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Abstract

Background: RNA-binding proteins participate in many important biological processes concerning RNA-mediated
gene regulation, and several computational methods have been recently developed to predict the protein-RNA
interactions of RNA-binding proteins. Newly developed discriminative descriptors will help to improve the
prediction accuracy of these prediction methods and provide further meaningful information for researchers.

Results: In this work, we designed two structural features (residue electrostatic surface potential and triplet
interface propensity) and according to the statistical and structural analysis of protein-RNA complexes, the two
features were powerful for identifying RNA-binding protein residues. Using these two features and other excellent
structure- and sequence-based features, a random forest classifier was constructed to predict RNA-binding residues.
The area under the receiver operating characteristic curve (AUC) of five-fold cross-validation for our method on
training set RBP195 was 0.900, and when applied to the test set RBP68, the prediction accuracy (ACC) was 0.868,
and the F-score was 0.631.

Conclusions: The good prediction performance of our method revealed that the two newly designed descriptors
could be discriminative for inferring protein residues interacting with RNAs. To facilitate the use of our method, a
web-server called RNAProSite, which implements the proposed method, was constructed and is freely available at
http://lilab.ecust.edu.cn/NABind.

Keywords: Protein-RNA interactions, Residue triplet interface propensity, Residue electrostatic surface potential,
Random forest classifier, Structural analysis

Background
Protein-RNA interactions play a vital role in various fun-
damental cellular processes, such as transcription and
the post-transcriptional processing of pre-mRNA, the
stability and localization of mRNA and translation [1].
Defects in these RNA-binding proteins (RBPs) may lead
to many human diseases, including neuropathies, mus-
cular atrophies and cancer [2]. Consequently, the detec-
tion of the RNA-binding residues (RBRs) in a protein
will provide insight into the underlying molecular mech-
anism of these important biological processes and con-
tribute to the development of new therapeutic methods
for relevant diseases. Several experimental approaches

are used to detect RNA-binding sites in a protein, such
as X-ray crystallography, nuclear magnetic resonance
(NMR), ultraviolet crosslinking and immunoprecipita-
tion (CLIP) [3, 4] and site-directed mutagenesis. How-
ever, these experimental methods are inefficient in
identifying RBRs because they involve laborious and
time-consuming procedures [5, 6]; therefore, accurate
and efficient computational techniques are required to
infer the most likely candidate residues in RNA inter-
faces directly from the sequences or/and structures of
RBPs. With the assistance of these excellent computa-
tional methods, researchers can perform more targeted
assays to detect RNA-binding sites and further explore
the mechanisms behind the interactions between pro-
teins and RNAs.
Recently, a significant number of computational methods

predicting RNA-binding sites have been developed through
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the comprehensive analysis of sequences and structures of
RNA-binding proteins. Several fundamental structural and
physicochemical principles underlying the mutual recogni-
tion of protein and RNA have been discovered [7–13].
These computational predictors can be broadly divided
into sequence- and structure-based predictors in terms of
the key information that they use to characterize protein
residues. Sequence-based methods are usually machine
learning-based and their classifiers are trained using fea-
tures derived directly from protein sequences. Amongst
the sequence-derived features, evolutionary information in
the form of position-specific scoring matrix (PSSM) is one
of the most frequently used features and is proved a
powerful descriptor for discriminating RBRs from non-
RBRs [14–19]. Several other descriptors are also commonly
used including predicted solvent accessibility [20–22], pre-
dicted secondary structure [22], physicochemical property
[18, 20, 21, 23, 24]. Most of these sequence-based methods
are developed by support vector machine (SVM), but in a
few methods, some other classification algorithms are
adopted, such as Naïve Bayes [25], C4.5 decision tree [18].
Unlike sequence-based methods, structure-based methods
use various features extracted from the atomic coordinates
of protein-RNA complexes to recognize interface residues
using different techniques, such as machine learning
[26–31], scoring [32–36] and template-based methods
[37, 38]. As proteins directly recognize their target
RNAs by some of their surface residues and because
the geometrical properties of these surface residues
may be different from those not in the protein-RNA
interfaces, several structure-based approaches have
calculated surface geometry from the structure of an
RBP [32, 39]. In addition, various other structural fea-
tures, such as solvent-accessible surface, electrostatics
and secondary structure, as well as evolutionary and
statistical features are also frequently used. Template-
based methods commonly align a target protein struc-
ture to the known protein-RNA complexes in the
templates library using a certain structural alignment
program [38, 40] and then select a most likely pre-
dicted complex structure containing the target protein
and RNA of the template library. Finally, the RNA-
binding residues of the protein are inferred directly from
the predicted complex structures. One recently developed
structure-based method could predict both RNA- and
DNA-binding residues with excellent performance [36].
The number of known proteins that can interact with

RNA only account for a small fraction of the solved
structures, other structures may also have unknown po-
tential RNA-binding activities. Structure-based predic-
tion methods can use the known structural information
to identify likely RNA-binding sites on the structures of
hidden RBPs, and these discriminative structural charac-
teristics cannot be calculated from pure protein sequences

because the mechanisms of protein folding from sequence
to spatial structure are not exactly known. Consequently,
the key to accurately predicting RBRs from protein struc-
tures is to compute structural descriptors that can distin-
guish between residues that interact with RNA and those
that cannot interact with RNA efficiently.
To design structural features with relatively strong

discriminatory power and excellent applicability, two
structural features are computed, the residue electrostatic
surface potential and the triplet interface propensity. Al-
though the calculation of the residue electrostatic surface
potential in our study only involved several simple pro-
cesses without considering other factors such as solvent
and ion, this newly designed feature was helpful for de-
tecting RBRs, and the electrostatic interactions between a
protein and its partner RNA are commonly observed;
therefore, the electrostatic feature was expected to be ap-
plicable to different RBPs. The feature triplet interface
propensity in our study was calculated based on the pro-
tein secondary structure and spatial atomic coordinate
information in each protein-RNA complex; moreover, for
each interface triplet type, we divided the interface triplet
into four subtypes according to the RNA-binding proper-
ties of two neighboring residues of the centre residue. We
believe that the incorporation of different types of features
may uncover the mechanisms for protein-RNA interaction
from different angles and will help a classifier generate a
more accurate prediction. Therefore, several excellent fea-
tures, such as evolutionary information in the form of
PSSMs, physicochemical properties and geometrical fea-
tures were used together with the two newly designed
structural features. To encode a target protein residue
with the feature information of its neighboring residues,
we searched the optimal type and size of a patch contain-
ing several neighboring residues of the target residue for
each type of feature. Thus, we developed a random forest
classifier, as was implemented in a web server named
RNAProSite (see ‘Methods’ section), combined with hybrid
features from both sequences and structures, and the area
under the receiver operating characteristic (ROC) curve
(AUC) of five-fold cross-validation on a non-redundant
training dataset containing 195 RBP chains was 0.900.

Methods
Datasets
Two groups of datasets are used in this study: i) RBP195
was used to construct the prediction model proposed in
this study; RBP68 was used for benchmark test of our
prediction model with other common available models.
ii) RBP138 and RBP42 were constructed for evaluating
the importance of some important factors on the predic-
tion performance such as the composition of datasets,
the selection of machine-learning algorithms and the
definition methods of RNA-binding sites of proteins.
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RBP195 and RBP68
All of the available structures of protein-RNA complexes
in the PDB ≤ 3.0 Å and resolved by X-ray crystallography
before January 2014 were obtained. Then, we used the
PISCES program [41] to ensure that the resulting dataset
shared ≤ 40 % sequence similarity. Thus, 308 RNA-binding
protein chains were left, and two of which (chains 1 and 3
of protein 2ZJR in PDB) had residues lacking carbon alpha
(Cα) atoms; therefore, we discarded the two chains to en-
able the execution of the DSSP [42] software, which was
used to generate secondary structure features for proteins.
Then, we excluded protein chains whose sequence length
was less than 4, and finally, a dataset consisting of 263 pro-
tein chains was constructed, 195 of which were randomly
selected to constitute the RBP195 for model training, the
others were used to construct RBP68 for the benchmark of
prediction models. The ratio of RBRs and non-RBR from
RBP195 and RBP68 is about 5.73 and 5.29.

RBP138 and RBP42
As the sequence of identity of 40 % cannot necessary
exclude redundancy, so we used the cutoff of 25 % for PI-
SCES program [41] to remove the redundant sequences in
RBP195 and RBP68, and Many RNA binding proteins in
different organisms may share sequence identity below
20 % but with the similar structure, and such homologous
proteins could easily be detected by PSSM profile, so we
further removed the protein chains sharing the same class,
architecture, topology and homologous (CATH) [43] code
with other protein chains. Finally, a dataset RBP138 con-
taining 138 RBP chains was constructed from RBP195,
and RBP42 containing 42 RBP chains was derived from
RBP68. No pair of chains in (or between) RBP138 and
RBP42 shared more than 25 % sequence similarity and
same CATH code. The ratio of non-RBRs and RBRs in
RBP138 and RBP42 is about 9.69 and 10.08. A complete
list of all of the PDB codes for the datasets constructed
could be found in Additional file 1.
Distance-based definition of RNA-binding residues is

frequently used [30, 33, 35, 36]. Two kinds of cut-off
values for the definition of RNA-binding protein resi-
dues, namely 5 Å and 3.5 Å, were used in this study to
explore the effects of the selection of cut-off values on
the prediction accuracy of our method. A cut-off value
of 5 Å was used to define the RNA-binding sites on
RBP195 and RBP68; specifically, an amino acid residue
was considered an RNA-contacting residue if it con-
tained one or more heavy atoms within 5 Å of any atom
in the bound RNA. The cut-off value of 3.5 Å was used
on RBP138 and RBP42.

Random forest (RF) implementation
The prediction of RBRs is actually a binary classification
problem, and RF was used to perform the binary

classification in this study. The RF algorithm is a popular
machine-learning method that uses an ensemble of tree-
structured classifiers [44], each of the tree classifiers in
the forest is constructed using different bootstrap sam-
ples from the original training data set. The RF is very
user friendly because it is usually not sensitive to its only
two main parameters (the number of variables in the
random subset at each node and the number of trees in
the forest) [45], which makes RF more efficient than the
frequently used SVM because learning with SVM is
time-consuming with respect to the selection of the op-
timal parameters and kernel functions for the classifier.
In addition, RF is relatively robust to outliers and noise.
Several practical applications of RF have demonstrated
excellent performance in prediction studies [26, 46, 47].
An open-source RF tool for the MATLAB windows (avail-
able at http://code.google.com/p/randomforest-matlab/)
was used to develop our classifier, in which the default
parameters for RF were used.

Protein features
To develop a powerful structure-based site predictor for
RBPs, one of the keys is to design discriminative features
derived from the protein structure information and to
adopt other different features charactering the mecha-
nisms of protein-RNA interactions. In this study, five
types of features were used to characterize protein resi-
dues: two newly designed structure-derived features (elec-
trostatic feature and triplet interface propensity) and three
other common excellent features (PSSM profile, geomet-
rical characteristic and physicochemical property).

Electrostatic feature for each surface residue
Protein surfaces mediating protein-RNA interactions are
commonly characterized by positive electrostatic poten-
tial due to the charge complementarity with negatively
charged phosphate groups in the RNA [11, 12]. More-
over, these surface residues are commonly spatially near
to each other, therefore, we calculated the electrostatic
potential value for each residue located on the protein
surface and then applied a density-based clustering algo-
rithm to determine whether an amino acid residue is in
the largest surface patch with positive electrostatic po-
tential and negative electrostatic potential. Although the
role of electrostatic interactions has been extensively
used, we provided a new procedure for the calculation of
electrostatic interactions in this study.
First, the DMS program (available at http://www.

cgl.ucsf.edu/Overview/software.html#dms) was used to
generate the surface points of each RBP extracted from
protein-RNA complexes. The output consists of a series
of atoms and surface point records; each atom is followed
by the surface points that belong to it. Second, each pro-
tein structure was assigned charge and radius parameters
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from the PARSE force field [48] using the PDB2PQR
software [49], which could also rebuild the missing
heavy atoms of the initial protein structure and then
add hydrogen atoms to the reconstructed structure to
ensure the calculation accuracy of electrostatic poten-
tial. Third, we calculated the electrostatic potential at
a surface point; the classical formula for the calcula-
tion is given by:

VF ¼
X
i

qi
ε ri−Fj j ð1Þ

Where qi is the charge for atom i whose Euclidean
distance away from point F is |ri − F|. Here, we used
a distance-dependent dielectric constant to define ε as
|ri − F|. The calculation of electrostatic potential VF

considers all of the atoms within a distance threshold
of 7 Å as distances ≤7 Å can be important for pro-
tein-nucleic acid interactions [50]. The electrostatic poten-
tial for an atom (Va) is defined as the mean of VF values of
all of the surface points belonging to the atom. Similarly
to the calculation for an atom, a residue’s electrostatic sur-
face potential (Vr) is defined as the mean of Va values of
its component atoms. For any residue that has no surface
points according to the results of the DMS program,
its Vr value is assigned as zero.
To construct the largest spatially continuous positive

patch on the RBP surface, DBSCAN [51], a density-
based spatial clustering algorithm, was used to find the
largest positive surface patch and the largest negative
surface patch on a protein. We initially represent a surface
amino acid residue as a point, and the x, y and z for the
point are calculated as follows:

x ¼
X

i
xi � Ni=Nð Þ; ð2Þ

y ¼
X

i
yi � Ni=Nð Þ; ð3Þ

z ¼
X

i
zi � Ni=Nð Þ ð4Þ

where (x, y, z) is the coordinate of the point representing
a surface residue, (xi, yi, zi) is the coordinate of atom i of
the surface residue, Ni is the number of surface points
belonging to an atom i of the surface residue, and N is
the sum of surface points belonging to all of the atoms
of the surface residue. Based on a set of coordinates of
the points representing protein residues, DBSCAN [51],
a density-based spatial clustering algorithm was used to
cluster the residues with positive Vr values to construct
the largest positive surface patch or with negative Vr

values to construct the largest negative surface patch.
The reason for using DBSCAN instead of other cluster-
ing methods, such as hierarchical clustering, which has
been used in several studies [8, 52], is because the
protein-RNA interfaces frequently have irregular shapes

and DBSCAN can find arbitrarily shaped clusters on the
protein surface. Two parameters are required by
DBSCAN: the minimum number of points (minPts)
needed to form a cluster and ε. The clustering algorithm
can find all of the potential clusters that consist of a
maximum of possible core points and their neighboring
points within a sphere of radius ε. A core point is de-
fined as a point surrounded by no less than minPts
neighboring points within a distance ε. All of the core
points in a cluster must satisfy one condition: for each
two core points, represented by x and y, there exists at
least one consecutive sequence of n + 2(n ≥ 1) core
points represented by [x, p1,…, pi,…, pn, y] in the cluster
and each core point pi(1 ≤ i ≤ n) is not farther away from
its next and former core point in the sequence than a
given distance ε. Based on the clustered surface residues,
we selected the cluster containing the largest number of
residues to be the largest surface patch. As the distances
of important interactions (interactions of hydrogen
bonds, stacking interactions, van der Walls interactions,
electrostatic interactions, hydrophobic interactions, etc.)
between proteins and RNAs are usually ≤7 Å [10], so ε
was set to 7 Å. According to our statistics, there aver-
agely exist about two surface residues with negative (or
positive) electrostatic potential within a distance of 7 Å
of a surface residue with negative (or positive) surface
electrostatic potential in RBP195, thus minPts was set to
3, which is larger than the average value 2. Finally, the
electrostatic feature for a particular residue in a protein
sequence can be described by a three-dimensional vec-
tor, the first value in the vector is the Vr of the residue;
the second is assigned by number 1 or 0 to specify
whether the residue is in the largest positive patch; and
the third is assigned by number 1 or 0 to specify
whether the residue is in the largest negative patch. For
residues with no surface points, the three values are
assigned to the number 0.

Triplet interface propensity
The sequentially adjacent neighbors of interface RNA-
binding residues have significant biases in amino acid
types [25], this phenomenon also exists in protein-DNA
interfaces [52]. Here, we designed a statistical feature to
describe the phenomenon, namely triplet interface pro-
pensity, based on the RBP chains in the datasets used
here. A consecutive three-residue segment along the se-
quence of an RBP chain is designated as an interface
triplet when its centre residue is RNA-binding and the
three-residue segment is a surface triplet, in which each
residue has a relative solvent accessibility (RSA) greater
than 3 % (roughly determined by prediction performance
when different RSA cutoff values were selected, seen in
Additional file 2). The calculation of triplet interface
propensity is first defined by the following equation:
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Rx ¼
Xp¼n

p¼1

f x;p � ln
f x;p
f x0;p

 !
ð5Þ

Where x represents a type of triplet on protein-RNA
interfaces, x ' represents the same surface triplet as x (all
of the three residues in x ' are with RSA greater than 3 %
and are the same as x in the way of composition and
arrangement, but not necessarily on protein-RNA inter-
faces), p represents a certain RBP chain, n is the number
of protein chains involved in the statistical procedure,
fx,p represents the frequency of an interface triplet x in
the interfaces of a RBP chain p and its bound RNA, fx,p
is calculated as:

f x;p ¼ Nx=Nall ð6Þ
Where Nx represents the number of heavy atoms

interacting with RNA in the triplet x, and Nall is the
total number of heavy atoms interacting with RNA in
protein p. fx ',p represents the frequency of a surface trip-
let x ' in an entire protein p, fx ',p is calculated as:

f x0;p ¼ Tx0=Tall ð7Þ
where Tx ' represents the number of surface triplets of x '
in protein p and Tall represents the number of all of the
likely surface triplets in protein p. An interface triplet
may have different types when considering the RNA-
binding properties of the two neighboring residues of
the centre residue. To specify the contributions of the
two neighboring residues to the propensity of an inter-
face triplet, we further described the propensity of a
given interface triplet x with a vector of length 4. Specif-
ically, Rx is represented by Rx1, Rx2, Rx3 and Rx4; these
four values describe the propensities of four subtypes of
an interface triplet, namely, triplet_1, triplet_2, triplet_3
and triplet_4, respectively. In triplet_1 of interface trip-
let, both the first and third residues are RNA-binding,
whereas in triplet_4, the first and third residues are not
RNA-binding. In triplet_2, the first residue is RNA-
binding, and the third is not; however, in triplet_3, the
third residue is RNA-binding, and the first is not. There-
fore, any interface triplet may have one or more of the
four subtypes, represented by triplet_1, triplet_2, triplet_3
and triplet_4.
The protein secondary structure information is widely

used in the prediction of RNA-binding sites; here, we
calculated the propensities of secondary structure types
for interface triplets, and the secondary structure type of
an interface triplet was determined by that of its centre
residue. The DSSP program [42] was used to calculate
the secondary structure type for each individual amino
acid residue, and the resulting eight secondary structure
types were further divided into three states using the fol-
lowing rule: secondary structure types I, G, and H were

considered to be helices and represented by the number 1;
types E and B were considered to be sheets and represented
by the number 2; and the other types were considered to
be coils and represented by the number 3. The following
equation was used to calculate the propensity for the
secondary structure type of an interface triplet:

Ix;s ¼
Xp¼n

p¼1

Nx;s;p

 !
=
Xp¼n

p¼1

Xs 0 ¼3

s 0 ¼1

Nx 0 ;s 0 ;p

 !
ð8Þ

Where x represents a type of triplet in the protein-
RNA interface, x ' represents the same triplet as x on the
protein surface, Nx,s,p represents the number of interface
triplets x with secondary structure type s in protein p,
and Nx ',s ',p is the number of existing surface triplets x’
with secondary structure type s’.
When the propensity for the secondary structure type

of an interface triplet is considered, the 4D vector de-
scribing the propensity for a supposed interface triplet x
should be calculated using two procedures. One proced-
ure is to compute the values of Rx1,Rx2, Rx3, Rx4 and Ix,s
for the triplet x, whose secondary structure type is
known as s according to the output of DSSP program
[42], after which the 4D vector can be finally defined as
Ix;s � Rx1; Ix;s � Rx1; Ix;s � Rx3; Ix;s � Rx4
� �

.

PSSM profile
The position-specific scoring matrix (PSSM), generated
by using the PSI-Blast program [53] to search against
the NCBI’s non-redundant (NR, released on 14 May
2011) database (the iteration time was set to 3 and E-value
cutoff to 0.001), was used to represent the evolutionary
conservation of each amino acid in a protein sequence.
For those with missing residues in protein structures, we
just use its sequence to generate PSSM profile and then
we remove the information of missing residues from the
generated PSSM profile. The generated PSSM scoring
matrix of a protein with N residues has 20 ×N elements.

Geometrical characteristic
In this study, the accessibility of protein residues was
calculated using the program NACCESS [54], which uses
the Lee and Richards algorithm [55]. Five values that de-
scribe the relative solvent accessibility (RSA) of all
atoms, side chain atoms, main chain atoms, non-polar
side chain atoms and polar side chain atoms of each
amino acid residue were extracted from the outputs. To
characterize the shape feature of a residue on the protein
surface, the CX value [56] of the residue is calculated by
the summation of the CX values of its component atoms.
For a residue with one or more atoms with an accessible
surface area (ASA) that exceeds 1.0 Å2, the residue may
have one of the following shape characteristics based on
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the CX value of the residue: dented (CX < −0.5) repre-
sented by the number 0, intermediate (−0.5 ≤ CX ≤ 0.5)
represented by the number 1 and protruded (CX > 0.5)
represented by the number 2. For a residue that is bur-
ied and has no CX value, its shape characteristic is set to
the number 3. The ASA for each atom was also calcu-
lated by the program NACCESS. The RSA and shape
characteristics for a residue were considered the geomet-
rical characteristics of the residue as represented by a
6D vector (five types of RSA values and one CX value).

Physicochemical property
In our study, the physicochemical property of a residue
was characterized by a vector of length 10, representing
the ten types of properties of an individual amino acid
residue extracted from the AAIndex [57], as shown in
Table 1. The selection of properties from AAIndex
mainly involved the calculation of correlation coefficient
between interface propensities (Pk) [34] and properties
of twenty amino acid residues in AAIndex. The details
could be seen in Additional file 3.

Encoding scheme
Previous studies have demonstrated that considering the
neighborhood of a residue can significantly improve the
accuracy of identifying whether the residue is a RBR
[26, 28]. Two types of patches to incorporate neighboring
residues are commonly adopted: a sequential patch that is
often used in sequence-based methods and a structural
patch that is frequently employed in structure-based
methods. A sequential patch of size n for a target residue
is the set of n-1 residues nearest to the target residue
along the primary protein sequence and the target residue
itself. Similarly, a structural patch of size n for a target res-
ide is defined as the set of the target residue and its n-1
nearest neighbor residues according to the Euclidean dis-
tance between the coordinate of these neighbor residues
and that of the target residue [28]. In this study, we
analyzed the prediction performance for each individual

feature combined with the two types of neighborhood
construction techniques, which was expected to select the
best patch type with optimal size for a certain feature type.
Then, for a single target residue that was initially repre-
sented by five types of descriptor vectors whose size are
d1, d2, d3, d4 and d5 (feature vector size for electrostatic
feature, triplet interface propensity, PSSM profile, geomet-
rical characteristic, and physicochemical property, respect-
ively) with optimal sizes of the optimal patch type for each
descriptor of s1, s2, s3, s4 and s5 (the details for the selec-
tion of optimal patch type and patch size could be found
in Additional file 4), respectively, the target residue is
represented in a feature vector with 281 (∑i = 1 : 5(di × Si),
d1 = 3; d2 = 4; d3 = 20; d4 = 6; d5 = 10; s1 = 11; s2 = 7; s3 = 5;
s4 = 5; s5 = 9) elements.

Evaluation measures for the prediction model
To assess the predictive power of RNAProSite on test
datasets, five parameters were used, i.e., sensitivity (SN),
specificity (SP), positive predictive value (PPV), accuracy
(ACC), F-score and Matthews’s correlation coefficient
(MCC). Mathematically, these parameters are defined in
the following equations:

SN ¼ TP
TP þ FN

; ð9Þ

SP ¼ TN
TN þ FN

; ð10Þ

PPV ¼ TP
TP þ FP

ð11Þ

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

; ð12Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp ;

ð13Þ

Table 1 List of the AAIndex indices used in this article

AAIndex ID Description

FINA910101 [60] Helix initiation parameter at position i-1 (Finkelstein et al., 1991)

OOBM850101 [61] Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985)

TANS770108 [62] Normalized frequency of zeta R (Tanaka-Scheraga, 1977)

TANS770106 [62] Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977)

WOEC730101 [63] Polar requirement (Woese, 1973)

LEWP710101 [64] Frequency of occurrence in beta-bends (Lewis et al., 1971)

ISOY800105 [65] Normalized relative frequency of bend S (Isogai et al., 1980)

FAUJ880108 [66] Localized electrical effect (Fauchere et al., 1988)

RICJ880105 [67] Relative preference value at N2 (Richardson-Richardson, 1988)

COSI940101 [68] Electron-ion interaction potential values (Cosic, 1994)
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F−score ¼ 2� TP
2� TP � FP þ FN

: ð14Þ

Where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. The five-
fold cross validation method was used to evaluate the
prediction model. For fivefold cross validation, the entire
protein residues in a dataset were randomly partitioned
into five parts with approximately the same size, after
which the classifier was trained in the four parts and
tested on the remaining part. This procedure was re-
peated five times to ensure that each protein residues is
tested once. The performance of fivefold cross-validation
was measured by means of ROC curves and Area under
the ROC Curve (AUC).

Web server
The RNAProSite web server can be freely accessed at
http://lilab.ecust.edu.cn/NABind.

Results
Distribution of electrostatic surface potentials
To explain the importance of the electrostatic surface
potential in the identification of RBRs, we analyzed the
distribution of the electrostatic potential values for all of
the RBRs and non-RBRs in RBP195 in Fig. 1. From the
two distribution curves of positive samples and negative
samples, the two distribution curves cross at a point
whose electrostatic potential value is approximately
0.014, and when the electrostatic potential value is less
than that of the cross point, the negative samples have a
higher proportion than the positive samples, but the op-
posite occurs when the value is larger than that of the
cross point. In total, the evident difference in the two
distribution curves demonstrates that the tendency for a
residue to be an RBR occurs when the residue has a

positive electrostatic surface potential, whereas that for a
residue to be a non-RBR occurs when the residue has a
negative electrostatic surface potential.

Distribution of clustered patches in RBRs and non-RBRs
To investigate the effectiveness of the DBSCAN cluster-
ing that determines whether a surface residue is in the
largest positive patch or largest negative patch, we
counted all of the protein residues in RBP195 that inter-
act and do not interact with RNA. For positive samples
and negative samples in RBP195, the proportion of resi-
dues in the largest positive patch and largest negative
patch of each protein chain was calculated. As shown in
Fig. 2, the residues in the largest positive patch
accounted for approximately 53.85 % of all of the posi-
tive samples, but the percentage of residues in the lar-
gest negative patch was only approximately 15.47 %,
demonstrating the excellent capability of the clustering
feature to distinguish residues involved in RNA-binding
from those not involved and revealing the preference of
interface residues for a connective surface area with
positive electrostatic potential. A moderate percentage
(30.68 %) of the residues belong to “Other residues”, in-
dicating that some RNA-interacting residues were just
not in the largest positive patch. When the composition
of negative samples was analyzed, the residues in the
largest negative patch accounted for approximately
42.72 % more than the percentage for those in the
largest positive patch.

Analysis of the triplet interface propensity and subtypes
of interface triplet
To illustrate the significance of the triplet interface pro-
pensity in the inference of interface residues, the residues

Fig. 1 The distribution of electrostatic surface potentials for both
positive (RNA-binding) and negative (non-RNA-binding) samples in
RBP195, the cross point of the two distribution curves is at
(0.014, 0.044)

Fig. 2 The distribution of patch types in positive samples and
negative samples. The residues neither in the largest positive patch
nor in the largest negative patch of each chain in RBP195 are
labeled as “Other residues”
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of two proteins are colored from white to blue according
to the propensity values, as shown in Fig. 3. Because the
interface propensity of a certain residue triplet is repre-
sented by a 4D vector representing the four subtypes of
the residue triplet, as mentioned in Methods section, we
summarized the four values of the vector and used the
results to color the center residue of the residue triplet.
Larger calculated values are represented by darker colored
residues. Figure 3(a) and (c) demonstrates that in most
cases, the residues interacting with RNA are colored dar-
ker than those that do not interact, indicating that the fea-
ture triplet interface propensity may be distinguishing.
The variation range of the summarized triplet interface
propensities of residues in RBP195 was from −0.0149 to
3.1023; the mean triplet interface propensity of all of the
protein residues in RBP195 was 0.1042. We hypothesize
that the residues with summarized triplet interface pro-
pensities greater than the mean value are more likely to be
RBRs; these residues are colored blue, while the others are
colored white. According to our statistics on two proteins
in Fig. 3 (b) and (d), the overlapping residues (colored yel-
low) between real RBRs (colored by red) and the blue- col-
ored residues account for approximately 44.8 % of the real
RBRs for chain A of protein 1QTQ, and the overlapping
ratio is 47.3 % for chain A of protein 2ZZM. As shown in
Fig. 3(b) and (d), many blue-colored residues are in the
overlapping area; and these overlapping residues scatter in
the protein-RNA interfaces of the two proteins.
To demonstrate the necessity of describing the inter-

face propensity of a residue triplet with a 4D vector, we
explored all of the residue interface triplets on the

protein-RNA interfaces in RBP195 and RBP68 and found
that some of the interface residue triplets consisted of
only one subtype of triplet_1, triplet_2, triplet_3 and
triplet_4 (as described “Methods” section), and these
interface triplets consisting of only subtype triplet_1,
triplet_2, triplet_3 or triplet_4 accounted for approxi-
mately 8.37, 10.46, 11.15 and 36.03 % of all of the inter-
face triplets, respectively. The other interface residue
triplets consisted of more than one type of the four trip-
let types. The difference in the triplet subtypes of each
type of residue interface triplets suggested that charac-
terizing a given three-residue segment with a 4D vector
could be meaningful for inferring the two neighboring
residues of the centre residue. As shown in Fig. 4, four
types of interface residue triplets consisting of only one
of the four triplet subtypes with a relatively high inter-
face propensity were used for this analysis. The first resi-
due triplet is ERG, an interface triplet consisting of only
triplet_1 in chain D of protein 2HVY and chain A of
protein 2ZIO, in which the central arginine residue is
bound to RNA using its long positively charged side
chain, but the two neighboring residues, glycine and
negatively charged glutamic acid, do not participate in
RNA-protein interactions. In a triplet consisting of only
triplet_2, the residue triplet DRV has its centre residue
and the first residue of the triplet in the protein-RNA
interface, as shown in chain A of proteins 4LGT and
4GOA. In ERG, the side chain of arginine is bound to
the negatively charged phosphodiester backbone of
RNA, but the negatively charged aspartic acid appears to
bind to the nucleic acid base instead of the phosphodiester

Fig. 3 The triplet interface propensities for residues in protein 1QTQ_A (a and b) and 2ZZM_A (c and d). In A and C, the residues colored from
white to blue (stands for propensity values from −0.0149 to 3.1023), and the darker the blue color of the residues, the more likely the residues are
involved in RNA-protein interactions. In B and D, the residues having triplet interface propensities larger than the average propensity value are
colored blue, the residues interacting with RNA is colored red, those residues colored yellow are the overlaps of the residues colored blue and
red. All of the RNA molecules are colored orange

Sun et al. BMC Bioinformatics  (2016) 17:231 Page 8 of 14



backbone because of electrostatic repulsion. The residue
triplets HKF and KRR have only triplet_3 and triplet_4, re-
spectively. In triplet HKF of chain A of proteins 3BX2 and
3 K49, the central residue and third residue of the triplet
are RBRs. In the KRR of chain 1 of protein 1VQ4 and
chain X of protein 4KIX, the three residues of the triplet
are interface residues. In Fig. 4 (c) the conformations of
the two triplets HKF have some similarities, and for the
interface triplets KRR shown in Fig. 4 (d), the RNA resi-
dues interacting with the triplets KRR were frequently not
consecutive along the sequences.

Model construction using five types of calculated features
In most cases, the background residues of a target resi-
due are selected with the same patch type and patch
size; here, we adopted the optimal patch type and patch
size for each individual feature to select the background
residues of the target residue. Thus, each chain is
encoded by a feature vector of L*281 (see “Encoding
scheme” section of “Methods”), where L represents the
length of the protein chain. Based on the 195 protein
chains in RBP195, we developed a prediction model
using an RF classifier combined with the five types of
characteristics using default parameters for RF algo-
rithm, and to evaluate the robustness of our prediction
model, a fivefold cross-validation was performed on
RBP195. The ROC curve of the fivefold cross-validation
is shown in Fig. 5. The prediction results of fivefold
cross-validation when selecting other parameters of RF

algorithm could be seen in Additional file 5. According
to the AUC value of 0.900 for the ROC curve, we could
conclude that the adoption of different structural and se-
quential features will help to develop a prediction model
with good prediction performance.

The contributions of each feature of RNAProSite
Five types of features are used to represent each residue
in this study, to verify the effect of these five types of
features for the predicting power of constructed predic-
tion model, we extracted each type of feature from the
whole feature vector and used the left four types of
features to develop a RF classifier. Table 2 presents
the results of fivefold validation on RBP198 for each
developed RF classifier and we could find that the
prediction performance will decrease when any type
of feature is not adopted relative to that when all the
five types of features are used. We could also find
from Table 2 that the prediction performance decreases
larger when triplet interface propensity was excluded from
the whole feature vector than that when other types of
features were extracted, which shows that the feature
triplet interface propensity can provide more useful
information concerning protein-RNA interaction. When
comparing the results in Tables 3 and 2, we could find
that although the prediction power of geometrical charac-
teristic is relatively lower when used individually than
other features, but excluding this feature can decrease the
prediction performance larger than other features except

Fig. 4 Interactions between RNAs and four types of interface triplets in different proteins. The two interface triplets in (a) are same as ERG and
the first is from protein 2HVY_D, the second is from 2ZIO_A. The two interface triplets in (b) are same as DRV (the first and the second interface
triplets are from 4LGT_A and 4GOA_A, respectively). In (c), two interface triplets HKF are from 3BX2_A and 3K49_A, respectively. The two interface
triplets in (d) are same as KRR and the first is from 1VQ4_1, the second is from 2ZIO_A. The main chains of RNAs are colored orange
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triplet interface propensity, which shows that adopting a
feature of different type will help to improve the predic-
tion performance of the classifier when other discrimina-
tive features are used. From the importance values (mean
decrease in accuracy and mean decrease in Gini index in
Additional file 6) for each of the five types features, calcu-
lated by random forest algorithm when model construc-
tion, also proved that the two new structural features
(electrostatic feature and triplet interface propensity) is
helpful for the prediction of RNA-binding residues.

Benchmark of prediction with RNAProSite and other
excellent methods
To further evaluate the prediction performance of our
prediction model, the non-redundant dataset RBP68 and
RBP42 were used as comparative benchmark datasets.
The cutoff value of 3.5 Å is used for the definition of
RBRs for RBP42 and RBP138,the training dataset is
RBP138 for our method when RBP42 is used as the
benchmark dataset. Six kinds of available web-servers
and one program are used, namely, BindN [24], Pprint
[17], RNABindR [25], KYG [33], aaRNA [35], RBscore

[36], PRNA [26]. We predicted the protein chains in
RBP68 and RBP42 by our predictor and compared the
prediction results with seven common available sequence-
based and structure-based web servers in Table 4. As
shown in Table 4, when tested on RBP68, the prediction
sensitivity of RNAProSite was 0.707, which is better than
all of the listed web servers except RNABindR [25] and
RBscore [36], whose prediction sensitivity was 0.774 and
0.741, and the specificity, accuracy, positive predictive
value, F-score and MCC of RNAProSite was better than
the other prediction models on RBP68. We could find that
when the cutoff value is set to 3.5 Å instead of 5 Å for
RBP42, the prediction performance for all the methods
mentioned in Table 4 decreased especially for predictors
using structural features, the reason may be that less RBRs
are defined and several of these non-RBRs with similar
properties with RBRs are predicted as RBRs.

The effects of dataset, algorithm, and the definition of
RBRs on the prediction performance
It is known that if the sequences or structures in a data-
set have some kind of similarities, then the classifier may
learn these similarities and result a prediction model

Fig. 5 The ROC curve of five-fold cross-validation for our method on RBP195

Table 2 The prediction performance for five-fold cross validation
on RBP195 when one of the five types of features is excluded

Feature excluded SN SP PPV ACC F-score MCC

Electrostatic feature 0.700 0.894 0.530 0.865 0.606 0.533

Triplet interface propensity 0.669 0.862 0.458 0.833 0.544 0.458

PSSM profile 0.694 0.885 0.512 0.857 0.589 0.513

Geometrical characteristic 0.693 0.877 0.496 0.850 0.579 0.501

Physicochemical property 0.718 0.886 0.532 0.861 0.606 0.534

No feature excluded 0.720 0.892 0.550 0.867 0.616 0.546

Table 3 The prediction performance of five-fold cross validation
for each individual feature on RBP195

Feature type SN SP PPV ACC F-score MCC

Electrostatic feature 0.490 0.865 0.388 0.809 0.433 0.323

Triplet interface propensity 0.565 0.924 0.564 0.871 0.565 0.489

PSSM profile 0.523 0.874 0.419 0.822 0.465 0.363

Geometrical characteristic 0.590 0.711 0.262 0.693 0.363 0.227

Physicochemical property 0.467 0.808 0.298 0.758 0.364 0.232
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with relatively better performance than expected, so we
compared the prediction result of five-fold cross valid-
ation on RB195 and RB138. From the results of “5 Å
(RB195, RF)” and “5 Å (RB138, RF)” in Table 5, we could
find that the values of SN for RB195 is only slightly
higher RBP138, but the SP, ACC, F-score, MCC and
PPV for RB195 is slightly lower than that for RBP138,
which means that our method seems not sensitive to the
composition of dataset. We could find that the different
machine learning algorithms may have different five-fold
cross validation results from the prediction results of
“5 Å (RB138, RF)” and “5 Å (RB138, SVM)” and the ran-
dom forest classifier was better than the SVM classifier
when the features in our method were adopted, which
could also be found when analyze the results of “3.5 Å
(RB138, RF)” and “3.5 Å (RB138, SVM)”. For the con-
struction of SVM classifier, the kernel function of RBF
was used and other parameters are optimized by grid
search method to deliver high accuracy. When compar-
ing the results of “5 Å (RB138, RF)” and “3.5 Å (RB138,
RF)”, we could find that the prediction results is slightly
worse considering the balanced measures of F-score and
MCC when the cutoff value is set to a lower value of
3.5 Å relative to that when a cutoff value of 5 Å is
chosen, this phenomenon could also be found in the
study of comparison for different prediction methods
[58]. From the recently published study [59] for compar-
ing the performance of different prediction methods, we
could also find that our method shows stable prediction

performance when different distance cutoff values and
datasets are chosen.

The effects of conformational change upon binding RNA
To assess whether the performance of RNAProSite
would be affected by protein conformational changes
that accompany RNA binding, we used the 35 RNA-free
structures and 35 respective RNA-bound structure from
a published dataset DatasetII [35],the root-mean-square
deviation (RMSD) of the Cα atoms for each pair of
RNA-free and respective RNA-bound structures ranges
from 0.35 to 8.87 Å. From the results in Table 6 we
could find that the prediction results for RNA-bound
proteins are only slightly better than that for RNA-free
protein and the difference values of the six evaluation
measures between RNA-bound proteins and RNA-free
proteins are not more than 0.06. By analyzing the results
in Table 7 we could find that the RMSD values for most
pairs of RNA-free and respective RNA-bound proteins
are between 1 Å to 2 Å. For seven pairs of these proteins
whose RMSD distribution intervals are in “[2 Å, 3 Å)” and
“[3 Å, 4 Å)”, the prediction performance for RNA-free
proteins decreases more relative to that for RNA-bound
proteins when comparing to proteins in other RMSD
distribution intervals in Table 7. In a whole, our method is
not very sensitive to the conformational changes upon
RNA binding.

Discussion
Due to the methodological differences, RNAProSite may
identify some real RBRs that cannot be determined by
the other seven approaches. So we selected four protein

Table 4 The comparison of prediction performance between RNAProSite and other excellent sequence-based and structure-based
methods on RBP68 (RBP42)

Methods SN SP PPV ACC F-score MCC

BindN (sn) 0.606 (0.600) 0.412 (0.417) 0.163 (0.093) 0.443 (0.433) 0.257 (0.160) 0.014 (0.009)

BindN (sp) 0.366 (0.388) 0.659 (0.667) 0.169 (0.1036) 0.613 (0.642) 0.231 (0.164) 0.019 (0.033)

Pprint 0.690 (0.673) 0.800 (0.780) 0.394 (0.233) 0.782 (0.770) 0.502 (0.346) 0.400 (0.296)

RNABindR 0.774 (0.805) 0.734 (0.728) 0.351 (0.227) 0.740 (0.735) 0.483 (0.354) 0.388 (0.327)

KYG 0.550 (0.605) 0.813 (0.793) 0.357 (0.225) 0.771 (0.776) 0.432 (0.328) 0.308 (0.266)

aaRNA 0.645 (0.695) 0.882 (0.863) 0.510 (0.335) 0.845 (0.848) 0.569 (0.452) 0.481 (0.410)

PRNA 0.617 (0.592) 0.719 (0.673) 0.294 (0.255) 0.703 (0.660) 0.398 (0.356) 0.261 (0.201)

RBScore 0.741 (0.675) 0.876 (0.860) 0.530 (0.476) 0.854 (0.830) 0.618 (0.558) 0.542 (0.468)

RNAProSite 0.707 (0.665) 0.900 (0.914) 0.606 (0.434) 0.868 (0.892) 0.631 (0.525) 0.557 (0.481)

Table 5 The effects of datasets, algorithm, and the definition of
RBRs on the prediction performance of our method

Cutoff (Dataset, algorithm) SN SP PPV ACC F-score MCC

5 Å (RB195, RF) 0.720 0.892 0.550 0.867 0.616 0.546

5 Å (RB138, RF) 0.678 0.910 0.568 0.876 0.618 0.547

5 Å (RB138, SVM) 0.621 0.900 0.531 0.858 0.566 0.485

3.5 Å (RB138, RF) 0.670 0.937 0.525 0.912 0.588 0.545

3.5 Å (RB138, SVM) 0.630 0.908 0.415 0.882 0.500 0.449

Table 6 The effects of conformational change upon RNA
binding on the prediction performance of our methods

Protein type SN SP PPV ACC F-score MCC

RNA-free 0.778 0.845 0.419 0.837 0.545 0.488

RNA-bound 0.810 0.865 0.474 0.858 0.598 0.546
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chains from RBP68 and searched some of the residues
predicted by RNAProSite but not by the other seven
common methods (Except the glutamic acid in Fig. 6(d)
that was also truly predicted by RBscore), as shown in
Fig. 6. According to the RBRs predicted by RNAProSite
but rarely by the other methods, all of the yellow-
colored residues had positive electrostatic surface poten-
tial values and were in the largest positive surface patch,
except for the residue in Fig. 6(d). We selected the RBP
chain 3ZGZ (chain A) to analyze the important contri-
butions of the triplet interface propensity feature in pre-
diction of RBRs, Because the yellow-colored glutamic
acid in 3ZGZ (chain A) had a negative charge and was
in the largest negative surface path and because glutamic
acid is rarely located on the RNA-protein interface rela-
tive to other positive-charged residues. The surface

residue triplet of the residue glutamic is NEQ, this trip-
let contains only the second type of triplet_1, triplet_2,
triplet_3 and triplet_4 (see ‘Methods’ section), and its
propensity value is 0.1252, which is higher than the
mean 0.0251 of all analyzed triplets, meaning that the
first and centre residues may be RNA-binding in-
stead of the third residue for the surface triplet NEQ
(only predicted by RBscore and RNAProSite). Ac-
cording to our statistics on the prediction results of
our methods and other seven prediction programs in
Additional file 7, we could find that each prediction
method could find really RNA-binding residues not
predicted by other prediction methods, which proved
the difference in adopted features for predicting
RNA-binding sites on proteins may lead to the dif-
ference in prediction results.

Table 7 The pairs of RNA-bounding and RNA-free proteins and performance differences between two types of proteins in different
intervals of RMSD distribution (D_SN, D_SP, D_PPV, D_ACC, D_F_score and D_MCC stand for the prediction performance decrease
in SN, SP, PPV, ACC, F_score and MCC for RNA-free proteins relative to that for RNA-bound ones)

RMSD distribution Pairs D_SN D_SP D_PPV D_ACC D_F_score D_MCC

[0 Å, 1 Å) 7 0.039 0.023 0.046 0.024 0.051 0.058

[1 Å, 2 Å) 16 −0.040 0.060 0.099 0.048 0.079 0.069

[2 Å, 3 Å) 4 0.012 0.071 0.120 0.059 0.086 0.108

[3 Å, 4 Å) 3 0.125 0.029 0.067 0.036 0.090 0.112

[4 Å, 9 Å) 5 −0.008 0.037 0.072 0.027 0.048 0.051

Fig. 6 The prediction results of RNAProSite on four RBP chains. A residue is colored blue when it is falsely predicted as RNA-binding and green
when it is truly predicted as RNA-binding. The residues colored by yellow mean they are truly predicted as RBRs but not predicted by other
methods. The RNA is colored orange. The PDB codes of the four RBP chain in (a), (b), (c) and (d) are 4GLT (chain A), 2AZX (chain A), 3QJJ (chain
A) and 3ZGZ (chain A), respectively
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Conclusion
In this study, we designed two discriminative structure-
derived features, namely residue electrostatic surface
potential and triplet interface propensity, to characterize
a protein residue together with other commonly used
descriptors. A comprehensive analysis of the two newly
designed features from different aspects demonstrated
that the two features have excellent discriminative power
on a large dataset and may reflect the underlying mecha-
nisms of RNA-protein interactions. To incorporate in-
formation from neighbor residues to determine the
RNA-binding properties of each target residue, the opti-
mal patch type and patch size for different features are
searched, and by using the searched optimal patch type
and patch size for each used feature, a random forest
classifier is developed and implemented in the web
server RNAProSite. From the results of a fivefold cross
validation on a training set and the prediction perform-
ance on a test set, we concluded that our method can pre-
dict RBRs with results better than or comparable to those
of the existing approaches and could assist researchers in
performing more targeted assays.
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