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Abstract

Background: Herein, the predicted atomic structures of five representative sequence variants of the reverse transcriptase
protein (RT) of hepatitis B virus (HBV), sampled from patients with rapid or slow response to tenofovir disoproxil fumarate
(TDF) treatment, have been examined to identify structural variations between them in order to assess structural and
functional properties of HBV-RT variants associated with the differential responses to TDF treatment.

Results: We utilized a hybrid computational approach to model the atomistic structures of HBV-RT/DNA-RNA/dATP and
HBV-RT/DNA-RNA/TFV-DP (tenofovir diphosphate) complexes with the native hybrid DNA-RNA substrate in place.
Multi-nanosecond molecular dynamics (MD) simulations of HBV-RT/DNA-RNA/dATP complexes revealed strong
coupling of the natural nucleotide substrate, dATP, to the active site of the RT, and the differential involvement
of the two putative magnesium cations (Mg**") at the active site, whereby one Mg** directly bridges the interaction
between dATP and HBV-RT and the other serves as a coordinator to maintain an optimal configuration of the active
site. Solvated interaction energy (SIE) calculated in MD simulations of HBV-RT/DNA-RNA/TFV-DP complexes indicate no
differential binding affinity between TFV-DP and HBV-RT variants identified in patients with slow or rapid response to

TDF treatment.

Conclusion: The predicted atomic structures accurately represent functional states of HBV-RT. The equivalent
interaction between TFV-DP and each examined HBV-RT variants suggests that binding affinity of TFV-DP to

HBV-RT is not associated with delayed viral clearance.

Keywords: Hybrid structure modeling, Molecular dynamics (MD), Solvated interaction energy (SIE), Hepatitis B,
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Background

During the life cycle of HBV, RT utilizes a single-stranded
viral genomic RNA as a template to synthesize a hybrid
RNA-DNA duplex, and then converts it to double-
stranded DNA (ds-DNA). As this step is critical for the
viral genome replication, it makes RT an attractive target
for antiviral treatment. Thus, both nucleoside and nucleo-
tide RT inhibitors (NRTIs) and non-nucleoside RT
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inhibitors (NNRTI) are extensively used as antiretroviral
agents against HBV and HIV infection [1, 2].

The effective HBV NRTIs are nucleoside or nucleotide
analogs that can be phosphorylated to their diphosphate or
triphosphate active forms by intracellular kinases. Active
forms of NRTIs incorporate into the elongating DNA
strand, terminate the elongation of the nascent DNA
strand, and prevent additional dNTPs from being incorpo-
rated. Tenofovir disoproxil fumarate (TDF) is an oral
prodrug of nucleotide analog tenofovir (TFV, PMPA, 9-
[(R)-2-(phosphonomethoxy)propyl]adenine). TDF is rapidly
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converted to TFV following absorption and is readily cata-
lyzed to the active diphosphate form, TFV-DP (Fig. 1) [3].

TDF is a non-selective RT inhibitor with demonstrated
in vitro activity against both wild-type and mutant
strains of HIV [4-6] and is also effective for treating
chronic hepatitis B (CHB) [7-10]. While resistance mu-
tations within the HBV-RT have been identified for
NRTI monotherapies, such as adefovir, entecavir, lami-
vudine, telbivudine and clevudine [8], there is no evi-
dence of TDF resistance [11]. However, differential
therapy responses can be observed among patients and
have been previously defined: a delayed viral clearance
response in slow responders (SR), or a rapid decline in
viral load immediately following treatment initiation in
rapid responders (RR) [12, 13].

TFV resistance in the setting of HIV has been exten-
sively studied at the molecular level [14—16]. These stud-
ies have shown that the molecular mechanism of TFV
resistance is complex and involves reverse transcriptase,
RNase and exonuclease activities of HIV-RT. In order to
remain functional, resistant mutants of HIV-RT need to
maintain their capability of incorporating nucleotide at a
sufficient rate, as well as to discriminate against NRTIs
or improve the excision rate of incorporated NRTIs [17].

As the HBV-RT is homologous to HIV-RT [17], it is
reasonable to propose that a similar mechanism could
be involved in the differential treatment response to
TDF. Whether and/or how the molecular level inter-
action between TFV-DP and HBV-RT has a part in the
aforementioned differential patient responses upon TDF
treatment is unclear due to the lack of direct experimen-
tal evidence. There is no solved structure of the HBV-
RT in any form.
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In this study, we set out to address the molecular level
interaction between TFV-DP and HBV-RT and the rela-
tionship to patient response using a hybrid computational
approach. We utilized two X-ray crystal structures of
HIV-RT to model the atomic structure of HBV-RT in its
functional state with the aim of delineating the detailed
drug-protein interactions between TEV-DP and the active
sites of genetically distinct variants of HBV-RT.

Results and discussion

Atomic structure models of the HBV-RT in its functional
state

While substantial efforts have been devoted to solving
the crystal structures of HIV-RT, with or without ligands
(e.g. substrates, small inhibitory molecules), no experi-
mentally derived HBV-RT structures have become avail-
able.  HIV-RT and HBV-RT are recognized as
homologous [17], and possess similar multiple catalytic
activities. A computational approach is often applied to
structural implications in drug-resistance studies on
HBV-RT using HIV-RT as structural template for hom-
ology modeling of HBV-RT [17, 18]. Still, the low se-
quence identity and modeling HBV RT without
considering the particular functional state imposes tech-
nical difficulties in obtaining structural models of high
confidence.

In models of NRTIs bound to HBV-RT, it is reason-
able to hypothesize that an effective drug binds to the
active site as if it were a native substrate in position to
be further covalently incorporated, similar to the HIV-
RT/DNA-DNA/TFV-DP complex [19]. Even though we
are not to rule out the possibility of a NRTI being able
to bind elsewhere than the active site on HBV-RT or
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Fig. 1 Chemical structures of a tenofovir disoproxil fumarate (TDF), prodrug of b tenofovir (TFV); ¢ tenofovir diphosphate (TFV-DP)
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HIV-RT, to date there is no evidence for such type of
interaction. Moreover, a putative strong binding of the
drug to the active site would seem to preclude the like-
lihood of additional binding sites on the enzyme. To
use constraints derived from experimental results to
guide the refinement, we first modeled the HBV-RT
structure itself using ITASSER [20, 21] with an add-
itional template, the X-ray crystal structure of HIV-RT/
DNA-RNA/dATP [22], and then included the native
substrates (the DNA-RNA duplex and dATP) from this
template complex in the subsequent refinement (MD
simulation).

The C-scores [20] (data not shown) of our HBV-RT
models generated by ITASSER for the variants of
interest indicated high confidence; however, we
noticed that the exact folding patterns in the fingers
domain differ (Additional file 1: Figure S1). Therefore,
we chose the HBV-RT4 model (HBV-RT4, Additional
file 1: Figure S1C) which has the same folding pattern
as the HIV-RT template (Additional file 1: Figure S1F)
in order to proceed with the refinement.

The structure of the N-terminal 40 amino acid region
was of relatively low accuracy (Additional file 1: Figure
S1A-E). Thus, we re-modeled the N-terminal of HBV-
RT4 separately using ITASSER, and assembled it with
the rest of the protein using ab initio assembly [23]. The
N-terminus in the resultant assembled structure of
HBV-RT4 is of much more ordered secondary structural
elements than it was in the initial model from ITASSER
(Additional file 2: Figure S2).

The assembled structure was then combined with the du-
plex DNA-RNA and dATP from the template HIV-RT/
DNA-RNA/dATP crystal strcuture, refined by ~120 ns MD
simulation in explicit solvent to obtain the final model of
HBV-RT4/DNA-RNA/dATP.

After the MD simulation, the centroid of the domin-
ant cluster (obtained by pairwise root mean square
deviation, rmsd, clustering) from the second half of
HBV-RT4/DNA-RNA/dATP trajectory was chosen as
the representative structure for HBV-RT in its func-
tional state (Additional file 2: Figure S2A). The corre-
sponding part from the HIV-RT/DNA-RNA/dATP
(HIV-RT residue 1 to 320) is shown in gray surface rep-
resentation for comparison. Apart from the N-terminal
domain partially protruding out of the template’s sur-
face envelope, all the other domains (“thumb”, “fingers”
and “palm” domains) are in close agreement with the
template structure (Fig. 2a). The DNA-RNA duplex is
clamped by the enzyme through the circular arrange-
ment of the thumb, palm and fingers domains. Prior to
entering the active site, the duplex is anchored by one
a-helix (D283 to A297) in the thumb domain. The
RNA template strand is tracked along by a long loop
(N123 to NI131) connecting the palm and fingers
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domains, and captured by the fingers domain toward
its 5’ end.

In preparation for incorporation, the dATP situates it-
self in the active site with good base ring stacking to the
penultimate dG, and by making two persistent hydrogen
bonds (H-bond) with the uracil from the opposing tem-
plate RNA strand (Fig. 2a, Additional file 2: Figure S2A);
these features persist throughout the un-constrained
MD (20 -120 ns). The triphosphate group of the dATP is
stably coupled with residue L146 and D205 of HBV-RT
by cooperatively chelating one Mg>* (Fig. 2b). This par-
ticular configuration differs from the HIV-RT active site
mainly by the absence of a third aspartate residue in the
active site; in HIV-RT this third aspartate (D110) partici-
pates in chelating the two Mg”* in the active site of the
HIV-RT (Fig. 2c). Without this aspartate, the Mg”* ions
were stabilized over the equilibration stage of the MD by
incorporating extra water molecules, and this constella-
tion remained stable throughout in the production run
(see next section).

Different roles of Mg?* ions in the active site

Apart from the first Mg”>* (Mg>*-1 hereafter) being dir-
ectly involved in the dATP binding to the active site, a
second Mg** (Mg®*-2 hereafter) is also present in the
HIV-RT/DNA-RNA/dATP crystal structure. Due to an
insufficiency of potential ligation atoms in the active site
of HBV-RT comparing to HIV-RT, Mg®*-1 can only be
coordinated by five surrounding oxygens and Mg>*-2 by
only three, not considering contributions from water
molecules postulated in our initial settings. In fact, water
molecules filled in dynamically over the equilibration
stage and stabilized the chelation as with the optimal
octahedral configuration for Mg>* over the entire MD
simulation. To evaluate the stability of the chelation, we
computed the moving average (0.2 ns window) of the
distance from each non-water oxygen atom to the corre-
sponding Mg”* over the non-constrained MD simulation
(20 — 120 ns). The result shows a persistently stable
coupling of the non-water atoms to the corresponding
Mg>* ion (Fig. 3).

While it is clear that the Mg®*-1 bridges the inter-
action between the dATP and RT (present in the HIV-
RT/DNA-RNA/dATP and HIV-RT/DNA-DNA/TFV-DP
crystal structure [19, 22], PDB code: 4PQU and 1 T05),
the importance of the Mg?*-2 in these RTs is open to
question, as it is only Mg®*-1 which appears in the HIV-
RT/DNA-DNA/TFV-DP structure (PDB code: 1 TO05)
[19]. To address this question, MD simulations with only
the Mg**-1 (i.e. by deleting the Mg®*-2 atom) were also
performed for all the HBV-RT variants. On one hand,
we found no significant changes in binding affinities of
dATP to HBV-RT upon removal of Mg2+-2 (Table 1),
which is consistent with the observation that the Mg>*-2



Xu et al. BMC Bioinformatics 2016, 17(Suppl 8):280 Page 586 of 643

Fig. 2 The structure of HBV-RT4/DNA-RNA/GATP and the active site Mg”*network in comparison with that from the HIV-RT/DNA-RNA/GATP crystal structure. a
The HBV-RT4/DNA-RNA/JATP structure model is shown in cartoon with each domain in different color (N-terminal: orange; fingers: purple; thumb: red;
palm: green; dsDNA: silver). The substrate dATP and the residues involved in direct interaction with it are in stick and ball representation. The
corresponding part from the template HIV-RT/DNA-RNA/dATP (PDB code: 4PQU; chain A, residue 1 to residue 320) is shown in gray

surface representation, structurally aligned to the HBV-RT4/DNA-RNA/JATP model; b The active site configuration of the HBV-RT4/DNA-RNA/
dATP model. The non-bonded interactions are explicitly represented as black dashed lines as the two H-bonds (Hb1 and Hb2), and the ionic
bonds formed between the Mg?" ions (in red ball representation without labeling) and the chelating oxygen atoms. The water oxygen atoms
participating in the chelation are labeled as from W1 to W4; ¢ The active site configuration of the HIV-RT/DNA-RNA/JATP crystal structure,
only one water molecule (labeled as W) is involved in the Mg®* network. The D110 has no counterpart in the HBV-RT model. The hydrogen

atoms are hided in the representations for clearance

is not directly involved in the substrate binding. On the
other hand, it is noticeable that oxygen from the hy-
droxyl group of dG-3’ is directly involved in the chela-
tion of the Mg”**-2 throughout the simulation (Fig. 3b).
Since the nature of the incorporation of a dNTP is to
form a phosphodiester bond between the oxygen of the
3-OH and the a-P of the triphosphate group of the
dNTPD, the network formed by the two Mg”* ions is the
optimal configuration for the impending chemical reac-
tion. The distance between the oxygen of the 3’-OH and
the a-P of the triphosphate group of the dATP was also
monitored for each of the HBV-RT variant over the sim-
ulations (data not shown). As further separation of the
3’-OH and the a-P did not appear in any of our Mg**-1
only system, the Mg”* network seems to contribute to
the function of the enzyme in a way other than merely
maintaining the distance between the 3’-OH of the ex-
tending DNA strand and the a-P of the dATP. Presum-
ably, forming a coordination bond with the Mg>*-2
would render the oxygen atom in the 3’-OH more favor-
able to initiation of the nucleophilic attack on the a-P,

thereby flavoring the transcriptase activity of the
enzyme.

Binding free energy of TFV-DP to HBV-RT

Drug resistance often arises from structural alterations
consequent to mutations in the target protein, which
somehow disrupts or interferes with drug binding. To
understand the underlying mechanism of the differential
response to TDF treatment, we start by asking whether
the TFV-DP binds differently to the RT variants from
patients with slow or rapid response to TDF. In building
a structural model of HBV-RT4/DNA-RNA/TFV-DP, we
started with the HBV-RT4 model generated by ITASSER
and AIDA (Additional file 2: Figure S2), then inserted
the duplex DNA-RNA taken originally from the HIV-
RT/DNA-RNA/dATP template structure [22], and finally
incorporated the TFV-DP from the HIV-RT/DNA-
DNA/TFV-DP structure (PDB code: 1 T05) [19]. Models
for the other four variants were built analogously from
the homology models we obtained using the HBV-RT4
as template, into which the same DNA-RNA duplex and
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TEV-DP were incorporated. We then pursued MD simu-
lations to refine all the HBV-RT/DNA-RNA/TFV-DP
structures. The centroid of the major cluster from the
second half of each MD trajectory was then chosen as
representative model.

Here we present the HBV-RT4/DNA-RNA/TFV-DP
model. As seen in Fig. 4a, the incorporation of the TFV-
DP did not elicit any disruption of the secondary struc-
tural elements of the HBV-RT4. The domain arrangement
persists as they are in the HBV-RT4/DNA-RNA/dATP
complex (Fig. 2a), indicating the model is in a proper func-
tional state. At the active site, the TFV-DP associates with
the enzyme in the exact fashion as we identified in the nat-
ural substrate-bound complex: the base-ring end of the
TEV-DP is anchored by two persistent H-bonds, and the
triphosphate end of it is strongly coupled by the Mg>* che-
lation network (Fig. 4b). While Mg®*-2 was missing in the
HIV-RT/DNA-DNA/TEV-DP crystal structure (Fig. 4c),
we believe that the integrity of the Mg** network is im-
portant for maintaining the proper configuration of the
active site, as is seen in the HIV-RT/DNA-RNA/dATP
crystal structure and in all of our HBV-RT/DNA-RNA/
dATP systems with two Mg>" ions. Convinced of the

potential catalytic role of the Mg**-2, we opted to include
the Mg®*-2 in all of our HBV-RT/DNA-DNA/TFV-DP
systems. The result that the Mg>* network is stable across
all variants echoes the importance and validity of the
addition.

We were then able to compute the binding energies of
the dATP and TFV-DP to the HBV-RT/DNA-RNA com-
plex with extensive sampling of the complex structures
through MD simulations using the solvated interaction
energies (SIE) method [24, 25]. The favorable and con-
sistent binding energies of dATP to the variants ob-
served in both Mg>* systems (Table 1) indicate strong
binding of the natural substrate to the enzyme, hence
proper configuration of the active sites for all of our
HBV-RT variant models. As for the TFV-DP ligand, the
SIE results also show favorable binding to all HBV-RT
variants (Table 1), with no substantial differences be-
tween them (<1 Kcal mol™). These findings suggest that
RT enzymatic activity and RT’s affinity to bind TFV-DP
are not altered by the amino-acid heterogeneity observed
among the HBV-RT variants examined herein, which,
taken together with the observed stability of ligand-
protein interactions and consistency in the structural

Table 1 Approximated binding free energies with standard errors of dATP or TNV to HBV-RT/DNA-RNA using Solvated Interaction

Energy method (SIE)

Category Variant dATP, one Mg?" (Kcal mol™) dATP, two Mg?" (Kcal mol™) TFV-DP, two Mg** (Kcal mol™)
RR RT5 -1043+0.02 —-993+0.02 —-891+0.01

RT3 -11.51+0.02 -11.21+0.03 —9.22+0.01
SR RT1 -10.59+0.01 -9.69+0.02 —9.56+0.01

RT4 -1251+0.01 -9.50+0.02 —9.05+0.02

RT2 -1051+0.02 -10.59+0.01 —9.51+0.01
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Fig. 4 The structure of HBV-RT4/DNA-RNA/TFV-DP and the active site Mg”*network in comparison with that from the HIV-RT/DNA-DNA/TFV-DP crystal
structure. a The HBV-RT4/DNA-RNA/ TFV-DP structure model is shown in cartoon with each domain in different color (N-terminal: orange; fingers:
purple; thumb: red; palm: green; dsDNA: silver). The substrate TFV-DP and the residues involved in direct interaction with it are in stick and ball
representation; b The active site configuration of the HBV-RT4/DNA-RNA/TFV-DP model. The non-bonded interactions are explicitly represented as
black dashed lines as the two H-bonds (Hb1 and Hb2), and the ionic bonds formed between the l\/lg2+ jons (in red ball representation without
labeling) and the chelating oxygen atoms. The water oxygen atoms participating in the chelation are labeled as from W1 to W4; ¢ The active site
configuration of the HIV-RT/DNA-DNA/TFV-DP crystal structure, only one Mg?* is identified in the active site and no water molecule is involved.

The hydrogen atoms are hided in the representations for clearance

configuration of the active site in all HBV-RT/DNA-
RNA/TFV-DP complexes, suggest that factors other
than a decreased binding affinity of HBV-RT to TFV-DP
might be influencing therapy response in patients.
Interestingly, evidence of there being no substantial
changes in drug-binding affinity in our HBV-RT/DNA-
RNA/TEV-DP complexes (Table 1) is in agreement with
our previous study [26]. A potential prediction model
of response to TDF revealed that genetic diversity out-
side the RT domain of polymerase contributed robust
predictive features strongly associated to SR/RR charac-
teristics of patients, whereas in RT none were found
[26]. Moreover, a switch in high-frequency intra-host
HBYV variants was observed in patient 4, which did not
involve changes in RT. Amino-acid substitution S202P
(GenBank reference AY AY233278) in the spacer domain
of polymerase presented after 4 weeks of TDF treatment,
suggesting a possible association between response to
TDF and amino-acid heterogeneity in spacer, a sus-
pected intrinsically disordered protein (IDP) [27]. In fact,
there is compelling evidence of the involvement of IDPs
in evolution of drug resistance in cancer cells [28, 29]
and HBV [27]. Nevertheless, an association between
amino-acid substitutions in HBV variants RT1-RT5 and

differential response to TDF treatment cannot be dis-
missed solely based on findings presented herein.
Drug-binding affinity may not be the only mechanism
involved in response rates or resistance to TDF.
Amino-acid substitutions observed in HBV-RT could
be affecting some other structure-activity-resistance re-
lationships. In addition, intramolecular conformational
changes in RT and intermolecular dynamics of the RT
complex provide an alternative mechanism for drug
resistance to NNRTIs [30].

Conclusion

While many drug resistant mutants of HBV-RT have
been identified, very little is known about the molecular
mechanism driving resistance development. Compared
to the massive structural and biochemical studies than
have been conducted on HIV-RT drug resistant mutants,
HBV-RT has not drawn much attention among struc-
tural biologists. However, over 350 million people have
developed CHB and it remains a serious, global health
problem [9]. Therefore, it is important to unravel the
drug resistance associated with anti-viral treatment to
HBYV infections.
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To probe the structural basis for HBV-RT drug resist-
ance, researchers rely on structural modeling approaches
using crystal structures of HIV-RT as a starting point [17,
18, 31-33]. As protein structures are dynamic and
strongly correlated with its functional states, we devised a
novel hybrid approach in which we utilized the most rele-
vant X-ray crystal structures (in terms of its functional
state) to model the initial structures of HBV-RT and then
extensively sampled the conformational space with experi-
mentally derived constraints (crystal contacts between
substrate and protein) to select the final representative
models (Additional file 3: Figure S3). Without direct ex-
perimentally derived structure data on HBV-RT to test the
models, this rigorous approach presumably generates
structure models of the highest confidence and relevance
to the particular biological function of interest. However,
as this approach comprises only physics-based methods, it
is advisable to apply other methods to evaluate the result-
ing model from a different perspective. In this study, we
have applied a statistical potential based method (ProSA-
Web) [34] to evaluate our model. The resulting Z-score
for our HBV-RT4 model confirms good quality in terms
of the naturalness defined by sets of X-ray and NMR
structures (Additional file 4: Figure S4A), and the local
quality plot indicates the majority of the HBV-RT4 model
is of high quality measured by a knowledge-based ener-
getic term (Additional file 4: Figure S4B).

Using these models to probe drug-protein interaction,
we focused on the TFV-DP binding. The present find-
ings indicate that, despite sequence changes in or
around the NRTI binding site, favorable drug-protein in-
teractions persisted. The dynamics of how key molecular
groups interact, probed in our studies, reveal new in-
sights into the mechanisms, through which HBV-RT
couples to its natural substrate. However, this apparent
drug-protein interaction stability leaves us without a
good mechanistic rationalization as to why or how
HBV-RT amino-acid polymorphisms may contribute to
reduced rates of viral clearance responses to TDF treat-
ment, as is often observed in SR patients.

The modeling approach presented in this study can be
extended to other drugs and serve as a paradigm to as-
certain drug binding and estimate binding free energies.
It is important to note that the starting conformation
(the binding site and the particular interaction pattern
between the drug and protein) would have much effect
on the results. Therefore, it is essential to start modeling
using all available information for the accurate and reli-
able prediction of the binding site structure.

Methods

Patients and HBV quasispecies (QS)

Five patients from Study GS-US-203-0101, a phase 2
study evaluating TDF and FTC + TDF in treatment naive
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patients with HBV DNA >1.7 x 107 IU/mL and normal
ALT levels for 192 weeks, were selected [35]. 3 patients
had a slow response (SR), never achieving HBV DNA
<69 IU/mL through 192 weeks of treatment, while 2 pa-
tients had a rapid response (RR), achieving HBV DNA
<69 IU/mL by Week 96. Patients were matched by HBV
DNA, ALT, and HBeAg status at baseline. All patients
received TDF monotherapy. Whole-genome sequences
of HBV QS were obtained using end-point limiting-
dilution real-time PCR coupled with sequencing. Base-
line (BL), Week 4 (W4), and Week 40 (W40) time points
were evaluated for each patient. Median joining net-
works (MJN) were performed using Network 4.0 to
analyze HBV QS genetic diversity [36]. The high-
frequency variants of intra-host HBV QS from each pa-
tient were selected to predict the atomic structure of the
RT protein domain in HBV polymerase (protein posi-
tions 349 — 693, based on GenBank reference sequence
AY233278): from SR patients, variants RT1 and RT2 of
HBYV genotype C (GT C) and RT4 (GT B), and from RR
patients, variants RT3 (GT C) and RT5 (GT B).

Structural modeling of HBV-RT variants

Due to the nonexistence of experimental 3D-structures
of HBV-RT, a hybrid approach to protein 3D-strucutre
prediction was implemented to generate accurate, atom-
istic structures of the NRTI binding site of HBV-RT.
Three major steps were involved in the modeling. First,
all the representative HBV-RT sequences were submitted
to ITASSER web-server [20, 21], including specification
on an homologous HIV-RT structure complex (PDB ac-
cession code: 4PQU) as an additional template [20]. The
model of the highest C-score [21] were then chosen to
proceed. The N-terminal 1-40 amino-acid of HBV-RT
were modeled separately by ITASSER, due to a relatively
low local accuracy for the initial model of the entire
length. The N-terminal structure was then assembled to
the preliminary model by using Ab Initio Domain
Assembly Server (AIDA) [23].

Second, all the HBV-RT variant models were then
pooled for inspection to identify the one(s) with the
folding pattern most consistent with that seen in the
designated HIV-RT structure.

Last, variant HBV-RT4 was chosen for further refine-
ment using multi-nanosecond molecular dynamics (MD)
simulation with the native hybrid DNA-RNA duplex and
with dATP incorporated into the active site, according
to their original orientation in the HIV-RT/DNA-RNA/
dATP crystal structure [22]. Pairwise rmsd clustering
analysis of the second half of the MD trajectory was then
performed to select the centroid of the dominant cluster
as the final model of HBV-RT4/DNA-RNA/dATP. The
structures of the other variants were then obtained by
homology modeling using Modeller 9.13 [37, 38] with
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the HBV-RT4 as template, followed by same MD simula-
tion procedures, also with the native hybrid DNA-RNA
duplexes and the dATPs superimposed to the active
sites.

In the case of modeling the HBV-RT4/DNA-RNA/
TEV-DP variants, we replaced the dATP with TFV-DP
in the initial conformation of the HBV-RT4/DNA-RNA/
dATP MD simulation, maintaining the crystal contacts
between TFV-DP and corresponding residues that was
identified from the HIV-RT4/DNA-DNA/TFV-DP crys-
tal structure (PDB code: 1 T05) [19].

Molecular dynamic (MD) simulation

To conduct MD simulations, hydrogens were first added by
the tleap module of AMBER 14 [39], and the ionizable side
chains of the proteins were assigned to their ionization
states at pH 7.0 using the WHATIF webserver [40]. Each
system was then solvated with TIP3P water molecules [41]
leaving a minimum distance of 10.0 A from the protein sur-
face to the edge of the simulation box. Counter-ions were
added to neutralize the net charge and reach 100 mM NaCl
concentration to mimic physiological conditions. The sys-
tems were then minimized and equilibrated — with extra
bonds constraints (2.5 kcal mol™ A~2) on the Mg2+ ions
and on the ionic bonded oxygen atoms — for 10-20 ns be-
fore free production runs in the isothermal isobaric ensem-
ble (1 atm, 300 K). The short-range non-bonded
interactions were evaluated by employing a cut off of 10 A
with a switching function starting at 8.5 A. The smooth
particle mesh Ewald (SPME) algorithm were applied in
computing the ong-range electrostatic interactions [42]. All
the bonds formed by hydrogen and heavy atoms were fixed
to eliminate the most frequent oscillatory motions. The r-
RESPA multiple time step method [43] was applied with a
2 fs time step for bonded, 2 fs for short-range non-bonded
interactions and 4 fs for long-range electrostatic interac-
tions. All simulations were performed using the NAMD 2.9
code [44, 45] with the AMBER Parm99 parameter set [46]
containing the force field for nucleic acids and proteins.
The parameterization of TFV-DP was conducted using
Antechamber [47] with the general Amber force field
(GAFF) [46, 48]. Data were analyzed using the CPPTRA]
utility in AMBER [49] and custom VMD TCL scripts [50].
Time evolution of the rmsd values for the HBV-RT in each
simulation system was monitored for simulation conver-
gence (Additional file 5: Figure S5).

Binding free energy approximation

To compute the binding free energy of dATP or TFV-
DP to the HBV-RT/DNA-RNA complex we employed
the solvated interaction energies (SIE) method [24, 25],
which is an end point method that shares elements from
the linear interaction energy (LIE) approach [24, 25].
Frames at 20 ps intervals from the last 60 ns the MD
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trajectories (the rest of the trajectories were discarded as
equilibration) were sampled for the SIE calculations. In
total 3000 frames were used for averaging. The SIE esti-
mates binding free energy as:

AGbind(P»Dim a,y, C) =aX [AEvdW + AECoul(Din)
+AGre(p, Din) + yASA(p)] + C

where AE,;y and AEc,,; represents the intermolecular
van der Waals and Coulomb interaction energy between
protein and ligand, respectively. The values were com-
puted using he AMBER ff99SB parameter set. AGxf is
the reaction field energy change upon ligand binding,
computed by solving the Poisson equation with program
BRI BEM [51], and using a molecular surface generated
with a variable-radius solvent probe [52]. The ASA is the
molecular surface area change upon ligand binding. p is
the linear scaling factor of the van der Waals radii for the
AMBER99 force field; D;, is the dielectric constant for sol-
ute interior; y is the coefficient for computing the free en-
ergy associated with the surface area change upon
binding; « is the pre-factor that quantifies the loss of con-
figurationally entropy upon binding; C is a constant that
includes protein-dependent contributions not explicitly
modeled by SIE. The parameters were fitted to the abso-
lute binding free energies for a set of 99 protein-ligand
complexes to obtain the optimal/default values of them as

a=0.1048, D;, =2.25, p = 1.1, y = 0.0129 Kcal mol™ 'A"?,
and C=-2.89 Kcal mol™! [24, 25], which are also the
values we used in our SIE calculations.

Additional files

Additional file 1: Figure S1. The initial structural models of HBV-RT
variants obtained from ITASSER in comparison to the corresponding part in
the template crystal structure: A) HBV-RT5; B) HBV-RT1; C) HBV-RT4; D)
HBV-RT2; E) HBV-RT3; F) Residues 1 to 320 of the HIV-RT/DNA-RNA/JATP
crystal structure (PDB code: 4PQU). The 40 aa N-terminal of the HBV-RT
structure are shown in orange, the hairpin structural element in the
fingers domain are in red, and the rest of the structure are in cyan.

(TIF 5479 kb)

Additional file 2: Figure S2. The structure models of HBV-RT4 obtained
from ITASSER followed by ab initio assembly using AIDA. The 40 aa
N-terminal of the HBV-RT structure is shown in orange, the hairpin
structural element in the fingers domain in red, and the rest of the
structure in cyan. (TIF 5196 kb)

Additional file 3: Figure S3. The schematic plot of the hybrid
modeling approach used in HBV-RT/DNA-RNA/dATP and in HBV-RT/DNA-
RNA/TFV-DP modeling. (TIF 2413 kb)

Additional file 4: Figure S4. Quality of HBV-RT4 model evaluated by
statistical potential: A) Overall quality score of the HBV-RT4 model (black
dot): Z-score =—6.34; B) Local model quality scores as knowledge-based
energies versus residue position, with positive values indicate possible
problematic or erroneous parts in the model. (TIF 2605 kb)

Additional file 5: Figure S5. RMSD evolution as a function of time for all
the MD simulations: A) HBV-RT/DNA-RNA/dATP with Mg2+—1 only in the
active site; B) HBV-RT/DNA-RNA/JATP with two Mg?* ions in the active
site; C) HBV-RT/DNA-RNA/TFV-DP with two !\/lgZ+ jons in the active site.
(TIF 2569 kb)
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