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Abstract

Background: Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large
collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in
sampling density since human pathogens are densely sampled while other bacteria are less represented; different
protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly.
In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple
levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy.

Results: Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for
analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in
groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into
account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are
organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose
filtering strategies that allow limiting the protein set included in global clustering.
The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters
provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding
related proteins. Extended seed clusters include a significant part of the data and represent all major known cell
machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare
genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires
significant computational resources and results in a large number of questionable clusters.

Conclusion: The developed filtering strategies allow to identify and exclude such peripheral proteins limiting the
protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of
details to be obtained and data redundancy eliminated while keeping biologically interesting variations.
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Background
Microbial genomes at the National Center for Biotech-
nology Information (NCBI) represent a large collection
of more than 35,000 assemblies from more than 5,000
species, with almost 40M unique proteins [1, 2]. Pro-
tein clustering is used to construct meaningful and stable
groups of similar proteins to be analyzed and annotated,
and serve as targets for efficient searching. There are sev-
eral complexities associated with the data: the genomes in
the dataset have different levels of sequence and assem-
bly quality and large variation in sampling density; certain
sets of related genomes, usually human pathogens, are
densely sampled while other bacteria are less represented
and sometimes sampled very coarsely (genomic and pro-
teomic structure of a densely-sampled group of related
strains is usually described by the concept of pan-genome
[3–9]). Another factor contributing to the complexity of
the analysis is a large variation in frequencies with which
proteins from different families appear in genomes: “core
proteins” occur at one end of the spectrum, unique pro-
teins at another end, and “accessory proteins” in between
(with some proteins partial in draft assemblies). In order
to extract useful information from these complex data,
the analysis needs to be performed at multiple levels of
phylogenomic resolution and protein similarity, and an
adequate sampling strategies.
Protein clusters are groups of similar (homologous) pro-

teins that most likely share the same or similar function.
Clustering procedure must possess a certain degree of sta-
bility and robustness and allow compression of informa-
tion in comparison to the non-clustered representation. It
is desirable that clusters consist of orthologs (protein cod-
ing regions that evolved from a common ancestral gene by
speciation), while paralogs (genes related by duplication
within a genome) stay in different clusters [10]. How-
ever, the ortholog-paralog distinction does not completely
reflect the complexity of group relationships of homolo-
gous genes [11]. We make an effort to separate paralogs
at the level of species-level genome groups (clades) using
genomic context [12–18]. Since most microbial genomes
at NCBI are draft genomes, local genomic context is uti-
lized [19]. At the global level, we do not make a distinction
between orthologous and paralogous proteins.
Here we present an efficient approach utilizing hierar-

chical clustering at several resolution levels. While large-
scale hierarchical protein clustering is well-described in
the literature [20–22], and methods for redundancy-
elimination have been described by several authors
[23–25], brute-force hierarchical clustering, even with a
step of redundancy-elimination, becomes more expen-
sive and less robust with the growth in the amount and
complexity of data.
We construct protein clusters at three levels. First, in-

clade protein clusters - tight protein clusters in groups

of closely-related genomes (clades) are built. Then rep-
resentaive proteins (clustroids) of conservative in-clade
clusters are organized into seed global clusters. Clustroids
of inclade clusters were selected as protein sequences pro-
vidingminimal weighted average distance to other protein
sequences in the clusters, where weight of each protein
sequence was a number of coding regions in non-clonal
genomes in the cluster encoding it. Finally, global pro-
tein clusters are built around the seed clusters. In-clade
clustering with subsequent selection of clustroids and
organizing them into seed global clusters provides a robust
representation and high rate of compression in extended
seed clusters. However, the proteins that are outside of the
extended seed clustering set do not group together well.
Processing of these proteins requires significant com-
putational resources and results in a large number of
questionable clusters. Such a pervasive behavior known
as the core-periphery problem has been observed in many
other areas of network analysis [26–28] where peripheral
objects behaved very different from ones with high degree
of centrality. We propose filtering strategies that allow
limiting the protein set included in global clustering.

Methods
Microbial genomes with full and nearly-full genome rep-
resentation and good quality are organized in groups
of closely-related genomes (species-level clades) con-
structed using ribosomal protein markers [1, 29, 30],
Non-redundant representative genomes are selected in
the groups of near-clonal genomes in each clade using the
complete-linkage hierarchical clustering algorithm based
on pairwise genomic BLAST with 95 % identity cut-off
(there is the following order of preferences in selection
of a representative genome: (1) clade (species) reference
or representative; (2) included in KEGG database; (3) an
annotated genome).
We extended our basic clustering procedure described

in [31]. The similarity of proteins is determined from the
aggregated BLAST hits obtained by BLASTp [32, 33] with
e-value 10−3. The sequences are considered related if the
minimum coverage and minimum similarity conditions
are satisfied.We required at least 80 % similarity with 85 %
coverage in in-clade clustering and at least 50 % similarity
with 70 % coverage in all global clustering steps.
In-clade clusters are constructed using a combined

approach that takes into account both sequence similarity
and local genome context [19]. First, sequence similarity
clusters are calculated. Then, the genomic neighborhoods
of proteins in each sequence-similarity cluster are ana-
lyzed using a moving window of 5-protein-length. Conse-
quently, sub-clusters providing at least 3 out of 5 protein-
similarity-cluster matches are selected (a protein map of
local genomic neighborhood of the protein cluster con-
taining the GTP-binding protein LepA (elongation factor)
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in Salmonella is shown in Fig. 1). Representaive proteins
of inclade clusters (clustroids) were selected as protein
sequences providing minimal weighted average distance
to other protein sequences in the clusters, where weight of
each protein sequence was a number of coding regions in
non-clonal genomes in the cluster encoding it.
Two algorithms were considered for building global

clusters around the seed clusters. The modified hierar-
chical clustering algorithm utilized our basic procedure
with the following modification: when two sub-clusters,
one containing seed proteins and another one not, are
merged, the latter is not used when new distances are
determined. The second procedure allowed extension of
the seed clusters by adding non-seed proteins to the
nearest seed cluster if they are compatible with seed
clustroids there.
UCLUST and USEARCH [25] were used at different

proceeding stages for redundancy elimination. In all cases
we use values wordlength 16, slots 400000009, maxrejects
64, maxaccepts 8. The coverage and identity thresholds
are selected differently for different steps: (1) Representa-
tives from groups of near-identical sequences are selected
before in-clade clustering is performed using coverage
100 % with identity 98 %; (2) Tight groups of proteins are

formed for global clustering using coverage 85 % and iden-
tity 80 % approximately corresponding to parameters used
in in-clade clustering. (3) Filtering which allows to find
distant neighbors of the seed proteins, is performed using
coverage 70 % with identity as low as 10 % (The built-in
limitations of USEARCH prevent it from obtaining overly
weak hits even if the the identity threshold is not set
or set too low).
Many processing steps, such as computing BLAST

hits, are naturally parallel. However, parallelization of
clustering algorithms is a challenging problem which
has attracted attention of computer scientists for years
[20–22, 34–39]. While the single-linkage clustering algo-
rithm can be run in parallel on a variety of architectures,
other clustering algorithms require intensive communi-
cation between parallel processes. An alternative to an
intensive exchange of data between the parallel processes
is an iterative approach with an exchange of data between
iterations [37]. However, in some cases, it is possible to
partition data using a single-linkage-type algorithm and
then concurrently perform clustering in each partition
using a serial algorithm. Although the latter approach nat-
urally produces a workload which is imbalanced to a cer-
tain degree, it does not require communication between

Fig. 1 Local genomic neighborhood of the protein cluster containing the GTP-binding protein LepA (elongation factor) in Salmonella
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the processes and is well-suited for large weakly-coupled
distributed computer systems [40] as long as the load
imbalance is tolerable. The hardware available at NCBI (a
UGE Grid-Engine-based computer farm [41] and PanFS
scalable storage system [42] connected through a power-
ful router), requires coarse-grained parallelization.
In our case, dataset reductions through selection

of representative genomes in near-clonal groups and
representative proteins in clade-level protein clusters
allow to use the latter simplified approach, with differ-
ences in the partition sizes and resulting load balance
to be acceptable. Our parallel clustering procedure is
performed in three stages, each allowing concurrent pro-
cessing: (1) The dataset is partitioned in disjoint sets
using a parallel implementation based on a disjoint-set
forest with union-by-rank heuristics [43, 44]; (2) Data are

redistributed according to the partitioning; (3) Clustering
is performed in each partition.

Results
Since NCBI production databases are updated in real
time, the clustering analysis was performed on a snap-
shot created in November 2014. Prior to protein cluster-
ing, the groups of closely-related genomes (species-level
clades) were constructed using ribosomal protein mark-
ers [1, 30] (Fig. 2 shows parts of the NCBI clade tree
around Salmonella,Bacillus and Streptococcus). Within
each clade, genomes are organized in tight (near-clonal)
groups calculated using whole-genome BLAST align-
ment, and a non-redundant representative is selected in
each tight genome group (see Methods). Table 1 shows
the statistics for the most abundant clades (the statistics

Fig. 2 Parts of the clade tree around Salmonella, Bacillus and Streptococcus
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Table 1 Statistics for the most abundant clades. The information for all 131 abundant clades is provided in Additional file 1: Table S1

Clade Taxonomic content No. annotated No. nonclonal No. protein No. protein No. conservative
Id genomes annotated genomes coding regions sequences inclade clusters

19668 Escherichia, Shigella 2277 929 3303114 310023 3894

19507 Acinetobacter 749 280 774670 133653 3034

19252 Helicobacter pylori 309 216 254806 191419 1244

20139 Enterococcus genus 242 155 306721 33249 2106

20104 Streptococcus genus 347 139 163066 61589 1394

20137 Enterococcus genus 300 139 309061 45809 2314

19669 Salmonella, Citrobacter 638 134 478093 112833 3940

19672 Enterobacter, Escherichia, Klebsiella 350 132 593750 84168 4726

19537 Pseudomonas 229 118 622138 100992 5511

21194 Vibrio 271 118 433416 150390 4015

19400 Neisseria genus 204 109 162808 29688 1596

19988 Staphylococcus aureus 3827 108 235562 43260 2309

20122 Streptococcus agalactiae 285 103 165898 17943 1704

19671 Enterobacter Lelliottia 80 70 229896 102783 3476

20021 Bacillus 101 70 250224 101171 3919

20103 Streptococcus suis 92 69 97200 48055 1541

19543 Pseudomonas 108 68 219354 114229 3551

19270 Campylobacter jejuni 97 63 85618 29112 1444

20116 Streptococcus mutans 165 62 100740 28671 1672

19993 Staphylococcus genus 92 59 114655 23197 2014

for all 131 abundant clades is shown in Additional file 1:
Table S1).
The dataset contains 23,491 annotated assemblies, with

11,012 of them selected as representatives in near-clonal
groups. The representative assemblies contain 40,362,750
protein-coding regions encoding 26,501,327 non-identical
protein sequences, among them 25,021,987 marked as
complete.
Protein clusters are built at three levels. First, tight pro-

tein clusters (80 % similarity with 85 % coverage) are built
in large clades containing 10 or more non-clonal genomes
using a combined approach that takes into account both
sequence similarity and local genome context, and rep-
resentative proteins (called clustroids) are selected in in-
clade clusters. Then clustroids of conservative in-clade
clusters are organized into medium-size (50 % similarity
with 70 % coverage) seed global clusters, and global pro-
tein clusters are built around the seed clusters. The details
of the algorithms are described inMethods.
In-clade clusters were built in 131 abundant clades

containing 10 or more non-clonal assemblies. The results
are summarized in Table 2.
As a result of seed global clustering, 144,415 seed

clusters have been produced. They represent complete
proteins encoded by 14,612,418 protein coding regions
- 67 % in-clade coding regions. With the seed clusters

we observe a substantial 10-fold level of data com-
pression (with even higher level of compression in the
largest clades).
The remaining proteins come either from non-

conservative (unique) or rapidly evolving proteins, or
from rare genomes. The input dataset for extended
global clustering contains 19,473,537 non-identical
protein sequences: 351,881 sequences are clustroids
of conservative protein clusters and the rest contains
clustroids of non-conservative in-clade clusters and
sequences coming from the outside of the large clades.
Straightforward global clustering by the modified

Table 2 Summary of in-clade clustering for abundant clades

No. abundant clades 131

No. protein coding regions encoding complete
proteins 19,740,968

No. non-identical protein sequences 7,604,425

No. clustroids 1,566,371

No. clustroids of conservative in-clade clusters 351,881

No. protein coding regions encoding complete
proteins represented by clustroids
of conservative in-clade clusters 14,612,418

No. seed global clusters 144, 415
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hierarchical clustering algorithm required calculating
pairwise 19, 473, 537 × 19, 473, 537 BLAST hits and
produced 5,595,941 global clusters (where only 2.5 % of
them are extended seed clusters, while the most of the
remaining 97.5 % are low-informative groups).
Since the critical factor in processing is the calcula-

tion of BLAST hits, we first looked for ways to further
decrease the number of sequences to be processed by
selecting representatives in tight groups of sequences
using UCLUST [25] (tight UCLUST parameters approx-
imately correspond to the parameters used in in-clade
clustering, see Methods). As a result, 1,263,175 protein
sequences were directly assigned the clustroids in the
seed clusters, while remaining 17,858,401 sequences were
grouped by UCLUST in tight groups allowing selec-
tion of 11,185,110 representatives. The described reduc-
tion allows to decrease the BLAST hit calculation from
19, 473, 537 × 19, 473, 537 to 11, 536, 991 × 11, 536, 991.
The effectiveness of processing can be tremendously

increased, and the amount of work dramatically reduced,
if we limit ourselves to extending the seed clusters. In this
case, we could use an approximate procedure when non-
seed proteins are added to the nearest seed cluster if they
are compatible with seed clustroids there. Since non-seed
proteins are compared only to seed proteins (and are not
compared to each other) in the extension procedure, only
BLAST hits of 11,185,110 representatives to 351,881 seed
sequences need to be computed. Finally, the extension
procedure could be accelerated by the following filtering.
UCLUST search procedure with very liberal parameters
(see Methods) is used to find a subset of 11,185,110 pro-
teins containing distant neighbors of the seeds. This subset
contains 4,174,038 proteins. When we compared this sub-
set to the elements of extended clusters, we found that
99.5 % were assigned, with a loss rate of 0.5 %. As a result,
we need to calculate BLAST hits of only 4,174,038 rep-
resentatives to 351,881 seed sequences, providing 2-fold
additional acceleration in comparison to the extension
procedure without filtering.
By using 50 % similarity with 70 % coverage, we con-

sidered well-established medium-size global clusters that
could be further aggregated or neighbor relationships
between them could be established (indeed, decrease of
the minimal similarity parameter from 50 to 30 % to con-
sider the number of seed clusters decreases from 144,415
seed clusters to 77,532 (larger) seed clusters).

Discussion
We proposed a method to reduce redundancy in the
40 million prokaryotic proteins in the NCBI Microbial
Genomes database. Protein clusters were created at
the level of clades (organisms grouped by similarity at
the species level) and the most conserved clusters were
merged between the clades. Highly conserved proteins,

for example those involved in cellular machinery, are con-
served across taxa. Other proteins are highly conserved
within well-studied large clades, for example human
pathogens with extensive sequence data. This method has
allowed a substantial reduction in redundancy within the
microbial protein database.
The developed multilevel approach utilizing the in-

clade clustering procedure, subsequent selection of
clustroids, and organizing them into seed global clusters
provides a robust representation and high rate of com-
pression. Seed protein clusters are efficiently extended by
adding related proteins. Extended seed clusters include a
significant part of the data and represent all major known
cell machinery. Medium-size extended seed clusters could
be either organized in wider clusters (super-clusters) or
linked together if they are related.
The remaining part of the protein dataset, known in the

network theory as network periphery, comes from either
non-conservative (unique) or rapidly evolving proteins, or
from rare genomes, or resulting from low-quality anno-
tations, requires significant computational resources to
be processed in the clustering procedure, and results in
a large number of questionable clusters. We propose fil-
tering strategies limiting the protein dataset included in
global clustering. The excluded proteins can be related as
neighbors to the core clustering data through the links.

Conclusion
The proposedmethod allows the analysis the relevant data
at different levels of details and eliminating data redun-
dancy while keeping biologically interesting variations.

Additional file

Additional file 1: Table S1. Shows per-clade statistics for 131 abundant
clades; number of proteins represents non-redundant set of non-identical
protein sequences. (PDF 38 kb)
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