Limasset et al. BMC Bioinformatics (2016) 17:237
DOI 10.1186/5s12859-016-1103-9

Read mapping on de Bruijn graphs

BMC Bioinformatics

@ CrossMark

Antoine Limasset'”, Bastien Cazaux”3, Eric Rivals>® and Pierre Peterlongo'

Abstract

Background: Next Generation Sequencing (NGS) has dramatically enhanced our ability to sequence genomes, but
not to assemble them. In practice, many published genome sequences remain in the state of a large set of contigs.
Each contig describes the sequence found along some path of the assembly graph, however, the set of contigs does
not record all the sequence information contained in that graph. Although many subsequent analyses can be
performed with the set of contigs, one may ask whether mapping reads on the contigs is as informative as mapping
them on the paths of the assembly graph. Currently, one lacks practical tools to perform mapping on such graphs.

Results: Here, we propose a formal definition of mapping on a de Bruijn graph, analyse the problem complexity
which turns out to be NP-complete, and provide a practical solution. We propose a pipeline called GGMAP (Greedy
Graph MAPping). Its novelty is a procedure to map reads on branching paths of the graph, for which we designed a
heuristic algorithm called BGREAT (de Bruijn Graph REAd mapping Tool). For the sake of efficiency, BGREAT rewrites a
read sequence as a succession of unitigs sequences. GGMAP can map millions of reads per CPU hour on a de Bruijn
graph built from a large set of human genomic reads. Surprisingly, results show that up to 22 % more reads can be

mapped on the graph but not on the contig set.

Conclusions: Although mapping reads on a de Bruijn graph is complex task, our proposal offers a practical solution
combining efficiency with an improved mapping capacity compared to assembly-based mapping even for complex

eukaryotic data.

Keywords: Read mapping, De Bruijn graph, NGS, Sequence graph, path, Hamiltonian path, Genomics, Assembly,

NP-complete

Background

Next Generation Sequencing technologies (NGS) have
drastically accelerated the generation of sequenced
genomes. However, these technologies remain unable to
provide a single sequence per chromosome. Instead, they
produce a large and redundant set of reads, with each
read being a piece of the whole genome. Because of this
redundancy;, it is possible to detect overlaps between reads
and to assemble them together in order to reconstruct the
target genome sequence.

Even today, assembling reads remains a complex task for
which no single piece of software performs consistently
well [1]. The assembly problem itself has been shown
to be computationally difficult, more precisely NP-hard
[2]. Practical limitations arise both from the structure of

*Correspondence: antoine.limasset@irisa.fr

TIRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de Beaulieu,
35042 Rennes, France

Full list of author information is available at the end of the article

(BioNMed Central

genomes (repeats longer than reads cannot be correctly
resolved) and from the sequencing biases (non-uniform
coverage and sequencing errors). Applied solutions repre-
sent the sequence of the reads in an assembly graph: the
labels along a path of the graph encode a sequence. Cur-
rently, most assemblers rely on two types of graphs: either
the de Bruijn graph (DBG) for the short reads produced
by the second generation of sequencing technologies [3],
or for long reads the overlap graph (which was intro-
duced in the Celera Assembler [4]) and variants thereof,
like the string graph [5]. Then, the assembly algorithm
explores the graph using heuristics, selects some paths
and outputs their sequences. Due to these heuristics, the
set of sequences obtained, called contigs, is biased and
fragmented because of complex patterns in the graph that
are generated by sequencing errors, and genomic variants
and repeats. The set of contigs is rarely satisfactory and is

© 2016 Limasset et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1103-9-x&domain=pdf
mailto: antoine.limasset@irisa.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Limasset et al. BMC Bioinformatics (2016) 17:237

usually post-processed, for instance, by discarding short
contigs.

The most frequent computational task for analyzing a
set of reads is mapping them on a reference genome.
Numerous tools are available to map reads when the ref-
erence genome has the form of a set of sequences (e.g.
BWA [6] and Bowtie [7]). The goal of mapping on a fin-
ished genome sequence is to say whether a sequence can
be aligned to this genome, and in this case, at which loca-
tion(s). This is mostly done with a heuristic (semi-global)
alignment procedure that authorizes a small edit or Ham-
ming distance between the read and genome sequences.
Read mapping process suffers from regions of low mappa-
bility [8]. Repeated genomic regions may not be mapped
precisely since the reads mapping on these regions have
multiple matches. When a genome is represented as a
graph, the mappability issue is reduced, as occurrences of
each repeated region are factorized, limiting the problem
of multiple matches of reads.

When the reference is not a finished genome sequence,
but a redundant set of contigs, the situation differs. The
mapping may correctly determine whether the read is
found in the genome, but multiple locations may for
instance not be sufficient to conclude whether several
true locations exist. Conversely, an unfruitful mapping
of a read may be due to an incomplete assembly or to
the removal of some contigs during post-processing. In
such cases, we argue it may be interesting to consider the
assembly graph as a (less biased and/or more complete)
reference instead of the set of contigs. Then mapping on
the paths of this graph is needed to complement map-
ping on set of contigs. This motivates the design and
implementation of BGREAT.

In this context, we explore the problem of mapping
reads on a graph. Aligning or mapping sequences on
sequence graphs (a generic term meaning a graph rep-
resenting sequences along its paths) has already been
explored in the literature in different application contexts:
assembly, read correction, or metagenomics.

In the context of assembly, once a DBG has been built,
mapping the reads back to the graph can help in elimi-
nating unsupported paths or in computing the coverage
of edges. To our knowledge, no practical solution has
been designed for this task. Cerulean assembler [9] men-
tions this possibility, but only uses regular alignment on
assembled sequences. Allpaths-LG [10] also performs a
similar task to resolve repeats using long noisy reads from
third generation sequencing techniques. Its procedure is
not generic enough to suit the mapping of any read set
on a DBG. From the theoretical view point, the ques-
tion is related to the NP-hard read-threading problem
(also termed Eulerian superpath problem [2, 11]), which
consists in finding a read coherent path in the DBG (a
path that can be represented as a sequence of reads as

Page 2 of 12

defined in [5]). The assembler called SPADES [12] threads
the reads against the DBG by keeping track of the paths
used during construction, which requires a substantial
amount of memory. Here, we propose a more general
problem, termed De Bruijn Graph Read Mapping Problem
(DBGRMP), as we aim at mapping to a graph any source of
NGS reads, either those reads used for building the graph
or other reads.

Recently, the hybrid error correction of long reads using
short reads has become a critical step to leverage the third
generation of sequencing technologies. The error correc-
tor LoRDEC [13] builds the DBG of the short reads, and
then aligns each long read against the paths of the DBG
by computing their edit distance using a dynamic pro-
gramming algorithm (which is slow for our purposes). For
shorts reads correction, several tools that evaluate the k-
mer spectrum of reads to correct the sequencing errors
use a probabilistic or an exact representation of a DBG as
a reference [14, 15].

In the context of metagenomics, Wang et al. [16] have
estimated the taxonomic composition of a metagenomics
sample by mapping reads on a DBG representing sev-
eral genomes of closely-related bacterial species. In fact,
the graph collapses similar regions of these genomes and
avoids redundant mapping. Their tool maps the read using
BWA on the sequence resulting from the random con-
catenation of unitigs of the DBG. Hence, a read cannot
align over several successive nodes of the graph (ER: il
y a un pb ce nest pas vrai). Similarly, several authors
have proposed to store related genomes into a single, less
repetitive, DBG [17-19]. However, most of these tools
are efficient only when applied to very closely related
sequences that result in flat graphs. The BlastGraph tool
[19], is specifically dedicated to the mapping of reads on
graphs, but is unusable on real world graphs (see Results
section).

Here, we formalize the mapping of reads on a De Bruijn
graph and show that it is NP-complete. Then we present
the pipeline GGMAP and dwell on BGREAT, a new tool
which enables to map reads on branching paths of the
DBG (Section GGMAP: a method to map reads on de
Bruijn Graph). For the sake of efficiency, BGREAT adopts
a heuristic algorithm that scales up to huge sequencing
data sets. In Section Results, we evaluate GGMAP in
terms of mapping capacity and of efficiency, and compare
it to mapping on assembled contigs. Finally, we discuss the
limitations and advantages the of GGMAP and give some
directions of future work (Section Discussion).

Methods

We formally define the problem of mapping reads on a
DBG and investigate its complexity (Section Complex-
ity of mapping reads on the paths of a DBG). Besides,
we propose a pipeline called GGMAP to map short

Limasset et al. BMC Bioinformatics (2016) 17:237

reads on a representation of a DBG (Section GGMAP: a
method to map reads on de Bruijn Graph). This pipeline
includes BGREAT, a new algorithm mapping sequences
on branching paths of the graph (Section BGREAT: map-
ping reads on branching paths of the CDBG).

Complexity of mapping reads on the paths of a DBG

In this section, we present the formal problem we aim
to solve and prove its intractability. First, we introduce
preliminary definitions, then formalize the problem of
mapping reads on paths of a DBG, called the De Bruijn
Graph Read Mapping Problem (DBGRMP), and finally
prove it is NP-complete. Our starting point is the well-
known Hamiltonian Path Problem (HPP); we apply several
reductions to prove the hardness of DBGRMP.

Definition 1 (de Bruijn graph). Given a set of strings S =
{r1,ra,..., 1y} on an alphabet ¥ and an integer k > 2, the
de Bruijn graph of order k of S (ABG(S)) is a directed graph
(V,A) where:

V={dezkgie(l,...
of ri € S},and

A = {d,d)| if the suffix of length k — 1 of d is a prefix
of d'}.

,n} such that d is a substring

Definition 2 (Walk and Path of a directed graph). Let G
be a directed graph.

e A walk of G is an alternating sequence of nodes and
connecting edges of G.

e A path of G is a walk of G without repeated node.

e A Hamiltonian path is a path that that visits each
node of G exactly once.

Definition 3 (Sequence generated by a walk in a dBGg).
Let G be a de Bruijn graph of order k. A walk of G composed
of L nodes (v1, .. .,v;) generates a sequence of length k+1—1
obtained by the concatenation of vi with the last character

of va, of v3 ,..., of v1.

We define the de Bruijn Graph Read Mapping Problem
(DBGRMP) as follows:

Definition 4 (De Bruijn Graph Read Mapping Prob-
lem). Given

S, a set of strings over %,

k, an integer such thatk > 2,

q:=4q1...9)q aword of ¥* such that |q| > k,
a cost function F : ¥ x ¥ — N, and

a threshold t € N,

decide whether there exists a path of the dBGy(S) com-
posed of |q| — k + 1 nodes (generating a word m :=

Page 3 0of 12

mi...mg € 24l) such that the cost C(m,q) :=
S Fomi,qi) < t.

We recall the definition of the Hamiltonian Path Prob-
lem (HPP), which is NP-complete [20].

Definition 5 (Hamiltonian Path Problem (HPP)). Given
a directed graph G, the HPP consists in deciding whether
there exists a Hamiltonian path of G.

To prove the NP-completeness of DBGRMP we intro-
duce two intermediate problems. The first problem is a
variant of the Asymmetrical Travelling Salesman Problem.

Definition 6 (Fixed Length Asymmetric Travelling
Salesman Problem (FLATSP)). Let

® |be an integer,

e G:= (V,A,c) beadirected graph whose edges are
labeled with a non-negative integer cost (given by the
functionc : A — N),

e t € N be a threshold.

FLATSP consists in deciding whether there exists a path
p = (Vi,...,v)) of G composed of | nodes whose cost

c(p) = Y i=1 c((vj, vj11)) satisfies c(p) < t.

We consider the restriction of FLATSP to instances hav-
ing a unit cost function (i.e., where c(a) = 1 for anya € A)
and where / equals both the threshold and the number of
nodes in V. This restriction makes FLATSP very similar to
HPP, and the hardness result quite natural.

Proposition 1. FLATSP is NP-complete even when
restricted to instances with a unit cost function and satis-

fyingl=1V| =t

Proof. We reduce HPP to an instance of FLATSP where
the cost function ¢ simply counts the edges in the path,
and where the path length / equals the threshold ¢ and the
number of nodes in V.

Let G = (V, A) be a directed graph, which is an instance
of HPP.Let H = (V,A,c : A — {1}), and [:= |V| and
t :==[. Thus (H, [, t) is an instance of FLATSP.

Let us now show that there is an equivalence between
the existence of a Hamiltonian path in G and the existence
of a pathp = (v1,...,v;) of H such that c(p) < £. Assume
that G has a Hamiltonian path p. In this case, p is also a
path in H of length |V, and then the cost of p equals its
length, ie. c(p) = lell 1 = |V]|. Hence, there exists a
path p of H such thatc(p) <t =|V]|.

Assume that there exists a path p = (v1,...,vy)) of
H such that c(p) < t. As p is a path it has no repeated

Limasset et al. BMC Bioinformatics (2016) 17:237

nodes, and as by assumption ! = |V/|, one gets that p
is a Hamiltonian path of H, and thus also a Hamiltonian
path of G, since G and H share the same set of nodes and
edges. O

The second intermediate problem is called the Read
Graph Mapping Problem (GRMP) and is defined below.
It formalizes the mapping on a general sequence graph.
Hence, DBGRMP is a specialization of GRMP, since it
considers the case of the de Bruijn graph.

Definition 7 (Graph Read Mapping Problem). Given

e adirected graph G = (V, A, x), whose edges are
labeled by symbols of the alphabet (x : A — X),

® g:=q1...q)4 aword of £¥,

® acostfunctionF: X x ¥ — N,

e athresholdt € N,

GRMP consists in deciding whether there exists a path
p = (V1,...,Vig+1) of G composed of |q| + 1 nodes, which
generates a word m := my ...myg € 21U such that m; =
x((vi, vix1)), and which satisfies Zl‘i‘l F(mj, q;) < t. Here,
m is called the word generated by p.

Proposition 2. GRMP is NP-complete.

Proof. We reduce FLATSP to GRMP.

Let (G= (V,A,c:A — N),l € N,t € N) be an instance
of FLATSP. Let ¥ = {y1,...,¥/x|} an alphabet larger than
the largest value of c¢(A4), and let s be the application such
that s : {0,...,]Z|} — X and such that for each i in
{0,...,12]},s(i) = y;. Let H = (V,A,x :==soc) and let o
be a letter that does not belong to %, let ¢ = /=1 and F
such that for each i in {0, ..., |X|}, F(¢,y;) = i. Thus, we
obtain |g| =1 — 1.

Now, let us show that there is an equivalence between
the existence of a path p = (v1,...,v;) of G such that
¢(p) < t and the existence of a path p’ = (u1,..., u|q|+1)
of H composed of |g| + 1 nodes, which generates a word
m = mj...my of >14l, where each m; = x((u), ujy1)),
and such that Z]l.illl-"(mj, qj) < t. Assume that there
exists a path p = (v1,...,) of G such that c¢(p) < t. By
definition, p is a path in H. Let m be the word generated
by p. Thus we have Z]lill F (mj, qj) =
izt ey vi) < ¢

Now, suppose that there exists a path
p = (ul,...,u‘qu) of H composed of |g| + 1 nodes,
which generates a word m = m; ...mj of X4/, where

each m; = x((uj, uj11)), and such that Z]‘«q:ll F (mj, qj) <t

By the construction of H, p’ is a path in G of length

lgl + 1 =
/—

Zl'qz‘l F(mj,a) = j:}F (mj, qj) < t. O

1 F(mj,a) =

I. Hence, we obtain Z]l;} c((ujujp1)) =

Page 4 of 12

Theorem 1. DBGRMP is NP-complete.

Figure 1 illustrates the gadget used in the proof of
Theorem 1. Basically, the gadget creates a DBG node
(a word) formed by concatening the labels of the two
preceding edges in the original graph.

Proof. Let us now reduce GRMP to DBGRMP.

Let (G:= (V,Alx: A —> X),qe XXF: X x X —
N,¢ € N) be an instance of GRMP. Let $ and A be two
distinct letters that do not belong to £, and let ¥’ := X U
{$, A}. Let V' be a set of words of length 2 defined by

V' = {aipj | x(i,))

=aand5|leVsuchthatx(j,l):ﬁ} set 1
U {Ai$i|3j €V, such that x(i,))
=wo and A € V such that (/,i) € A} set 2
U {$ia,~ | 3j € V, such that x(i, j)
=waand A1 € V such that (,i) € A}. set 3
(1)

Any letter of a word in V' is a symbol of X’ numbered
by a node of V. Moreover, if that symbol is taken from V
then it labels an edge of A that goes out a node, say i, of V,
and the number associated to that symbol is i. In fact, V’
is the union of three sets (see Eq. 1):
set 1 considers the cases of an edge of A labeled « followed
by an edge labeled B, sets 2 and 3 contain the cases of an
edge of A labeled « that is not preceded by another edge
of A; for each such edge one creates two words: A;$; in set
2 and $;«; in set 3.

Let H be the 2-dBG of V’; note that ¥’ is the alphabet of
the words of V'. Now let z be the application from V' to &
that for any «; of V” satisfies z(«;) = «. (Note that in this
equation, the right term is a shortcut meaning the symbol
of o; without its numbering #; this shortcut is used only
for the sake of legibility, but can be properly written with a
heavier notation). Let F/ : ¥’ x ¥ — N be the application
such that V(a;, 8) € £/ x I, Fl(a;, B) = F(z(oy), B) =
F(a, p).

Let us show that this reduction is a bijection that
transforms a positive instance of GRMP into a posi-
tive instance of DBGRMP. Assume there exists a path
p = (V1,...,V|gj+1) of G which generates a word m =
mi...myg € x4l satisfying m; = x((v;, v;11)) and such
that Z‘iqzll F(m;, q;) < t. We show that there exists a path
p' of G’ which generates a word m’ = m; ... m|, € x/ldl
such that Zlﬂl F'(m,q;) < t.

We build the path p’ as the “concatenation” of two paths,
denoted pj,,, and p, ,, that we define below. Let y; :=
x((vj, vit1)y, = (m)y, for all j between 1 and |g|. One has
that y; € X’. Now, let

Limasset et al. BMC Bioinformatics (2016) 17:237

Page 5 of 12

/‘Q(-'
A B Cs D. E
¢ @ Lo (So A — \A(< B1Cy)—(C:D;

the same words than the 2-DBG G’ (bottom), if we ignore the numbers

4
E,

Fig. 1 lllustration of the gadget used in the proof of Theorem 1. Encoding a directed graph into a DBG of order 2. The directed graph G (top) admits

Dy Ey — J10 s

(@ VD vy 2V VDD (V1 V1)) (V15 VD)),)
if 3,0 € Vsuchthat (,1) € Aand (I',]) € A

($v,2(vi vy 2((V1, V1)) (V1 V),)

/ py—
Pstart * if 3/e V such that(/,) € Aand3 ' € Vsuch that (/',]) € A
(A $u $u (v, v2))y)
otherwise.
and let

Pona = (V1720 -1 Vig=1Viq1) -

Let m’ denote the word generated by p’. Clearly, one
sees that m' = (my)y, oo (Mg and since m; =

z((m})y,), one gets that z(m') = m and Z‘i’ill F (m;-,qi) =
S F (migqi) < t.

In the other direction, the proof is similar since our
construction is a bijection. O

GGMAP: a method to map reads on de Bruijn Graph

We propose a practical solution for solving DBGRMP. We
consider the case of short (hundred of base pairs) reads
with a low error rate (1 % of substitution), which is a good
approximation of widely used NGS reads. Since errors
are mostly substitutions, mapping is computed using the
Hamming distance.

Our solution is designed for mapping on a compacted de
Bruijn graph (CDBG) any set of short reads, either those
used to build the graph or reads from another individual
or species. We recall that a CDBG is representation of a
DBG in which each non branching path is merged into a
single node. The sequence of each node is called a unitig.
Figure 2 shows a DBG and the associated CDBG.

In a CDBG, the nodes are not necessarily k-mers, words
of length k, but umnitigs, with some unitigs being longer
than reads. Thus, while mapping on a CDBG, one dis-
tinguishes between two mapping situations: i/ the reads
mapping completely on a unitig of the graph, and ii/ the
reads whose mapping spans two or more unitigs. For the
latter, we say that the read maps on a branching path of the

graph.

Taking advantage of the extensive research carried out
for mapping reads on flat strings, GGMAP uses Bowtie2
[7] to map the reads on the unitigs. In addition, GGMAP
integrates our proposed new tool, called BGREAT, for
mapping reads on branching paths of the CDBG. Figure 3
provides an overview of the pipeline.

GGMAP takes as inputs a query set of reads and a
reference DBG. To avoid including sequencing errors in
the DBG, we construct the reference DBG after filtering
out all k-mers whose coverage lies below a user-defined
threshold c. This error removal step is a classical prepro-
cessing step that is performed in k-mer based assemblers.
The unitigs of the CDBG are computed using BCALM2
(the parallel version of BCALM [21]), using the k-mers
having a coverage > ¢. GGMAP uses such a set of unitigs
as DBG.

We now propose a detailed description of BGREAT.

BGREAT: mapping reads on branching paths of the CDBG
As previously mentioned, BGREAT is designed for map-
ping reads on branching paths of a CDBG, using reason-
able resources both in terms of time and memory. Our
approach follows the usual “seed and extend” paradigm.
More generally, the proposed implementation applies
heuristic schemes, both regarding the indexing and the
alignment phases.

Indexing heuristic

We remind that our algorithm maps reads that span at
least two distinct unitigs. Such mapped reads inevitably
traverse one or more DBG edge(s). In a CDBG, edges
are represented by the prefix and suffix of size k — 1
of each unitig. We call such sequences the overlaps. In
order to limit the index size and the computation time,
our algorithm indexes only overlaps that are later used as
seeds. Those overlaps are good anchors for several rea-
sons: they are long enough (k — 1) to be selective, they
cannot be shared by more than eight unitigs (four starting
and four ending with the overlap), and a CDBG usually has
a reasonable number of unitigs and then of overlaps. For

Limasset et al. BMC Bioinformatics (2016) 17:237

Page 6 of 12

Caare D
MCaree Dm>rer O

Carce_9=>Croan D—>Ccear D> eatr D=>C ATre D—>CTIc D>
ACrear D—Cestr Dot D=

s >

Fig. 2 A toy example of a DBG of order k with k = 4 (top) and its compacted version (bottom)

instance, the CDBG in our experiment with human data
has 70 million unitigs and 87 million overlaps for 3 billion
k-mers). In our implementation, the index is a minimal
perfect hash table indicating for each overlap the unitig(s)
starting or ending with this (k — 1)-mer. Using a minimal
perfect hash function limits the memory footprint, while
keeping efficient query times (see Table 3).

Read alignment

Given a read, each of its kK — 1-mers is used to query
the index. The index detects which k — 1-mers represent
an overlap of the CDBG. An example of a read together
with the matched unitigs are displayed on Fig. 4. Once
the overlaps and their corresponding unitigs have been
computed, the alignment of the read is performed from
left to right as presented in Algorithm 1. Given an overlap
position i on the read, the unitigs starting with this overlap
are aligned to the sequence of the read starting from
position i. The best alignment is recorded. In addition, to

read, then this unitig is tested first, and if the alignment
contains less mismatch than the user defined threshold,
the other unitigs are not considered. Note that this opti-
mization does not apply for the first and last overlaps of a
read.

Algorithm 1: Greedy algorithm for mapping a read on
multiple unitigs once the potential overlaps present in
the read have been detected.

Data: Read r, Integer

for the n first overlaps of r do
Find a path begin that map the begin of r

if begin found then

for the n last overlaps of r do

Find a path end that maps the end of r

if end found then
Find (in a greedy way) a path cover that
map the read from begin to end
if cover found then

improve speed, if one of the at most four unitigs ending write path;
with the same overlap is the next overlap detected on the return
*Reads (to create the DBG) CDBG construction
BCALM2 : Parallel Unitig computation
¢ Unitigs GGMAP

Reads (to be mapped)
-

Long unitigs

BGREAT : Map read on the graph
* Reads not mapped by BGREAT
P BOWTIE2 :Map reads on the long unitigs

Unmapped reads

Mapped reads

published in 7, 21]

v

\/

Fig. 3 Unitig construction, as used in the proposed experiments (upper part of the figure) and GGMAP pipeline. Reads to be mapped can be distinct
from reads used for building the graph. Long unitigs are unitigs longer than the reads. We remind that tools BCALM and BOWTIE2 are respectively

Limasset et al. BMC Bioinformatics (2016) 17:237

Page 7 of 12

unitigs represented on lines 3 and 4)

CGTACGTACACACTCGTAGCTAGCTGCATCTATCTACGAACTACTACTGCTAGCTACGATCGA

1 TACAC GCTGC AGCTA

2 ATCGCGTACGTACAC AGCTACGATCGAATC
3 TACACACACGTAGCTAGCTGC

4 GCTGCATCTATCTACGTACTACTACTGCTAGCTA

Fig. 4 Representation of the mapping of a read (top sequence) on a CDBG, whose nodes are represented on lines 2, 3, and 4. (step 1) the overlaps of
the graph that are also present in the read are found (here TACAC, GCTGC, and AGCTA, represented on line 1). (step 2) unitigs that map the
beginning and the end of the read are found (those represented on line 2). (step 3) cover the rest of the read, guided by the overlaps (here with

This mapping procedure is performed only if the two
extremities of the read are mapped by two unitigs. The
extreme overlaps of the read enables BGREAT to quickly
filter out unmappable reads. For doing this, the first (resp.
last) overlap of the read is used to align the read to the
first (resp. last) unitig. Note that, as polymorphism exists
between the read and the graph, some of the overlaps
present on the read may be spurious. In this case the
alignment fails, and the algorithm continues with the next
(resp. previous) overlap. At most # alignment failures are
authorized in each direction. If a read cannot be anchored
neither on the left, nor on the right, it is considered as not
aligned to the graph.

Note that the whole approach is greedy: given two or
more possible choices, the best one is chosen and back-
tracking is excluded. This results in a linear time mapping
process, since each position in the read can lead to a max-
imum of four comparisons, and the algorithm continues
as long as the cumulated number of mismatches remains
below the user defined threshold. Because of heuristics, a
read may be unmapped or wrongly mapped for any of the
following reasons.

e All overlaps on which the read should map contain
errors, in this case the read is not anchored or only
badly anchored and thus not mapped.

e The n first or n last overlaps of the read are spurious,
in this case the begin or end is not found and the
read is not mapped. By default and in all experiments
n=2.

® The greedy choices made during the path selection
are wrong.

We implemented BGREAT as a dependence-free tool in
C++ available at github.com/Malfoy/BGREAT.

Results

Beforehand we give details about the data sets (Subsec-
tion Data sets and CDBG construction), then we perform
several evaluations of GGMAP and of BGREAT. First,
we compare graph mapping to mapping on the contigs
resulting from an assembly (Subsection Graph mapping
vs assembly mapping). Second, we assess how many reads
are mapped on branching paths vs on unitigs (Subsec-
tion Mapping on branching paths usefulness). Third, we

evaluate the efficiency of BGREAT in both terms of
throughput and scalability (Subsection GGMAP perfor
mances), then assess the quality of the mapping itself
(Subsection GGMAP accuracy). All BGREAT alignments
were performed authorizing up to two mismatches.

There are very few published tools to compare GGMAP
with. Indeed, we found only one published tool, called
BlastGraph [19], which was designed for mapping reads
on a DBG. However, on our simplest data set coming
from the E.coli genome (see Table 1), BlastGraph crashed
after ~ 124 h of computation. Thus, BlastGraph was not
further investigated here.

Data sets and CDBG construction

For our experiments we used publicly available Illumina
read data sets from species of increasing complexity:
from the bacterium E.coli, the worm C.elegans, and from
Human. Detailed information about the data sets are given
in Additional file 1: Table S1 (identifiers, read length, read
numbers, and coverages — from 70x to 112x—).

For each of these three data sets, we generated a CDBG
using BCALM. From the C.elegans read set, we addition-
ally generated an artificially complex graph, by using small
k and c values (respectively 21 and 2). This particular
graph, called C.elegans cpx, contains lot of small unitigs.
We used it to assess situations of highly complex and/or
low quality sequencing data. The characteristics of the
CDBG obtained on each of these data sets are given in
Table 1.

Graph mapping vs assembly mapping

We compared GGMAP to the popular approach consist-
ing in mapping the reads to the reference contigs com-
puted by an assembler. For testing this approach, for each
of the three sets used, we first assembled them and then
we mapped back the reads on the obtained set of contigs.
We used two different assemblers, the widely used Velvet
[22], and Minia [23], a memory efficient assembler based
on Bloom filters. Finally, we used Bowtie2 for mapping the
reads on the obtained contigs.

The results reported in Table 2 show that the num-
ber of reads mapped on assembled contigs is smaller
than the one obtained with GGMAP. We obtained sim-
ilar results in terms of number of reads mapped on the

github.com/Malfoy/BGREAT

Limasset et al. BMC Bioinformatics (2016) 17:237

Table 1 CDBG used in this study

Page 8 of 12

CDBG Id Reads Id k c Number of unitigs Mean length of unitigs
E.coli SRR959239 31 3 42,843 134
C.elegans_norm SRR065390 31 3 1,627,335 93
C.elegans_cpx SRR065390 21 2 8,273,338 34
SRR345593
Human 31 10 69,932,343 70
SRR345594

C.elegans_cpx and C.elegans_norm are two distinct graphs, constructed using the same read set from C.elegans genome. The suffixes norm and cpx respectively stand for
“normal” (using ¢ = 3 and k = 31) and for “complex” (using a low threshold ¢ = 2 and small value k = 21)

assemblies yielded by Velvet and Minia (see Additional
file 1: Table S2). Let us emphasize that on the Human
dataset, GGMAP maps 22 additional percents of reads on
the graph than Bowtie2 does on the assembly.

We notice that the more complex the graph, the higher
the advantage of mapping on the CDBG. This is due to
the inherent difficulty of assembling with huge and highly
branching graphs. This is particularly prominent in the
results obtained on the artificially complex C.elegans_cpx
CDBG.

We also highlight that our approach is resource efficient
compared to most assembly processes. For instance, Vel-
vet used more than 80 gigabytes of memory to compute
the contigs for the C. elegans data set with k = 31. On this
data set, our workflow used at most 4 GB memory (during
k-mer counting). In terms of throughput, using BGREAT
and then Bowtie2 on long unitigs is comparable to using
Bowtie2 on contigs alone. See Section GGMAP perfor
mances for more details about GGMAP performances.

Mapping on branching paths usefulness

Mapping the reads on branching paths of the graph is
not equivalent to simply mapping the reads on unitigs.
Indeed, at least 13 % of reads (mapping reads SRR959239
on the E.coli DBG) and up to 66% of reads (mapping
reads SRR065390 on C.elegans_cpx DBG) map on the
branching paths of the graph (see Fig. 5). These reads
cannot be mapped when using only the set of unitigs as
a reference. As expected, the more complex the graph,
the larger the benefit of BGREAT’s approach. On the
complex C.elegans_cpx graph, only 23 % of reads can be

Table 2 Percentage of mapped reads, either mapping on contigs
(here obtained thank to the Minia assembler) or mapping on
CDBG with GGMAP

Set % mapped on contigs % mapped on CDBG
E.coli 95.57 97.16
C.elegans_norm 80,60 93,24
C.elegans_cpx 56,33 89,15
Human 63,16 85,70

fully mapped on unitigs, while 89 % of them are mapped
by additionally using BGREAT. On a simpler graph as
C.elegans_norm the gap is smaller, but remains signifi-
cant (72 vs 93 %). Complete mapping results are shown in
Additional file 1: Table S3.

Non reflexive mapping on a CDBG

The GGMAP approach is also suitable for mapping a
distinct read set from the one used for constructing
the DBG. We mapped another read set from C.elegans
(SRR1522085) on the C.elegans_norm CDBG. Results in
this situation are similar to those observed when perform-
ing reflexive mapping (i.e., when mapping the reads used
to construct this graph): among 89 % of mapped reads,
15 % were mapped on branching paths of the graph (See
Fig. 5).

GGMAP performances

Table 3 presents GGMAP time and memory footprints. It
shows that BGREAT is very efficient in terms of through-
put while using moderate resources. Presented heuristics
and implementation details allow BGREAT to scale up to
real-world instances of the problem, being able to map
millions of reads per CPU hour on a Human CDBG with
alow memory footprint. BGREAT mapping is parallelized
and can efficiently use dozens of cores.

GGMAP accuracy

To measure the impact of the read alignment heuristics,
we forced the tool to explore exhaustively all poten-
tial alignment paths once a read is anchored on the
graph. Results on the E.coli dataset show that the greedy
approach is much faster than the exhaustive one (38x
faster), while the mapping capacity is little impacted: the
overall number of mapped reads increases by only 0.03 %
with the exhaustive approach. We thus claim that the
choice of the greedy strategy is a satisfying trade-off.

To further evaluate the GGMAP accuracy, we assess the
recall and mapping quality in the following experiment.
We created a CDBG from Human chromosome 1 (hgl9
version). Thus, each k-mer of the chromosome appears
in the graph. Furthermore, from the same sequence, we

Limasset et al. BMC Bioinformatics (2016) 17:237

Page 9 of 12

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

E.coli C.elegans_cpx

H % Unmapped reads

Fig. 5 GGMAP mapping results for the different read sets. In the “C.Elegans_norm (SRR1522085)" case, reads from SRR1522085 are mapped on the
CDBG obtained using reads from read set SRR065390. For all other results, the same read set was used both for constructing the CDBG and during

the mapping

C.elegans_norm

¥ % Reads mapped by BGREAT

C.elegans_norm Human
(SRR1522085)

M % Reads mapped by Bowtie2

simulated reads with distinct error rates (0, 0.1, 0.2, 0.5,
1 and 2 %). For each error rate value, we generated one
million reads. We evaluated the GGMAP results by map-
ping the simulated reads on the graph. As the graph is
error free, except in some rare cases due to repetitions,
the differences between a correctly mapped read and the
path it maps to in the graph occur at erroneous positions
of the read. If this is not the case, we say that the read is
not mapped at its optimal position. Among the error free
positions of a simulated read, the number of mismatches
observed between this read and the mapped path is called
the “distance to optimal”. Results are reported in Table 4
together with the obtained recall (number of mapped
reads over the number of simulated reads). Those results

Table 3 Time and memory footprints of BGREAT and BOWTIE2

show the limits of BGREAT while mapping reads from
divergent individuals. With 2 % of substitutions in reads,
only 90.85 % of the reads are perfectly mapped. Neverthe-
less, with this divergence rate, 97.28 % of reads are mapped
at distance at most one from optimum. With over 99 % of
perfectly mapped reads, these results show that with the
current sequencing characteristics, i.e. a 0.1 % error rate,
the mapping accuracy of BGREAT is suitable for most
applications.

Discussion

We proposed a formal definition of the de Bruijn graph
Read Mapping Problem (DBGRMP) and proved its NP-
completeness. We proposed a heuristic algorithm offering

BGREAT BOWTIE2

CDBG Id Mapped set Wall clock time CPU time Memory Wall clock time CPU time Memory
(nb reads)

E.coli SRR959239 28s 1m40 19 MB Tm17 3m53 29 MB
(5,128,790)

Celegans_cpx SRR065390 19m21 72m31 975 MB 8m12 33m 1.66 GB
(67,155,743)

C.elegans_norm /" 13m03 51m28 336 MB 17m49 72m31 493 MB

C.elegans_norm SRR1522085 1m54 7m13 336 MB 3m29 14m12 493 MB
(22,509,110)

Human SRR345593 4h30 87h 9.7 GB 4h38 90h15 21GB
SRR345594
(2,967,536,821)

Indicated wall clock times use four cores, except for the human samples for which 20 cores were used

Limasset et al. BMC Bioinformatics (2016) 17:237

Table 4 GGMAP mapping results on simulated reads from the
reference of the human chromosome 1 with default parameters

% Errors in
simulated reads

Distance to optimum of BGREAT
mapped reads (percentage)

0 1 2 3 >4
0 100 0 0 0 0
0.1 99.31 0.52 0.09 0.04 0.04
0.2 98.79 0.91 0.21 0.07 0.02
0.5 97.2 2.17 041 0.17 0.05
1 94.88 3.72 0.92 041 0.07
2 90.85 6.43 1.79 0.83 0.1

Results show the recall of GGMAP and the quality of BGREAT mapping, as
represented by the “distance to optimum” value. For instance 94.88 % of the reads
were mapped without error, 3.72 % were mapped with a distance to the optimum
of one etc. Due to approximate repeats in human chromosome 1, the reported
distance to optimum is an upper bound

a practical solution. We developed a tool called BGREAT
implementing this algorithm using a compacted de Bruijn
graph (CDBG) as a reference.

From the theoretical viewpoint, the problem DBGRMP
considers paths rather than walks in the graph. The cur-
rent proof of its hardness does not seem to be adaptable to
the cases of walks. A perspective is to extend the hardness
result to that more general case.

We emphasize that our proposal does not enable
genome annotation. It has been designed for applications
aiming at a precise quantification of sequenced data, or a
set of potential variations between the reads and the ref-
erence genome. In this context, it is essential to map as
much reads as possible. Experiments show that a signifi-
cant proportion of the reads (between ~ 13and ~ 66 %
depending on the experiment) can be only mapped on
branching paths of the graph. Hence, mapping only on
the nodes of the graph or on assembled contigs is thus
insufficient. This statement holds true when mapping the
reads used for building the graph, but also with reads from
a different experiment. Moreover, our results show that
a potentially large number of reads (up to ~ 32%) that
are mapped on a CDBG cannot be mapped on a classical
assembly.

With GGMAP, the mapping quality is very high: using
Human chromosome 1 as a reference and reads with a
realistic error rate (similar to that of Illumina technol-
ogy), over 99% of the reads are correctly mapped. The
same experiment also pointed out the limits of mapping
reads on a divergent graph reference (> 2% substitu-
tions): approximately 10 % of the reads are mapped at a
suboptimal position.

A weak point of BGREAT lies in its anchoring tech-
nique. Reads mapped with BGREAT must contain at least
one exact k — 1-mer that is an arc of the CDBG, i.e., an
overlap between two connected nodes. This may be a seri-
ous limitation when the original read set diverges greatly

Page 10 of 12

from the reads to be mapped. Improving the mapping
technique may be done by using not only unitig overlaps
as anchors at the cost of higher computational resources.
Another solution may consist in using a smarter anchor-
ing approach, like spaced seeds, which can accommodate
errors in the anchor [24].

A natural extension consists in adapting BGREAT for
mapping, on the CDBG obtained from short reads, the
long (a few kilobases in average) and noisy reads pro-
duced by the third generation of sequencers, whose error
rate reaches up to 15% (with mostly insertion and dele-
tion errors for e.g. Pacific Biosciences technology). Such
adaptation is not straightforward because of our seeding
strategy, which requires long exact matches. The anchor-
ing process must be very sensitive and very specific, while
the mapping itself must implement a Blast-like heuris-
tic or an alignment-free method. However, mapping such
long reads on a DBG could be of interest for correcting
these reads as in [13], or for solving repeats, if long reads
are mapped on the walks (which main include cycles)
of the DBG. Our NP-completeness proof only considers
mapping on (acyclic) paths. Proving the hardness of the
problem of mapping reads on walks of a DBG remains
open.

Incidentally, using the same read set for constructing
the CDBG and for mapping opens the way to major appli-
cations. Indeed, the graph and the exact location of each
read on it may be used for i/ read correction as in [15],
by detecting differences between reads and the mapped
area of the graph in which low support k-mers likely due
to sequencing errors are absent, or for ii/ read compres-
sion by recording additionally the mapping errors, or for
iii/ both correction and compression by conserving only
for each read its mapping location on the graph.

Having for each read (used for constructing the graph
or not) its location on the CDBG also provides the oppor-
tunity to design algorithms for enriching the graph, for
instance enabling a quantification that is sensitive to local
variations. This would be valuable for applications such
as variant calling, analysis of RNA-seq variants [25], or of
metagenomic reads [26].

Additionally, BGREAT results provide pieces of
information for distant k-mers in the CDBG, about
their co-occurrences in the mapped read data sets. This
offers a way for the resolution, in the de Bruijn graph,
of repeats larger than k. It could also allow to phase the
polymorphisms and to reconstruct haplotypes.

Conclusion

A take home message is that read mapping can be sig-
nificantly improved by mapping on the structure of an
assembly graph rather than on a set of assembled con-
tigs (respectively ~22% and ~ 32 % of additional reads
mapped for the Human and a complex C.elegans data

Limasset et al. BMC Bioinformatics (2016) 17:237

sets). This is mainly due to the fact that assembly graphs
retains more genomic information than assembled con-
tigs, which also suffer from errors induced by the com-
plexity of assembly. Moreover, mapping on a compacted
De Bruijn Graph can be fast. The availability of BGREAT
opens the door to its application to fundamental tasks
such as read error correction, read compression, variant
quantification, or haplotype reconstruction.

Additional file

Additional file 1: Read mapping on De Bruijn graphs additional file. Three
complementary tables are presented. Main characteristics of data sets used
in this study. Assembly and mapping approach comparison. Results of
BGREAT on real read sets. (PDF 40 kb)

Abbreviations

CDBG, Compacted De Bruijn graph; DBG, De Bruijn graph; DBGRMP, De Bruijn
graph read mapping problem; FLATSP, fixed length assymetric travelling
salesman problem; GRMP, graph read mapping problem; HPP, Hamiltonian
path problem

Acknowledgements
We would like to thank Yannick Zakowski, Claire Lemaitre and Camille Marchet
for proofreading the manuscript and discussions.

Funding
This work was funded by French ANR-12-BS02-0008 Colib'read project, by
ANR-11-BINF-0002, and by a MASTODONS project.

Availability of data and materials

Our implementations are available at github.com/Malfoy/BGREAT. In addition
to the following pieces of information, Additional file 1: Table S1 presents the
main characteristics of these datasets.

SRR959239 http://www.ncbi.nlm.nih.gov/sra/?term=SRR959239

SRR065390 http://www.ncbi.nlm.nih.gov/sra/?term=SRR065390

SRR1522085 http://www.ncbi.nlm.nih.gov/sra/?term=SRR1522085
SRR345593 and SRR345594 http://www.ncbi.nlm.nih.gov/sra/?term=
SRR345593.

Authors’ contributions

PP initiated the work and designed the study. AL, BC and ER designed the
formalism and the proofs of NP-hardness. AL designed the algorithmic
framework, implemented the BGREAT and performed the tests. All authors
wrote and accepted the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Author details

TIRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de Beaulieu,
35042 Rennes, France. 2LIRM.M., UMR 5506, Université de Montpellier et CNRS,
860 rue de St Priest, F-34392 Montpellier Cedex 5, France. 3Institut Biologie
Computationnelle, Université de Montpellier, F-34392 Montpellier, France.

Received: 9 December 2015 Accepted: 26 May 2016
Published online: 16 June 2016

References

1. Bradnam KR, Fass JN, et al. Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. GigaScience. 2013;2:10.
doi:10.1186/2047-217X-2-10.

20.

22.

23.

Page 11 of 12

Nagarajan N, Pop M. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. J Comput Biol.
2009;16(7):897-908. doi:10.1089/cmb.2009.0005.

Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial
genomes. Genome Res. 2008;18(2):324-30. doi:10.1101/gr.7088808.
Myers EW, Sutton GG, et al. A whole-genome assembly of Drosophila.
Science (New York, N.Y.) 2000;287(5461):2196-204.
doi:10.1126/science.287.5461.2196.

Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(Suppl 2):79-85. doi:10.1093/bioinformatics/bti1114.

Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60.
doi:10.1093/bioinformatics/btp324.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357-9. doi:10.1038/nmeth.1923.

Lee H, Schatz MC. Genomic dark matter: the reliability of short read
mapping illustrated by the genome mappability score. Bioinformatics.
2012;28(16):2097-105. doi:10.1093/bioinformatics/bts330.

Deshpande V, Fung EDK, Pham S, Bafna V. Cerulean: A Hybrid Assembly
Using High Throughput Short and Long Reads. In: Lecture Notes in
Computer Science vol. 8126 LNBI. Springer; 2013. p. 349-63.
doi:10.1007/978-3-642-40453-5_27.

Ribeiro FJ, Przybylski D, Yin'S, Sharpe T, Gnerre S, Abouelleil A, Berlin
AM, Montmayeur A, Shea TP, Walker BJ, Young SK, Russ C, Nusbaum C,
MacCallum |, Jaffe DB. Finished bacterial genomes from shotgun
sequence data. Genome Res. 2012;22(11):2270-7.
doi:10.1101/gr.141515.112.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci. 2001,98(17):9748-53.
doi:10.1073/pnas.171285098.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham'S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. J
Comput Biol. 2012;19(5):455-77. doi:10.1089/cmb.2012.0021.

Salmela L, Rivals E. LORDEC: accurate and efficient long read error
correction. Bioinformatics. 2014;30(24):3506-14.
doi:10.1093/bioinformatics/btu538.

Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief Bioinform. 2013;14(1):56-66.
doi:10.1093/bib/bbs015.

Benoit G, Lavenier D, Lemaitre C, Rizk G. Bloocoo, a memory efficient
read corrector. In: European Conference on Computational Biology
(ECCB); 2014. https://gatb.inria.fr/software/bloocoo/.

Wang M, YeY, Tang H. A de Bruijn graph approach to the quantification
of closely-related genomes in a microbial community. J Comput Biol.
2012;19(6):814-25. doi:10.1089/cmb.2012.0058.

Huang L, PopicV, Batzoglou S. Short read alignment with populations of
genomes. Bioinformatics. 2013;29(13):361-70.
doi:10.1093/bioinformatics/btt215.

Dilthey A, Cox C, Igbal Z, Nelson MR, McVean G. Improved genome
inference in the MHC using a population reference graph. Nat Genet.
2015;47(6):682-8. doi:10.1038/ng.3257.

Holley G, Peterlongo P. Blastgraph: Intensive approximate pattern
matching in sequence graphs and de-bruijn graphs. In: Stringology; 2012.
p. 53-63. http//alcovna.genouest.org/blastree/.

Karp RM. Reducibility Among Combinatorial Problems. In: 50 Years of
Integer Programming 1958-2008. Berlin, Heidelberg: Springer; 2010. p.
219-41.doi:10.1007/978-3-540-68279-0_8. http://link.springer.com/10.
1007/978-3-540-68279-0_8.

. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the

representation of de bruijn graphs. In: Research in Computational Molecular
Biology. Springer; 2014. p. 35-55. doi:10.1007/978-3-319-05269-4-4.
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821-9.
doi:10.1101/gr.074492.107.

Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithm Mol Biol. 2013;8(1):22.
doi:10.1186/1748-7188-8-22.

Vroland C, Salson M, Touzet H. Lossless seeds for searching short patterns
with high error rates. In: Combinatorial Algorithms. Springer; 2014. p. 364-75.

http://dx.doi.org/10.1186/s12859-016-1103-9
github.com/Malfoy/BGREAT
http://www.ncbi.nlm.nih.gov/sra/?term=SRR959239
http://www.ncbi.nlm.nih.gov/sra/?term=SRR065390
http://www.ncbi.nlm.nih.gov/sra/?term=SRR1522085
http://www.ncbi.nlm.nih.gov/sra/?term=SRR345593
http://www.ncbi.nlm.nih.gov/sra/?term=SRR345593
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1089/cmb.2009.0005
http://dx.doi.org/10.1101/gr.7088808
http://dx.doi.org/10.1126/science.287.5461.2196
http://dx.doi.org/10.1093/bioinformatics/bti1114
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/bts330
http://dx.doi.org/10.1007/978-3-642-40453-5_27
http://dx.doi.org/10.1101/gr.141515.112
http://dx.doi.org/10.1073/pnas.171285098
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1093/bioinformatics/btu538
http://dx.doi.org/10.1093/bib/bbs015
https://gatb.inria.fr/software/bloocoo/
http://dx.doi.org/10.1089/cmb.2012.0058
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1038/ng.3257
http://alcovna.genouest.org/blastree/
http://dx.doi.org/10.1007/978-3-540-68279-0_8
http://link.springer.com/10.1007/978-3-540-68279-0_8
http://link.springer.com/10.1007/978-3-540-68279-0_8
http://dx.doi.org/10.1007/978-3-319-05269-4-4
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1186/1748-7188-8-22

Limasset et al. BMC Bioinformatics (2016) 17:237

25. Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF,

26.

Peterlongo P, Lacroix V. Kissplice: de-novo calling alternative splicing
events from rna-seq data. BMC Bioinformatics. 2012;13(Suppl 6):5.

Ye Y, Tang H. Utilizing de Bruijn graph of metagenome assembly for
metatranscriptome analysis. Bioinformatics. 2015btv510. Oxford Univ
Press. arXiv preprint arXiv:1504.01304.

Page 12 of 12

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolMed Central

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Complexity of mapping reads on the paths of a DBG
	GGMAP: a method to map reads on de Bruijn Graph
	BGREAT: mapping reads on branching paths of the CDBG
	Indexing heuristic
	Read alignment

	Results
	Data sets and CDBG construction
	Graph mapping vs assembly mapping
	Mapping on branching paths usefulness
	Non reflexive mapping on a CDBG

	GGMAP performances
	GGMAP accuracy

	Discussion
	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Ethics approval and consent to participate
	Author details
	References

