/Remarks Values Examples
Height_P1 The height of first protein name P1 of instance at constituent parse Integer value In Fig. 1, Height_P1
tree. This height differs from features Distance_KP1, Distance_KP2, is 2.

and Distance_P1P2, i.e,, distances between protein pair and key-
word described in Table 2.

Height_P2 The height of second protein name P2 of instance at constituent Integer value In Fig. 1, Height_P2
parse tree. This height differs from features Distance_KP1, Dis- is 4.
tance_KP2, and Distance_P1P2.

Height_K The height of keyword K at constituent parse tree. This height differs Integer value In Fig. 1, Height_K
from features Distance_KP1, Distance_KP2, and Distance_P1P2. is 2.

POS_P1 We take into account the part-of-speech information of path from The list of part-of-speech information of ~ In Fig. 1, POS_P1 is
root at constituent parse tree of the two protein names constituting path from root at constituent parse tree. ‘NP, NNP'.

instance and keyword. It is possible to represent syntax structure
and train classifiers to learn the pseudo grammar structure by this
information. POS_P1 denotes part-of-speech information of path
from root of leaf representing first protein P1 of instance.

POS_P2 POS_P2 denotes part-of-speech information of path from root of The list of part-of-speech information of In Fig. 1, POS_P2 is
leaf representing second protein P2 of instance. path from root at constituent parse tree. VP, NP, NP, CD".

POS_K POS_K denotes part-of-speech information of path from root of leaf ~ The list of part-of-speech information of In Fig. 1, POS_K is
representing keywork K. path from root at constituent parse tree. VP, VBZ'.

All sentences were transformed into representations called constituent parse trees, output from the Stanford parser [7]. Syntactic features were extracted from constituent
parse trees. P1, P2, and K denote the protein name appearing first, the protein name appearing later, and the keyword in a sentence, respectively

PPI extraction [9, 10]. Nevertheless, emphasizing only Through the observation of the imbalance of the classes
this feature can cause an adverse effect in which other  of instances when classifying them based on the presence
features may not receive appropriate attention or might or absence of a certain keyword K, we determine whether
even be ignored. Consequently, we distinguish between this feature keyword K is SK by defining imbalance degree
cases when the feature keyword contributes significantly  ID(K) as follows:

to PPI classification and when it does not. We call the

keyword in the former case SK. ID(K) = Np/Nn;, (1)

NP VP

NP

/\

NNP VBZ NP /PP\ ADVP
P1 stimulates cD NN IN NP RB RB
P2 production in /\ as well
JJ NN

dose-dependent fashion

Fig. 1 Example of a constituent parse tree. Constituent parse tree for sentence, “Oxytocin stimulates IP3 production in dose-dependent fashion as well,”
from sentence IEPA.d0.s0 of IEPA corpus (first protein P1 is Oxytocin and second protein P2 is IP3)
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Table 4 Set of PPl syntax patterns

No. PPI-Pattern

Pattern 1 P1*iVerb * P2

Pattern 2 P1*iVerb * by * P2

Pattern 3 iVerb of * P1* by * P2

Pattern 4 iVerb of * P1* to * P2

Pattern 5 iNoun of * P1 * [by|through] * P2
Pattern 6 iNoun of * P1 * [with| to |on] * P2
Pattern 7 iNoun between * P1 * and * P2
Pattern 8 complex between * P1* and * P2
Pattern 9 complex of * P1 * and * P2
Pattern 10 P1 * form * complex with * iVerb * P2
Pattern 11 P1*P2*iNoun

Pattern 12 P1 depend of P2

Pattern 13 between P1 and P2

We prepared syntax patterns related to PPl based on the syntax patterns proposed
by Plake et al. [8]. P1 and P2 denote the protein names appearing first and later in a
sentence, respectively. iNoun and iVerb denote sets of nouns and verbs related to
interaction. The number of words substituted by a wildcard *"in a pattern is limited
to five. After the training set was divided into subsets based on the existence of
significant keywords and the structure of the sentence, these syntax patterns were
applied to each subset
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where Np and Ny denote the number of positive and
negative instances containing K in the training set, respec-
tively. ID(K) = 1 means that K is completely balanced.
On the contrary, ID(K) = 0 (i.e., % = 00) or ID(K) =
oo (i.e., % = 0) means that K is completely imbal-
anced. Thus, when the value of ID(K) or % is less than
predefined threshold 7, we regard K as a SK.

Position of keyword

In addition to the importance whether a keyword is SK,
since the basic structure of a sentence can be grasped
by determining the feature position of keyword that sig-
nifies the word order of the keyword and the pair of
protein names in that sentence, this feature should also
be stressed. We recognize that if the basic structures of
the sentences differ, the features that should be empha-
sized in PPI classification will also differ. If the feature
position of keyword’s value is ‘infix’ (i.e., the keyword exists
between a pair of protein names in the sentence), the sen-
tence structure has the typical Subject-Verb-Object form.
For example, in the sentence, “GerE binds to a site on
one of these promoters, cotX, that overlaps its -35 region,’
(the keyword ‘bind’ is the Verb, the protein ‘GerE’ is the

<«

\ 4

Feature selection
(BEST1G, U3G, 02G)

Test Training R

data data .
Significant | | Position of

keyword keyword

Division into subsets

Cross-validation

k-NN classifier

k-NN learning

k-NN classification

v

Contribution levels of groups

v

k-NN classifier

k-NN learning

consisting of related features

k-NN classification

Fig. 2 Framework of our PPl extraction system. Our system consists of two phases. First, training set is divided into subsets based on presence of
significant keywords and the feature position of keyword. Second, after cross-validation is performed on the training data to assess the contribution
levels of four groups, which consist of related features, feature selection is performed automatically through our three approaches (BEST1G, U3G,
02G). Finally, the k-NN classifier is used to classify candidate PPI pairs of test data

> Classified pairs
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Subject, the protein ‘cotX’ is the Object, and the feature
position of keyword’s value is ‘infix’), since the relation of a
protein name and the keyword is that of the Subject (or the
Object) and the Verb, some features (e.g., Distance_KP1,
Distance_KP2, and Distance_P1P2 that indicate the dis-
tances between protein names and the keyword) perform
substantial roles. Conversely, if the feature position of key-
word’s value is ‘prefix’ or ‘postfix; the sentence structure is
regarded as atypical, such as the parallel expression of pro-
tein names, inverted structure, and so forth. For example,
in the sentence, “association between cdc25A and cdc2
was detected in the HeLa cells,” (the keyword is ‘associate’
obtained by stemming the word ‘association;, the two pro-
tein names are ‘cdc25A’ and ‘cdc2; and the feature position
of keyword’s value is ‘prefix’), since the relation of a protein
name and the keyword, which is not that of the Subject
(or the Object) and the Verb, is that of inverted struc-
ture, some features (e.g, Distance_KP1, Distance_KP2,
and Distance_P1P2) are not always emphasized. There-
fore, the importance of a feature is likely to be varied
depending on the structure of the sentence.

Division of training set

Because the features that should be emphasized can vary
depending on whether the feature keyword is a SK and
the feature position of keyword between the two protein
names as stated above, we divide the training set into three
subsets, A, B, and C (Table 5), and generate three classi-
fiers from each subset. Similarly, we divide the unlabeled
instances into one of three subsets, A, B, and C; and utilize
the corresponding classifier to identify whether PPIs exist
in these instances. The outline of this process is illustrated
in Fig. 3.

Because the original training set is divided into three
subsets, not all the patterns (Table 4) always match each
subset. Consequently, we discard the irrelevant and use-
less patterns beforehand based on the structure of the
sentence (Table 6). For subset A, since the feature posi-
tion of keyword’s value is ‘infix’ (i.e., the sentence structure
has the typical Subject-Verb-Object form in which the
keyword that corresponds to a verb exists between two
protein names that correspond to a subject and an object),
we observed that patterns 7, 8, 9, and 13 (Table 4) do
not match this Subject-Verb-Object form. Patterns 7, 8,

Table 5 Division of training set

Subset Significant keyword Position of keyword
A Included Infix

B Included Prefix/postfix

@ Not included Infix/prefix/postfix

The training set was divided into subsets, A, B, and C, based on presence of the
significant keyword and the feature position of keyword
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and 9 stand for phrases K-P1-P2 (the keyword is K and
the protein pair is (P1, P2)). Similarly, pattern 13 is also
unsuitable for subset A. For subset B, because the fea-
ture position of keyword’s value is ‘prefix’ or ‘postfix’ (i.e.,
the sentence structure is atypical, such as the parallel
expression of protein names, the inverted structure, and
so forth), patterns 1, 2, 10, and 12 do not match these sen-
tence structures. As a result, we remove them beforehand
for subsets A and B. For subset C, because the position
of keyword’s value is ‘infix; ‘prefix; or ‘postfix; we do not
eliminate any pattern shown in Table 4.

Prediction based on evaluating contribution levels of
groups consisting of related features

Groups consisting of related features

The syntactic features derived from the parsers, features
showing the distances between two protein names and
the keyword, and features showing the positions of two
protein names are considered important in PPI classi-
fication [4, 6]. However, among some related features
(e.g., Height_P1, Height P2, and Height K mentioned in
Table 3, which depict the heights of the two protein
names of the instance and the keyword at the constituent
parse tree), we cannot affirm intuitively which feature is
definitely more important than the others without under-
standing the data characteristics. Therefore, we arranged
the related features into the following four groups to
automatically evaluate each one separately in the PPI
extraction performance by the CL defined hereinafter:

e Group G consists of three related features:
Distance_KP1, Distance_KP2, and Distance P1P2
(Table 2).

e Group Gy consists of two related features:
Position_P1 and Position_P2 (Table 2).

e Group Gj3 consists of three related features:
Height_P1, Height_P2, and Height_K (Table 3).

e Group Gy consists of three related features: POS_P1,
POS_P2, and POS_K (Table 3).

When some features in a group, which consists of
related features, are useless and redundant, using all the
features in that group can decrease the accuracy of the
learning algorithm. In this case, removing some irrel-
evant features from that group (i.e., feature selection)
can improve the PPI extraction performance. Conversely,
when all the features in a group are useful, it is unneces-
sary to remove any feature from that group. By utilizing
the original training data, we can determine automat-
ically whether it is necessary to eliminate any feature
in any group individually to enhance the PPI extraction
performance.

After individually selecting the optimal feature set for
each group, we assess the CLs of these groups in the
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Corpora of PPI

4

SubsetA

!

Classifier A

1

SubsetA

N\

!

‘ Divide data into subsets

Subset B Subset C
l l 1. Training
Classifier B Classifier C
t I 2. Classified
Sub:et B’ Subs_et G

1

’ Divide data into subsets

Unlabeled data

Fig. 3 Outline of PPI prediction based on division of training set. Training set was divided into subsets, A, B, and C, based on existence of significant
keyword and feature position of keyword. Three classifiers were generated from every subset. Similarly, unlabeled instances were divided into one of
three subsets, A', B, and C', and corresponding classifier was used to identify whether PPIs exist in these instances

process of training the classifier with the original training
data. When some groups greatly contribute to the clas-
sifier training, we had better put more focus on these
groups. In the opposite case, it is important to give ample
consideration to other groups.

Cross-validation

Cross-validation (CV), which is a widespread strategy to
estimate the model prediction performance, can also be
utilized in feature selection to determine which subsets
of features are useful in building good predictive models.
In this paper we perform S-fold CV (SFCV) on original

Table 6 Removed patterns for each training subset

Subset Removed patterns
A Patterns 7,8,9,13

B Patterns 1,2,10,12
@ No deletions

After the training set was divided into subsets A, B, and C, the syntax patterns
(Table 4) we prepared were checked to determine whether they matched each
subset. Unsuitable patterns were removed beforehand for subsets A and B. No
pattern was excluded for subset C

training data Traing to identify the redundant features
in groups Gi, G2, Gs3, and Gy, which consist of related
features, compute the CLs of these groups, and perform
feature selection. In SFCV, original training data Trainy is
divided into S equal-sized partitions P;(i = 0,--- ,S — 1).
In each Round; of SFCV (i = 0,...,5 — 1), a combi-
nation of § — 1 partitions is used as training set Train;,
defined as Traingy — P; (i =0,--- ,S — 1) (Fig. 4), to train
the predictive model that is then validated on the remain-
ing partition, called validation set Validation;(= P;). We
discuss it in detail below.

Contribution level (CL) of a group consisting of related
features

To describe our method more simply from now, we also
utilize the abbreviation SECV, the notations of original
training data Train,y, partitions P;, training set Train;, and
validation set Validation; (i = 0,---,S — 1), which were
defined in the Cross-validation section.

Because group Gj contains three related features (Dis-
tance_KP1I, Distance_KP2, and Distance_PI1P2), there are
eight ways (23 = 8) to select features from these features
to create eight combinations of features for Gj.
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Fig. 4 S-fold cross-validation (SFCV) performed on original training data. Original training data Traing was divided into S equal-sized partitions P;

(i=0,---,5S—=1)toperform SFCV on it to estimate contribution levels of four groups, Gy, Gy, G3, and G4, and perform feature selection

We performed SFCV to train the k-NN classifier on
original training data Train,). For each training set Train;
(i = 0,---,5 — 1), we trained the k-NN classifier with
every combination of the features in G; (we do not change
or remove the features in other groups). Then for each
Train;, we search for the optimal combination of features
in Gj that yields the maximum F-score on validation set
Validation; (the definition of F-score is mentioned in the
next section), denoted as Fcony; (1 signifies the index of
G1). Similarly, for each Train;, we also look for the optimal
combinations of features in groups Go, G3, and Ga sepa-
rately that yield the maximum F-score, denoted as Fcony;,
Fcongi, and Fcony;, on Validation;, respectively.

In this paper we define the CL for each group consisting
of related features to improve the PPI extraction accuracy.
CL is an indicator for determining the efficiency in the
selection of the optimal combination of the features for
each group. The pseudo-code for the calculation of the
CLs of these four groups is shown in Listing 1. C; denotes
the CL of each group G; (j = 1,2,3,4). Function max
returns the maximum value among its arguments. For all
values of i from 0 to § — 1, if the maximum among the val-
ues of Fconj; (j = 1,2,3,4) is one of group Gy, i.e., Fcony;
(t € {1,2,3,4}), we increase CL C; of G;.

From the CL values of the four groups output from
function EvalCon4, if groups Gy, Gy, and G, still exist
(x, 9,z € {1,2,3,4}), which have the same CL values, we
only recompute the CLs for Gy, Gj, and G, by function
EvalCon3 (Listing 2) without recomputing the CL for the
remaining group. After computing the CLs CL,, CL,, and

CL, of Gy, Gy, and G, (lines 2—6), which resembles the
calculation of the CLs of function EvalCon4, we resolve
the exception (lines 8—24) in which the CLs of Gy, Gy,
and G, become equal again. In this exception, we com-
pute Ay, Ay, and A, (lines 10-12). 4; (j € {1,2,3,4}) of
group G; denotes the maximum among Fconjo, Fcony, . . .,
and Fcomjs—1). We regard the CLs of Gy, Gj, and G; as
identical as Ay, Ay, and A, respectively. If all three groups,
Gy, Gy, and G, still have the same CLs (lines 17-22), we
regard the CLs of Gy, Gy, and G; as identical as A, A/y,
and A, respectively. In lines 18—20, function second_max
returns the second maximum among its arguments.

From the CLs of the four groups output from function
EvalCon4, if only two groups remain with identical CLs,
we only recompute the CLs for these groups by function
EvalCon2 without recomputing the CLs for the remaining
groups. Because function EvalCon2 resembles function
EvalCon3, we do not present its code here.

EvalCon4(Gy, Ga, Gs, G4 ){

1

2 C1=0; Cy,=0; C3=0; C4 =0; // Initialize CLs of all groups
3 for (i=0to S — 1)

4 if (max(Fcony;, Fcony;, Fcons;, Fcong;)==Fcong;){

5 Ci++; // increase the CL of G,

6 }

7 return values of CLs of Gy, G, G3, and Gg;

s }

Listing 1 Function EvalCon4. Calculation of contribution levels
(CLs) of four groups consisting of related features
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1 EvalCon3(Gy, Gy, G){
2 CLy=0; CLy=0; CL,=0; /* Initialize CLs of Gy, Gy, and G,
again, denoted as CLy, CLy, CL, %/
3 for(i=0toS —1)
4 if (max(Fcony;, Fcony;, Fcony)==Fcong;){
CLy4++; // increase the CL of G, (a€{x,y,2})
1

/* Exception */
if (CLs of G, Gy, and G, become equal again){

10 Ayx=max(Fconyg, Fcony, ..., Fconys—1));
1 Ay=max(Fconyo, Fconyy, ..., Fconys_1));
12 Az=max(Fcony, Fconyi, ..., Fconzs—1y);
13 Regard values of the CLs of G, Gy, and G, as identical

as values of A, Ay and A,;
1 if (only two groups G, and G, still have the same CLs){
[* ie., Ag=A. (deelx,y,z}) */
15 EvalCon2(Gy, G,); //recompute CLs of G4 and G,
16 Jelse if (all three groups Gy, Gy, and G, still have identical
CLs){/xi.e., Ax=Ay=A,. This case rarely happens.*/

17 Al,=second_max(Fconyg, Fcony, ..., Fconys_1);
18 A;:second_max(Fconyo, Fcony, ..., Fcomy(s— )i
19 A’,=second_max(Fconyy, Fconz, ..., Fcongs—1));
20 Regard values of CLs of G, Gy, and G, as identical as
’ .
values of A, A;, and A;
21 }
2 }

23 /* End Exception x/
24
» return values of CLs of G, Gy, and G;

% }

Listing 2 Function EvalCon3. Recomputing contribution levels
(CLs) of three groups consisting of related features (with identical
values of CLs computed from function EvalCon4) without
recomputing the CL for the remaining group

Feature selection through three approaches (BEST1G, U3G,
02G)

The ultimate goal of automatic PPI extraction from arti-
cles is extracting PPIs from any new unseen text with
high predictive accuracy. In addition to PPI extraction
accuracy, reducing the computational time for training
and testing a PPI extraction system is also crucial. Tikk
et al. [11] compared the performances of diverse kinds of
kernels on a large-scale database called Medline, which
contains nearly 120-M sentences. They reported that
when the top three kernels (all path graph kernel, shal-
low linguistic kernel, and k-band shortest path spectrum
kernel) that show the best performance were applied to
Medline on a single processor, their runtimes were about
45, 141, and 4 days, respectively. Including the time to
parse sentences, their runtimes changed to 226, 147, and
185 days, respectively. In other words, to extract PPI on
Medline, we need about half a year. Consequently, low-
ering the computational time becomes critical for PPI
extraction tasks. Landeghem et al. [2] also argued that we
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have to consider a trade-off between PPI extraction accu-
racy and computational time to decrease the amount of
computational resources utilized by machine learning.

Based on the CL values of four groups, Gi, G, G3, and
Ga, we employ the following three approaches: focusing
on the group with the best contribution level (BEST1G),
unoptimized combination of three groups with the best
contribution levels (U3G), and optimized combination of
two groups with the best contribution levels (O2G) to
automatically perform feature selection to enhance PPI
extraction accuracy. For the above reason, we also take
into account reducing the computational time by feature
selection. We briefly describe the advantages of our three
approaches below.

BEST1G: We only performed feature selection auto-
matically on the group with the best CL among the four
groups. Although we also aim at improving PPI extrac-
tion accuracy, our concern with this approach is mainly
about limiting the computational time by feature selection
as much as possible. Therefore, compared with U3G and
O2G, the advantage of BEST1G is the least computational
time due to feature selection. However, since BEST1G is
not guaranteed to always attain better extraction accuracy
than U3G and O2G, it is suitable for a large-sized dataset
in which effectively decreasing the computational time is
always the most required factor.

U3G: We merged all the features in the three groups
with the best CLs among the four groups. Then we auto-
matically performed feature selection on these merged
features from these three groups by a greedy algorithm.
Although this greedy strategy generally does not produce
an optimal subset of these features, it may yield a locally
optimal subset of them. We want to exploit the informa-
tion from the features in these three groups to improve
the extraction accuracy without wasting time perform-
ing feature selection by exhaustively searching for all their
combinations. Hence, compared with BEST1G and O2G,
the advantage of U3G is maintaining a trade-off between
extraction accuracy and computational time due to fea-
ture selection. However, U3G is also not guaranteed to
always achieve better extraction accuracy than BEST1G
and O2G. As a result, U3G is suitable for a medium-
sized dataset in which balancing extraction accuracy and
computational time is necessary.

02G: We merged all the features in the two groups with
the best CLs among the four groups. Then we automati-
cally performed feature selection on these merged features
from these two groups by exhaustively searching for all the
combinations of these features. Consequently, we assume
that O2G performs better with respect to extraction accu-
racy than BEST1G and U3G. The disadvantage of O2G
is higher computational times due to feature selection
than BEST1G and U3G when applying O2G, BEST1G, and
U3G to a medium-sized dataset or a large-sized dataset.
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As a result, O2@G is suitable for a small-sized dataset
in which effectively increasing the extraction accuracy is
always the most required factor.

We describe the implementation details of BEST1G,
U3G, and O2G below.

BESTI1G First, we selected group G; having the best CL
among the four groups. For all the values of i from 0
to S — 1, we then searched for the maximum of Fcon;;
and its corresponding combination of features in G; when
applying SFCV and k-NN to training set Train;.

U3G First, we selected three groups having the best CLs
among the four groups and merged all the features in
them. Assume that the order of CLs C,, Cp, and C, of
the three corresponding selected groups G,, G, and G,
is C;, > C, > C. For each training set Train; (i =
0,---,S8 — 1), we performed k-NN by gradually removing
the features in these three groups in the order of their CLs
(i.e., we eliminated the features in G, first, then those in
Gy, and finally those in G.), and if the F-score, denoted
as F;, on validation set Validation; improved even slightly,
we conclude immediately that this improved value of F;,
denoted as Fu;, is the unoptimized value for Train,;.

Next, for all the values of i from 0 to S — 1, we searched
for the maximum of Fu; and its corresponding combina-
tion of features in these three groups.

02G First, we selected two groups having the best CLs
among the four groups and merged all the features in
them. For each training set Train; (i = 0,---,S — 1),
we performed k-NN with every combination of the fea-
tures in these two merged groups. Then, for each train-
ing set Train;, we searched for the optimal combination
of the features in these two merged groups that yields
the maximum F-score, denoted as Fo;, on validation set
Validation;.

Next, for all the values of i from 0 to S — 1, we searched
for the maximum of Fo; and its corresponding combina-
tion of features in these two merged groups.

Results and Discussion

Datasets

We utilized all the datasets from four typical PPI-
annotated corpora: LLL [12], HPRD50 [13], IEPA [14], and
AlIMed [15] (except Biolnfer [16]). Table 7 shows the num-
ber of positive and negative instances in them. In addition
to the 200 PubMed abstracts in AIMed that were man-
ually annotated for interactions between human genes
and proteins, 30 other abstracts without PPIs were added
to AIMed as negative instances. HPRD50 is comprised
of 50 abstracts, in which the human gene and protein
names were automatically identified by ProMiner soft-
ware. IEPA was created from 303 PubMed abstracts, each
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Table 7 Number of positive and negative instances in four
corpora: LLL, HPRD50, IEPA, and AlMed

Corpus LLL HPRDS50 IEPA AlMed
Positive instances 164 163 335 1000
Negative instances 166 270 482 4834

Four corpora, LLL, HPRD50, IEPA, and AlMed, were converted into a unified XML
format with a very simple structure by Pyysalo et al. [17] to make the corpora easily
accessible to users. Number of positive instances (interacting protein pairs) and
negative instances (non-interacting protein pairs) in each corpus is shown

of which contains a specific pair of co-occurring chemi-
cals. The LLL corpus contains 77 sentences and was the
shared dataset for the Learning Language in Logic 2005
challenge (LLLO5). The LLL domain is the gene interac-
tions of Bacillus subtilis. These corpora carry information
about named entities from biological domains and anno-
tated PPIs. Nevertheless, they differ from one another. For
example, with respect to the scope of the annotated enti-
ties, most of them typically contain proteins and genes,
some contain RNAs, but IEPA contains only chemicals.
The policies of entity annotation and interaction annota-
tion among these copora are also slightly different [17].
Pyysalo et al. [17] reported that although the entity anno-
tation of the types relevant to the corpus is exhaustive only
in AIMed and Biolnfer, entity annotation is merely based
on lists of entity names or the named entity recognizer
output in other corpora. They also indicated that the dif-
ferences in interaction annotation are even greater than
those in entity annotation, e.g., only Biolnfer and IEPA
contain information identifying the words that state an
interaction, and all but HPRDS50 specify the direction of
the interactions. They converted these corpora into a uni-
fied XML format, which we utilized in our study, with a
very simple structure to make the corpora easily acces-
sible to users. In the unified XML format, each corpus
is comprised of documents that are abstracts of articles,
each document is comprised of sentences, each sentence
might contain some proteins, and the names and relations
of proteins are annotated by some attributes of this XML
format.

We regard the PPI extraction task as a binary classifi-
cation in which interacting protein pairs are considered
positive instances and vice versa. If a sentence contains #
proteins, (g) instances (i.e., protein pairs) are generated.
In this paper, the two protein names of a candidate PPI
instance and the other proteins in the same sentence are
renamed as P1, P2, and PO to blind the learner to allow
direct comparison to earlier studies. By utilizing the infor-
mation contained in the attributes of the unified XML
format of these corpora, we parsed all the sentences in
them to extract the features.

Biolnfer has an especially extensive annotation pol-
icy that combines three types of annotations: termed
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entity, entity relationship, and dependency. Some sen-
tences of this corpus were annotated with protein names
that do not contain contiguous tokens. For instance, in the
phrase, “When liver- or islet-type glucokinase was tran-
siently expressed in COS-7 cells” from sentence Bioln-
fer.d43.s3, two protein names are annotated, “liver-type
glucokinase” and “islet-type glucokinase,” and “liver-type
glucokinase” is annotated as a protein reference despite
its discontinuous name. In this paper, the two protein
names of a candidate PPI instance and the other pro-
teins in the same sentence are assumed to contain only
contiguous tokens. Although we currently cannot tackle
these non-contiguous protein names of the Biolnfer cor-
pus, which is why we do not analyze the dataset of
this corpus, we intend to deal with this problem in the
future.

Evaluation methods

To allow for direct comparison to earlier studies, we
evaluated the performance of our method by 10-fold
document-level cross-validation (1I0FDLCV). In each
round of 10FDLCYV, one of the ten partitions contain-
ing 10 % of the documents is used as a test set, and the
combination of the remaining nine partitions containing
90 % of the documents is used as a training set. SECV,
which is described in the Method section, is performed as
9FDLCV (S is set to 9). We also adopted the One Answer
per Occurrence strategy in which a correct interaction
has to be extracted for each occurrence of the instance.
The threshold T’s value (the Method section) is set
to 0.18.

For classifying PPI, we use the k-NN algorithm men-
tioned above by normalizing the value of each feature
before computing the Euclidean distance between two
feature vectors. The values of the features are normal-
ized so that they all lie between 0 and 1 and the features
on different scales have the same impact on the dis-
tance function. If two categorical features are identical
(or different), we consider the difference between them as
0 (or 1).

For small-sized corpora, LLL, HPRD50, and IEPA, based
on the rule of thumb in machine learning that chooses
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parameter k of k-NN to be near the square root of the
size of the training set, we chose k to be odd and equal to
19, 21, and 29 (in binary classification, we choose an odd
k of k-NN to avoid ties). For a larger AIMed corpus con-
taining the most highly imbalanced PPI data, if the rule
of thumb is applied, k is too big, about 71-73, and the
computation cost (i.e., the computation of the distances
among instances) also increases greatly with this value of
k. Therefore, for the AIMed corpus, we performed cross-
validation on the training data with a range of value of k,
and chose k that equals 11 based on the lowest root mean
square error.

Precision (P), recall (R), and harmonic value F-score
(F) are used as evaluation measures, which are defined as
follows:

P = TP/(TP + EP) (2)
R = TP/(TP + EN) 3)
F =2%PxR/(P+R), (4)

TP, FP, and FN denote the number of true positives,
false positives, and false negatives, respectively. Preci-
sion is the percentage of correct predictions from all the
instances predicted as positive. Recall is the percentage
of correctly predicted positive instances from all positive
instances.

Experiment results

Table 8 shows the results of our three approaches
(BEST1G, U3G, O2G). As a baseline, we also added the
results when only k-NN was applied, and feature selec-
tion using the CLs of the groups consisting of related
features was not performed. Our three approaches consid-
erably improved all the F-score results on all the corpora
compared with the case that only uses k-NN without per-
forming feature selection that utilizes the CLs of these
groups.

Compared with BEST1G, although U3G attains a bet-
ter result on IEPA or an equivalent result on HPRD50,
BEST1G outperforms U3G on LLL and AIMed in terms
of F-score. BEST1G learned all the possible combinations

Table 8 Experiment results of our three approaches: BEST1G, U3G, 02G

Corpus LLL HPRD50 IEPA AlMed

(%) P R F P R p R F p R F
k-NN 716 79.8 744 719 624 65.9 68.4 66.6 67.2 52.1 359 423
BESTIG 74.7 82.2 76.5 725 726 716 67.7 713 69.2 508 40.9 45.1
U3G 746 80.7 759 725 726 716 68.3 717 69.8 49.5 40.5 444
02G 74.7 82.2 76.5 73.0 74.3 72.6 68.1 713 69.5 50.2 39.8 443

Precision (P), recall (R), F-score (F) results of our three approaches (BEST1G, U3G, O2G) evaluated by 10-fold document-level cross-validation on four corpora, LLL, HPRD50,
IEPA, and AIMed, shown in the second, third, and fourth row. As a baseline, in the first row, we add results when only k-NN is applied, and feature selection using contribution
levels of groups consisting of related features was not performed. Precision (P), recall (R), and F-score (F) values are shown by percentage (%). Bold typeface shows best results

per corpus in terms of precision, recall, and F-score



Phan and Ohkawa BMC Bioinformatics 2016, 17(Suppl 7):246

of the features in the group with the best CL, whereas
there are cases where U3G can immediately halt the fea-
ture selection completely when only a feature in the group
with the best CL is removed and the F-score on the valida-
tion set is only slightly improved. Therefore, the BEST1G
results are generally better than those of U3G.

Conversely, since O2G exhaustively searches for all the
combinations of the features in the two merged groups
having the best CLs, O2G exceeds BEST1G on HPRD50
and IEPA and greatly surpasses U3G on LLL and HPRD50.
Generally, despite the highest computational time due to
feature selection when applied to the medium-sized IEPA
corpus or the large-sized AIMed corpus, O2G performs
the best among our three approaches, as we assumed in
the Method section.

However, depending on the characteristics of the cor-
pus, the best performance belongs to BEST1G, U3G,
and O2G on AIMed, IEPA, and HPRD50, respectively,
in terms of F-score. Both BEST1G and O2G performed
best on LLL. O2G failed to attain the best F-scores on
IEPA and AIMed, as we assumed in the Method section,
because the heterogeneity among corpora can lead to het-
erogeneous evaluation results. For example, unlike other
corpora, 30 abstracts without PPIs were intentionally
added to AIMed as negative instances. As a result, the
percentage of sentences that have no entities is 18 % in
AlMed, but it is 0 % in the other corpora. The percentage
of sentences that have no interactions is 69 % in AIMed,
but it is less than or equal to 38 % in the other corpora.
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The ratio between the number of positive instances and
all the instances in the highly imbalanced AIMed is too
low, about only 17.1 % compared with the other corpora.
Additionally, unlike other corpora, the scope of the anno-
tated entities in IEPA is chemicals. Therefore, due to the
enormous differences among the corpora, in a few cases,
0O2G may not be the best approach, even though overall it
is superior to BEST1G and U3G with respect to extraction
accuracy.

Moreover, the F-score results of O2G on IEPA and
AlMed still surpass those when only k-NN is applied.
As described in the Method section, with a large-sized
corpus like AIMed in which effectively decreasing the
computational time is always the most required factor,
we should apply BEST1G because it has the lowest com-
putational time. With a medium-sized corpus like IEPA
in which we need a trade-off between extraction accu-
racy and computational time, we should utilize U3G. With
small-sized copora like LLL and HPRD50 in which effec-
tively increasing extraction accuracy is always the most
necessary factor, O2G remains the best choice.

Comparison with other related research

The performance comparison of our three approaches
(BEST1G, U3G, 02G) with other related research is
shown in Table 9. The results of the co-occurrence and
rule-based methods are also listed in Table 9 as a base-
line. Fundel et al., who proposed the RelEx system [13],
applied a small number of simple rules to dependency

Table 9 Comparison of our three approaches (BEST1G, U3G, 02G) with other systems

Corpus LLL HPRD50 IEPA AlMed

(%) p R F P R F p R F p R F

BEST1G 74.7 82.2 76.5 72.5 726 716 67.7 71.3 69.2 50.8 409 45.1

U3G 74.6 80.7 759 72.5 72.6 71.6 68.3 71.7 69.8 49.5 405 444
Feature- 02G 747  82.2 76.5 73.0 743 72,6  68.1 713 69.5 50.2 39.8 443
based Landeghem et al. [2] 72.0 73.0 73.0 60.0 51.0 55.0 64.0 70.0 67.0 49.0 44.0 46.0
methods Liuetal. [1] 78.1 64.9 62.1 63.4 48.8 54.7

Yakushiji et al. [19] 337 33.1 334
Kernel- Airola et al. [3] 72.5 87.2 76.8 64.3 65.8 634 69.6 82.7 75.1 529 61.8 56.4
based Miwa et al. [4] 77.6 860 80.1 68.5 /6.1 709 67.5 786 7.7 55.0 68.8 60.8
methods Tikk etal. [11] 69.3 93.2 78.1 622 87.1 71.0 588 89.7 70.5 50.1 414 446

Qianetal. [5] 84.6 68.8 69.8 59.1 576 58.1
Co-occurrence Airola et al. [3] 559 100.0 70.3 389 100.0 554 40.8 100.0 576 17.8 100.0 30.1
Rule-based RelEx [13,17] 82.0 72.0 77.0 76.0 64.0 69.0 74.0 61.0 67.0 40.0 50.0 44.0
methods Kabiljo et al. [18] 76.7 40.2 528 520 558 53.8 66.2 513 57.8 29.1 529 375

Performance comparison of our three approaches (BEST1G, U3G, 02G) with other related research on four corpora: LLL, HPRD50, IEPA, and AlMed. Co-occurrence and
rule-based methods results are also listed as a baseline. Precision (P), recall (R), and F-score (F) values are shown by percentage (%). Bold typeface shows best results of
feature-based and kernel-based methods per corpus in terms of precision, recall, and F-score
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parse trees to extract PPIL. Kabiljo et al., who proposed
the AkanePPI(B) system [18], utilized support vector
machines with tree kernels to extract rules for PPI extrac-
tion by a combination of deep syntactic parser Enju and
a shallow dependency parser. Our approaches (BEST1G,
U3G, O2@G) are mostly far better than these co-occurrence
and rule-based methods on all the corpora in terms of
F-score.

Compared with the feature-based methods, BEST1G,
U3@G, and O2G outperformed their performances on LLL,
HPRD50, and IEPA (except compared with F-score of the
method by Liu et al. [1] on LLL).

Compared with the kernel-based methods, BEST1G,
U3G, and O2G achieved F-score results on par with two
of these methods (Airola et al. [3], Tikk et al. [11]) on LLL
and with three of these methods (Miwa et al. [4], Qian
et al. [5], Tikk et al.) on IEPA. In terms of precision, our
three approaches outperformed two of the kernel-based
methods (Airola et al., Tikk et al.) on LLL and two of the
kernel-based methods (Miwa et al., Tikk et al.) on IEPA.
Each of the methods has its own disadvantages and advan-
tages. Therefore, no method is almighty and powerful for
all the corpora. For each kernel-method, there exists a
corpus for which that particular method is the best com-
pared with other methods (e.g., the methods proposed by
Airola et al., Miwa et al,, and Qian et al. outperformed
other methods in terms of F-score on IEPA, AIMed, and
LLL, respectively), and there exist corpora for which that
particular method is not suitable (i.e., the F-score results
of that particular method on these corpora are not good).
In the method by Tikk et al., there is no corpus show-
ing remarkably high result of F-score compared with our
approaches and other methods.

Especially in case of the HPRD50 corpus, our
approaches greatly surpassed the feature-based methods
as well as the kernel-based ones. In terms of F-scores on
HPRD50, O2G exceeds the best results of the feature-
based methods and the kernel-based ones (i.e., 64.9 % and
71.0 %) by 7.7 % and 1.6 %, respectively. In that respect,
our approaches have a distinct unique value compared
with other related research.

Conversely, in case of the AIMed corpus, although our
approaches performed fairly better than the Tikk et al. and
Yakushiji et al. [19] methods or on par with the method
by Landeghem et al. [2], our approaches are not better
than other feature-based and kernel-based methods in
terms of F-scores. However, a direct comparison among
different systems on AIMed is not straightforward due to
the difference in data preprocessing, remarkably differ-
ent interpretations related to the number of interacting
or non-interacting pairs in the AIMed corpus [3], learn-
ing methods, parameter tuning, and different evaluation
methods [11]. For instance, Liu et al. [1] identified two
more interacting and 40 fewer non-interacting protein
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pairs than our study in AIMed. Similarly, 164 fewer non-
interacting protein pairs were reported in the work of
Landeghem et al. Moreover, since the self-interactions (59
instances) of the AIMed corpus are not regarded as PPI
candidates and were removed from the corpus prior to
evaluation in the methods proposed by Liu et al., Airola et
al., Miwa et al., and Qian et al., the F-score results of these
systems would be higher than our method in which we
did not discard self-interactions in the preprocessing step.
These differences could boost the performance of these
studies. Further, we did not utilize dependency informa-
tion, like the methods proposed by Liu et al., Landeghem
etal, Airola et al., Miwa et al., Qian et al., and Tikk et al., or
the deep syntactic information (called predicate argument
structure), like the method proposed by Miwa et al., which
are derived from a dependency parser or a deep parser,
respectively, and can increase the accuracy of predictive
models [4].

Conclusion

In this paper we propose a novel method for automatic
PPI extraction from research articles. Our method auto-
matically implements feature selection based on eval-
uating the CLs of the groups that consist of related
features to enhance the extraction performance. Our three
approaches (BEST1G, U3G, O2@G) attain comparable per-
formance in all the corpora and achieve better results in
the HPRD50 corpus than the other previous research. In
addition, our three approaches always gain better F-scores
in all the corpora than when only using k-NN without
utilizing the CLs of the groups that consist of related
features.

In realistic PPI datasets, there are far fewer interacting
protein pairs than non-interacting ones. The imbalance
of the PPI data can compromise the process of learn-
ing. Dealing with the imbalance of PPI data is highly
challenging [20]. For future work, we plan to design a
more efficient method to resolve this problem. More-
over, we intend to design an ensemble that is comprised
of dissimilar kernels, devise more effective representa-
tions of instances, and explore novel useful features to
improve the PPI extraction performance. We also plan
to create a predictive model for PPI extraction based
on deep learning techniques by combining with ker-
nels to extract PPIs from such large text collections as
Medline.
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