
SOFTWARE Open Access

Reusable, extensible, and modifiable R
scripts and Kepler workflows for
comprehensive single set ChIP-seq analysis
Nathan Cormier†, Tyler Kolisnik† and Mark Bieda*

Abstract

Background: There has been an enormous expansion of use of chromatin immunoprecipitation followed by
sequencing (ChIP-seq) technologies. Analysis of large-scale ChIP-seq datasets involves a complex series of steps and
production of several specialized graphical outputs. A number of systems have emphasized custom development
of ChIP-seq pipelines. These systems are primarily based on custom programming of a single, complex pipeline or
supply libraries of modules and do not produce the full range of outputs commonly produced for ChIP-seq
datasets. It is desirable to have more comprehensive pipelines, in particular ones addressing common metadata
tasks, such as pathway analysis, and pipelines producing standard complex graphical outputs. It is advantageous if
these are highly modular systems, available as both turnkey pipelines and individual modules, that are easily
comprehensible, modifiable and extensible to allow rapid alteration in response to new analysis developments in
this growing area. Furthermore, it is advantageous if these pipelines allow data provenance tracking.

Results: We present a set of 20 ChIP-seq analysis software modules implemented in the Kepler workflow system;
most (18/20) were also implemented as standalone, fully functional R scripts. The set consists of four full turnkey
pipelines and 16 component modules. The turnkey pipelines in Kepler allow data provenance tracking.
Implementation emphasized use of common R packages and widely-used external tools (e.g., MACS for peak
finding), along with custom programming. This software presents comprehensive solutions and easily repurposed
code blocks for ChIP-seq analysis and pipeline creation. Tasks include mapping raw reads, peakfinding via MACS,
summary statistics, peak location statistics, summary plots centered on the transcription start site (TSS), gene
ontology, pathway analysis, and de novo motif finding, among others.

Conclusions: These pipelines range from those performing a single task to those performing full analyses of
ChIP-seq data. The pipelines are supplied as both Kepler workflows, which allow data provenance tracking, and, in
the majority of cases, as standalone R scripts. These pipelines are designed for ease of modification and
repurposing.
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Background
Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) is a standard approach for localizing proteins
bound to DNA, usually transcription factors or histones,
including modified histones. The rapidly decreasing cost
of sequencing has led to an explosion in the number of

ChIP-seq datasets. This is the standard approach used
by the large scale ENCODE [1] and modENCODE pro-
jects [2].
A comprehensive ChIP-seq analysis is complex and

consists of many steps. The steps involved in basic
ChIP-seq analysis have been discussed previously [3].
Here, we focus on developing pipelines for analyzing sin-
gle experiments (optionally with a matched control
track). Briefly, first the sequence reads are aligned to a
reference genome, then peaks are predicted, and finally a
rich analysis of the peak data follows. The analysis of the
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peaks can be quite complex, encompassing several dis-
tinct and independent functions, ranging from motif
analysis to pathway analysis. For a full analysis of ChIP-
seq data, it is desirable to have a range of outputs from a
pipeline, including informative plots to visualize the
data.
Generally, ChIP-seq analysis represents an area of

complex, multistep data analysis with continuing evolu-
tion of analysis options and goals. Under these condi-
tions, the virtues of modifiability, extensibility, and
comprehensibility leading to easily reproducible research
become important [4]. Modifiability and extensibility are
important due to changes in analysis goals (e.g., different
types of graphical output) and changes in analysis meth-
odologies or addition of new methodologies (e.g.,
addition of pathway analyses). With this evolution of
pipelines over time, it becomes important to have a soft-
ware design approach that promotes comprehensibility,
because external, written descriptions of functionality
can quickly become outdated. Finally, a central scientific
value is reproducibility of research results. For complex
computational analyses, replication has emerged as a dif-
ficult issue for several reasons, as discussed in [5]. Re-
producible scientific analyses are supported by systems
that feature straightforward distribution of the software
and clear display of input values (input parameters). Vir-
tues of various systems to enable reproducible and easily
understood analyses have recently been described [6].
There has been significant pipeline development previ-

ously in this area and the generation of a large series of
tools. Table 1 compares our software to current ChIP-
seq analysis packages. This table indicates functions
from the perspective of single set ChIP-seq analysis,
which is the goal of our pipelines. Importantly, several of
the other pipelines provide support for other types of
analyses, such as cross-dataset comparisons, cross-
species comparisons, ChIP-chip vs ChIP-seq compari-
sons, and integration of gene expression microarray in-
formation. We do not include in the comparison some
other pipelines that are oriented toward different tasks,
as these pipelines lack most of the functions listed; seq-
miner [7], according to the authors, is oriented toward
analysis based on predefined genomic regions; the EN-
CODE pipeline [8] includes no downstream analysis;
and chipseq [9] includes minimal downstream analysis.
We also do not include Sole-Search [10], as this package
does not appear to be available currently. Examination
of Table 1 indicates that one major difference is that our
software provides both complete “turnkey” pipelines and
also a set of fully functional independent programs. In
contrast, many other systems (e.g., Cistrome) provide
only a set of modules, relying on the user to decide on
usage and execute them sequentially. A second major
difference is that we enable pathway analysis. To do so,

we developed a simple scoring scheme for the peaks (see
IMPLEMENTATION and RESULTS section for descrip-
tion). We found that pathway analysis provided valuable
information in a least one test case. A third significant
difference is that our software, like the Cistrome system
but unlike the other systems, provides complete “track-
ing information” (i.e., “data provenance”) in the Kepler
implementation. Unlike Cistrome, we supply a set of
complete turnkey pipelines that feature data provenance.
Being able to determine, after the fact, the exact parame-
ters used in to generate a set of results is considered an
important aspect of reproducible science and is a major
goal of scientific workflow systems [11]. Finally, as a
more minor point, our software provides automatic gen-
eration of a user-controllable number of plots of peaks
and non-peak regions. Unlike some other packages, al-
though we provide de novo motif discovery functional-
ity, we do not provide motif scanning. We chose to not
use this because we viewed it as less valuable and that
this basic information is precomputed at other sources
(e.g., UCSC genome browser tracks).
We developed a set of 20 workflows: 4 full workflows,

12 independent module workflows, one other independ-
ent workflow, and three utility workflows. The great ma-
jority of workflows, including full workflows, are
available as both standalone R scripts and Kepler work-
flows (n.b. workflows that rely on external programs will
require installation of those programs). All required pro-
grams and modules are open source and freely available.
Our workflows are initially configured for human data-
sets. However, many modules do not depend on the or-
ganism/assembly (e.g., CalcPeakStats) and others are
designed to be easily modified for non-human organ-
isms. For example, organism specific databases are listed
as parameters. The full workflows were designed to start
from various points in analysis. In some cases, investiga-
tors will want to begin with the raw sequence reads.
However, in other cases, the investigators may already
have aligned reads and, in some cases, predicted peaks
for the ChIP-seq data. The independent modules allow
the user to execute a single analysis step. We also antici-
pate that these modules will be reused by other bioinfor-
maticians in their pipelines. We include one
independent workflow for data visualization. Finally, the
utility set of workflows includes workflows that perform
tasks such as simple file manipulation and conversion.

Implementation and results
Pipelines were based primarily on R, with an emphasis
on use of applicable Bioconductor [12] modules and
well-established external programs. External programs
included bowtie [13] for sequence alignment, MACS
[14] for peak determination, MEME [15] for motif dis-
covery, ngs.plot [16] for some visualization, and bedtools
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[17] and samtools [18] for some file conversion tasks.
These pipelines can be easily modified to use other ver-
sions of software, for example MACS2 [19] instead of
MACS. The modular workflow design enables relatively
straightforward complete replacement of these compo-
nents by other software (e.g., an alternative peak-
detection program such as SICER [20]) by the motivated
user. We supply a complete archive containing all pipe-
lines and documentation (see “Availability of data and
materials” section).
All pipelines were tested using typical, low cost com-

puters, except for read mapping, which was performed
using upload to a remote single 32 core (64 thread)
Xeon processor machine with 1TB of RAM. However,
for ChIP-seq read mapping, a much smaller amount of
RAM is generally required [13]. All pipeline components
and pipelines (aside from read mapping) easily executed
on an 8 Gb RAM, Intel i7 processor based system. The
largest full pipeline took ~45 min to execute under these
conditions, including read mapping on the remotely

located Xeon computer. Disk space was not a significant
limitation; 20 Gb free space could easily accommodate a
full analysis including initial datasets. We also found that
most modules successfully ran on much older computer
hardware (3 Gb RAM, Intel Pentium-based desktop
computer). We tested the pipelines extensively with a
histone modification dataset (H3K4me3 [21, 22]) and a
transcription factor dataset (GATA1; [23]).
Workflows were implemented in the workflow devel-

opment environment Kepler and also as R standalone
scripts. The advantages and usage of Kepler in bioinfor-
matics contexts have been previously described [4, 24].
Users who wish to avoid the Kepler environment or sim-
ply stay within R can use the provided separate standa-
lone R scripts for most tasks. These R scripts were
designed to be relatively short and simple to allow rapid
reuse and alteration.
The Kepler workflows can be used without knowledge

of programming. The user simply changes the values of
the variables which are indicated clearly on the Kepler

Table 1 Feature Comparison

Feature CisGenome
[44]

unix tool
scripting [45]

Fish the Chips
[46]

R pipeline
[47]

HiChIP
[48]

Cistrome
[49]

This package

Primary
implementation

C unix tools C++ C and R R Galaxy R and Kepler

Single modules
available

no noa no no no yes yes

Single turnkey pipeline no no yes no yes no yes

Interface GUI, command
line

command
line

GUI, command
line

command
line

command line web GUI (Kepler) + command
line

Data provenance
tracking

no no no no no yes
(Galaxy)

yes (Kepler)

Generate genome
browser track

yes (custom) yes (UCSC) yes (UCSC) no yes (UCSC) yes (UCSC) yes (UCSC)

Peak calling yes (custom) yes (MACS) yes (MACS) yes (PICS) yes (MACS and
SICER)

yes
(MACS)

yes (MACS)

Summary peak
statistics

yes yes yes no yes yes yes

Summary location
statistics

yes yes yes no yes yes yes

Map to nearby genes yes yes yes no yes yes yes

Automatic generation
of peak graphs

no no no no no no yes

Heatmap of read
density

no no no no yes yes yes

Average profiles no no no no yes yes yes

De novo motif analysis yes yes (MEME) no yes
(rGADEM)

yes (MEME) yes
(SeqPos)

yes (MEME)

Motif enrichment
analysis

yes yes no yes no yes no

Gene ontology no yes no no yes(custom) nob yes

Pathway analysis no no no no no no yes
aSoftware is a listing of code in a protocol bGene ontology implemented for microarray data but not ChIP-seq data
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canvas. Use of the R scripts requires very little additional
knowledge. A bioinformatician with minimal R know-
ledge simply needs to open the scripts in a text editor
and edit the parameters, which are all in a block at the
start of the code. We suggest that even the non-
programmer could be easily taught to open the R file in
a text editor, change names, save the R file, and then
execute it.
Both full workflows, encompassing the entirety of the

analysis tasks, and single components were developed.
The full workflows were designed to begin from various
established data analysis entry points. Full workflows can
begin with unaligned reads, aligned read files, or pre-
dicted peaks + aligned reads files. This offers great flexi-
bility for investigators who have precomputed peak sets
or aligned reads.
Figure 1 displays the overall project logic. This figure

displays approximate dependencies of outputs on key
steps in the pipeline. The boxes on the left display cen-
tral operations (read mapping, peak prediction, mapping
to nearby genes and motif analysis); the boxes to the
right display derived information based on these key op-
erations. This figure conveys the essential sets of opera-
tions performed; utility operations like file conversion
are not indicated.
Table 2 displays a listing of the full set of workflows

and a description for each workflow. R scripts, when

available, are also indicated. We use the notation
“name(.kar/.R)” to succinctly indicate that workflow
“name” is available as a Kepler workflow (“name.kar”)
and as an R script (“name.R”).
One significant advantage of Kepler is straightforward

integration of different computational resources, from
local resources (i.e., the user’s machine) to remote re-
sources (e.g., a computer cluster). It is advantageous to
use high performance computing resources for computa-
tionally demanding tasks. For ChIP-seq analysis, aligning
raw read sequences to a genome is a computationally de-
manding task. Figure 2 displays a Kepler workflow for re-
mote alignment of reads. This component is available as a
standalone workflow (MapReads.kar) and as part of a full
workflow (Pipeline_UnmappedReads.kar). The image
shown is a screenshot of MapReads.kar. Note that param-
eters as input are clearly shown (top part) and the flow of
data is shown in the lower part. Parameters are easily
changed simply by “clicking” on the appropriate param-
eter (see [24] for example). The logic of operations is ap-
parent from the workflow: data is copied to the external
machine, the process is run, and data is retrieved at com-
pletion. This workflow currently is based on bowtie [13]
but can be easily modified to use other alignment soft-
ware. This workflow not only allows usage of a high per-
formance remote computer but also offers a template for
shifting other tasks into a high performance external re-
source. For example, motif finding, a computationally de-
manding task, would benefit from high performance
resources.
Figure 3a displays an example of a more typical Kepler

workflow run solely on the user’s computer. We used
the same design principle with parameters in the top
portion and the logic of dataflow below. Note that nearly
all processing occurs in a single R module (“actor” in
Kepler workflow terminology).
This workflow produces example graphs of peak re-

gions and non-peak regions (Fig. 3b,c). This is useful for
examining the waveforms of high-scoring peaks and pro-
ducing examples for potential publication as part of a
scientific report. For non-peak regions, the workflow
searches between peaks for low-coverage regions to dis-
play as negative regions (Fig. 3c). Users can adjust pa-
rameters such as the number of positive and negative
peaks produced and the overall range of the x-axis dir-
ectly on the Kepler canvas or in the separate, standalone
R script. Furthermore, this module uses standard R
graphics (“base graphics”), so the motivated user can
easily change the code to produce different graph
aesthetics.
In all of our standalone R scripts, the parameters are

always indicated as block of code to begin the R script.
This allows straightforward, clear alterations of param-
eter values.

Fig. 1 Conceptual diagram of overall project components.
Components and relationships for a full analysis of a ChIP-seq
dataset. These steps are present in the full workflow. It is provided in
Kepler and R script versions (R script version does not have read
mapping) and each component is also implemented individually as
separate Kepler workflows and R scripts. Names in parentheses refer
to critical external, stand-alone programs (e.g., bowtie, MACS,
ngsplot, MEME). Most components use R and Bioconductor
packages. Some minor steps in the full pipeline (e.g., file conversion),
accessory and other utility workflows are not displayed
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Figure 4 displays the full pipeline, as implemented in
Kepler (Pipeline_UnmappedReads.kar). This is the “max-
imal” version of the full pipeline which begins with a file
of unmapped sequence reads (a fastq file) as input and
then produces a large series of outputs. This pipeline,
without the initial read mapping step, is available as a
standalone R script (starts with mapped read file; Pipeli-
ne_MappedReads.R). For the Kepler version, the param-
eters are grouped by functional category to allow rapid
visual determination of what critical values were used
for data processing and analysis. For example, the “Gen-
eral Parameters” section indicates the various files used
for mapping peaks to genes. Due to the large number of
parameters in the full pipelines, documentation for pa-
rameters is included in the R version of this workflow
and also in each corresponding independent Kepler
module file (e.g., see parameter descriptions in Fig. 3a
for GeneratePeakExamples.kar). The motif-finding pro-
gram MEME [15] has large computational demands and
motif finding accounts for the majority of pipeline run
time. To control this runtime, we allow the user to limit
the MEME runtime using the parameter maxRunTime

(units are seconds). MEME produces motifs as it exe-
cutes, so limiting the runtime limits the accuracy of re-
sults but does not prevent MEME from producing
results (unless no motifs are found within the timelimit).
We found that a GATA1 ChIP-seq dataset yielded a cor-
rect GATA1 motif (see below) within a timelimit of 1800
s (30 min) under our conditions.
Investigators will often have a file of already aligned

reads and, in some cases, may also have a file of pre-
dicted peaks. If the investigators already have these files,
it is wasteful to run these slow and computationally de-
manding steps. Also, the files may have been generated
by other programs preferred by the investigators. We
wished to create pipelines that allow straightforward
usage of these files, when available. For investigators
with aligned reads but without predicted peaks, we cre-
ated a workflow to deal with this situation (Pipeline_-
MappedReads(.kar/.R)). For investigators with both
aligned reads and a file of predicted peaks, we allow in-
vestigators to skip the alignment step and the peak pre-
diction step (Pipeline_MappedReadsAndExternalPeak
File(.kar/.R)). Finally, for investigators with only a file of

Table 2 List of Software Modules

Name Goal

Full Pipelines

Pipeline_UnmappedReads.kar Full pipeline starting with unmapped reads

Pipeline_MappedReads(.kar/.R) Full pipeline starting with mapped reads

Pipeline_MappedReadsAndExternalPeakFile(.kar/.R) Full pipeline starting with mapped reads and a file of peaks

Pipeline_onlyExternalPeakFile(.kar/.R) Full pipeline when only file of peaks is available

Independent Modules

MapReads.kar Map reads to a reference genome

AnnotatePeaks(.kar/.R) Map peaks to genes

CalcDistanceToTSS(.kar/.R) Summary of peak distance to TSS

CalcPeakStats(.kar/.R) Summary peak statistics

GeneOntologyAnalysis(.kar/.R) Gene Ontology Analysis

GeneratePeakExamples(.kar/.R) Generate a set of graphs of peak and non-peak regions automatically

GetPeakSequences(.kar/.R) Generate set of DNA sequences from peaks

MakeTSSHeatmapAndDensityPlots(.kar/.R) Makes a heatmap of reads around all TSSs and also an average profile plot

MakeUCSCfile(.kar/.R) Makes a bedgraph.tar.gz file ready for direct upload to the UCSC genome browser

MotifDiscovery(.kar/.R) Runs MEME to attempt motif finding from peaks

PathwayAnalysis(.kar/.R) Performs a pathway analysis, generates list of high-scoring pathways and images of results

RunMACS(.kar/.R) Runs MACS to predict peaks

Utility

BamToBed(.kar/.R) Converts bam format to bed format

IndexBAM(.kar/.R) Indexes a bam file

SamToBed(.kar/.R) Converts sam format to bed format

Extra

GraphSingleDataRange(.kar/.R) Generates a graph of read density for any region of the genome

Notes: (.kar/.R) refers to workflows having Kepler (.kar) and R (.R) versions. The same root name is used; for example RunMACS.kar and RunMACS.R
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predicted peaks, we supply a workflow for this case
(Pipeline_onlyExternalPeakFile(.kar/.R)).
Figures 5 and 6 display the outputs of the full work-

flows. As discussed above, these are also the outputs of
individual workflows and, in most cases, equivalent stan-
dalone R scripts (see Table 2). To examine the outputs,
we employed a trimethylated lysine 4 of histone H3
(H3K4me3) dataset from the ENCODE project
(GM12878 immortalized human B-lymphocytes; sample
ENCFF001EXQ [21] and control ENCFF001HHW [22])
and a GATA1 dataset (K562 cells; NCBI GEO
GSM1003608; [23]). We show only a portion of rows
and columns of displayed output tables to allow reason-
able clarity of presentation in figures.
Figure 5a shows the results of generating H3K4me3

peak examples, as in Fig. 3. This workflow is available as
part of all full pipelines except those starting with only
peak data (see Table 2), as an individual Kepler module
and as a standalone R script (GeneratePeakExamples(.-
kar/.R)).
Figure 5b shows a partial table of the results from

computation of basic peak statistics for the H3K4me3
dataset. We created custom functions to calculate these
statistics. These results were verified by manual calcula-
tion of values from the peak dataset. This workflow is
available as part of all full pipelines (see Table 2), as an
individual module and as a standalone R script (Calc-
PeakStats(.kar/.R)).
Figure 5c shows a partial table of the output of assign-

ing peaks to genes. We initially investigated using the
Bioconductor package ChIPpeakAnno [25] for this

purpose. However, we found that this package creates
TSS “ranges” for genes as opposed to having a specific
TSS for each transcript. To avoid this issue, we devel-
oped our own custom functions. We used the well sup-
ported Bioconductor annotation package org.Hs.eg.db
and the specific transcript db package TxDb.Hsapien-
s.UCSC.hg19.knownGene. These are user-adjustable pa-
rameters. A wide range of annotation and transcript
database packages for other assemblies/organisms are
freely available via Bioconductor. Peaks were mapped to
genes based on peak presence in the proximal promoter
(the user controls the nucleotide range defining the
proximal promoter region). For the displayed analysis, a
peak was assigned to a gene if the peak is within a range
of −5000 nts to +2000 nts of the TSS (where 0 is the lo-
cation of the TSS). This workflow is available as part of
all full pipelines (see Table 2), as an individual module
and as a standalone R script (AnnotatePeaks(.kar/.R)).
Figure 5d shows outputs of TSS-centered analyses.

Figure 5d(i) shows a “heatmap” of H3K4me3 ChIP-seq
reads around the TSS of each transcript. Each row is a
single region around a TSS, which is placed at center.
Figure 5d(ii) displays the average profile of read density
around TSSs. These two functions are available as part
of all full pipelines except the peak-only pipeline (see
Table 2), as an individual module and as a standalone R
script (MakeTSSHeatmapAndDensityPlots(.kar/.R)).
Both the heatmap and the density plot are generated by
the external program ngs.plot [16]. Figure 5d(iii) shows
the output of an analysis of peak location with respect to
the TSS by placing peaks into discrete categories based

Fig. 2 MapReads.kar Kepler workflow. This workflow displays some fundamental features of Kepler and Kepler’s ability to use external computing
and data resources. The workflow is executed from the user’s machine but performs mapping of a set of sequence reads on an external high
performance machine. A sequence read file (fastq format) is copied to an external machine/cluster and the program bowtie [13] is used to align
reads to the genome specified by parameter genomeDirectory. The output file (sam format) is then copied back to the user’s machine. The
number of CPU cores used for this computation can be limited by the ‘Available CPU cores’ parameter. This is a screenshot of the actual Kepler
canvas that is displayed to the user
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on distance. This component was based on our custom
R programming. This workflow is available as part of all
full pipelines (see Table 2), as an individual module and
as a standalone R script (CalcDistanceToTSS(.kar/.R)).
These analysis results accord with previous results for
H3K4me3, which is well-known as a TSS-centric epigen-
etic mark [26]. The “notch” in the center of the mean
density graph (Fig. 5d(ii)) is expected due to histone de-
pletion in active genes and has been seen in other stud-
ies [26]. Finally, the table of distances also indicates the
TSS-centric nature of this epigenetic mark.
Figure 5e displays the top-scoring motif from motif

analysis of the GATA1 dataset. The software component
is based on the very widely used motif analysis tool
MEME [15]. In this case, MEME was limited to running
for 1800 s (30 min), which was set by a user-controllable
workflow parameter. This displayed motif closely

matches an expected motif for GATA1 [27]. This work-
flow is available as part of all full pipelines beginning
with read data, as an individual module and as a standa-
lone R script (MotifDiscovery(.kar/.R)).
Figure 5f shows the results of creating a file for upload

to the UCSC browser. The computation for this compo-
nent employs bedtools [17]. A bedgraph.tar.gz file is pro-
duced that can be directly uploaded to the UCSC
genome browser [28] for display. Figure 5f shows the
ENCODE project results (top) and our computed results
(middle). Visual inspection did not reveal large differ-
ences in waveforms. This workflow is available as part of
all full pipelines except peak-only pipelines, as an indi-
vidual module and as a standalone R script (MakeUCSC-
file(.kar/.R)).
Figure 6 displays the results of gene ontology and path-

way analyses for the GATA1 dataset. The inputs for these

a Kepler screenshot

c Non-peak regionb Peak region
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Fig. 3 Generation of peak examples. a Screenshot of Kepler canvas for this workflow. This workflow shows the typical design for most of our single
module Kepler workflows. This task is part of each of the full workflows for ChIP-seq, except those starting with only predicted peaks. It is available as
an individual Kepler workflow and as an independent R script. b, c Output from workflow applied to H3K4me3 dataset (see IMPLEMENTATION AND
RESULTS). This workflow produces graphs of positive peaks (example shown in b; x-axis range is chr16:2379054–2400852) and graphs of negative
regions (example shown in c; x-axis range is chr19:34482526–34487526). Workflow output graphs are designed for on-screen viewing and graph
aesthetics have been adjusted for clarity of presentation here. The number of produced graph examples and axis ranges are controlled by the user.
Standard R graphics (“base graphics”) are used for graph generation, allowing the experienced user to easily modify graph properties
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functions can be lists of genes or the full outputs of the
mapping peaks to genes pipeline (AnnotatePeaks(.kar/.R)).
Figure 6a shows partial results of gene ontology ana-

lysis for the GATA1 dataset. Our module was based on
the Bioconductor module GOstats [29]. Although the
top 10 categories revealed only general categories (e.g.,
GO:0005634 “nucleus”), specific categories related to
known GATA1 roles [30] were also present farther down
in the list (GO:0034101 “erythrocyte homeostasis” and
GO:0007346 “regulation of mitotic cell cycle”). The full
table output consists of several additional columns and
many more rows of data. This workflow is available as
part of all full pipelines, as an individual module and as
a standalone R script (GeneOntologyAnalysis(.kar/.R)).
Figure 6b, c shows the results of the pathway analyses.

We chose to use the Bioconductor packages gage ([31];
for pathway analysis computations) and pathview ([32];
for pathway visualization). The package gage is com-
pletely open source and can analyze single replicate ex-
periments, as opposed to some other pathway analysis
approaches (discussed in [31]). Both gage and pathview
can use pathway databases from several sources, as de-
scribed in the documentation for these packages.
The underlying gage computations are designed to use

fold change data from gene expression experiments. The

relationship of ChIP-seq peak magnitude to gene expres-
sion is complex and difficult to predict as to strength and
direction (i.e., repression or activation). Some transcrip-
tion factors may be activators, some repressors, and some
mixtures of the two [30]. We chose to first determine the
list of genes with peaks in the proximal promoters (see
below for discussion). Then, we determined the highest
scoring peak in the promoter of each of these genes, and
assigned the gene the value of that peak. This list of genes
(and associated scores) are then submitted to pathway
analysis. With only our ChIP-seq data as a source of infor-
mation, we do not know if transcription of these genes is
being activated, repressed, or not changed by the tran-
scription factor being present in the promoters. Due to
this ambiguity, the pathways containing these genes may
be upregulated, downregulated, or unchanged by the tran-
scription factor binding in the promoters. The pathway
software produces lists of pathways that are labeled as
“upregulated” and “downregulated”. We suggest that these
labels should be ignored and that all pathways that arise
from this analysis are considered simply as “potentially up
or down regulated”. This implementation of pathway ana-
lysis is available as part of all full pipelines (see Table 2), as
an individual module and as a standalone R script
(PathwayAnalysis(.kar/.R)).

Fig. 4 A full analysis pipeline for ChIP-seq data. This displayed workflow begins with raw sequence reads; other variants begin with mapped data
or mapped data with called peaks (see Table 2). The workflow implements steps displayed conceptually in Fig. 1. This workflow is also available
as a standalone R script (but without initial read mapping step)
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Figure 6b displays a partial listing of the pathway ana-
lysis table. We used the KEGG database of pathways, as
described in the gage publication [31]. Due to our scor-
ing modifications, we focused on top-ranking pathways
as opposed to p-values. Notably, the pathways “Porphy-
rin and chlorophyll metabolism” (hsa00860) and
“Hematopoietic cell lineage” (hsa04640) are found.
These pathways match the expectations for GATA1
based on previous work [30]. For this software module,
the user controls the p-value cutoff. We employed p <
0.20 to allow pathway analysis to be used for hypothesis
generation as opposed to pathway exclusion.
Figure 6c shows a portion of one pathway output image

from the workflow (porphyrin pathway (hsa00860)). Due
to the assignment of all genes to a relatively high positive

value, all genes that have predicted peaks in the proximal
promoter are indicated by red backgrounds. In total, our
software generates a table of pathways and images of the
pathways.

Discussion
Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) is the current standard approach for localiz-
ing proteins attached to genomic DNA on a full genome
scale. With decreases in the cost of sequencing, this
methodology has become very widely used. Hence, a
wide variety of laboratories, from the large scale to the
small, are using these approaches. A comprehensive ana-
lysis of a ChIP-seq dataset involves many steps with
many different types of outputs, ranging from simply

Fig. 5 A partial set of outputs of the full pipeline and component workflows. See Fig. 6 for more outputs. All of these are outputs of all the full
workflows, except some are not available in the pipeline beginning with only peak data. Each individual output is available as the product of
individual workflows or as standalone R scripts (see Table 2). All data is from analysis of the H3K4me3 dataset except E, which is from analysis of
the GATA1 dataset. a GeneratePeakExamples component output. (left) A predicted peak (x-axis: chr11:113174680–113196653) (right) A non-peak
region (x-axis: chr3:50344686–50349686). Also see Fig. 3. b Partial output of CalcPeakStats module. c Partial output of mapping to genes workflow
(AnnotatePeaks). Several additional columns of information are not shown here and full table has many more rows. d (i) Heatmap of coverage
around transcription start sites (TSSs). (ii) Density plot of coverage around TSSs. (iii) Table of distances from TSS. Note expected pattern of TSS-
centric location of H3K4me3, as indicated in previous studies. e Output of motif discovery component for GATA1 dataset. Note close match to
expected GATA1 motif [27] is obtained, including central GATA motif (positions 2–5). f Comparison of workflow-generated UCSC track (top) to
ENCODE-generated UCSC track (middle) for H3K4me3 dataset. Image from UCSC browser
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mapping the sequence reads to performing gene ontol-
ogy analyses. There is current intensive development of
new analytical approaches and tools in this area, produ-
cing a need for pipelines that can be easily altered to
employ the latest and best software tools. To address
these analytical needs, we developed a suite of pipelines
and modules to perform a range of analyses, from a full,
turnkey analysis to individual analytical tasks. We fo-
cused on the software engineering approach of produ-
cing highly modular pipelines using well-established and
standard approaches (e.g., R scripts employing existing
Bioconductor packages). An alternate approach would
be to produce a unitary program that uses command
line options to control which modules are executed. Be-
cause most bioinformaticians are familiar with R and
Bioconductor or can easily find information on this
completely open-source and well documented frame-
work, our approach enables rapid modification, exten-
sion and repurposing of our work. The highly
modular aspect also contributes to the ability to
quickly comprehend these pipelines. In our view, this
is particularly true in the case of the Kepler work-
flows, whose graphical nature promotes rapid com-
prehension. As a secondary point, we applied a
simple approach to pathway analysis with ChIP-seq
datasets that seemed to produce good results in the
case of at least one transcription factor (GATA1). We
suggest that pathway analysis may be an important
tool for understanding roles of poorly characterized
transcription factors and should be a standard ChIP-
seq analysis component.

We used two software environments to implement the
pipelines. We chose to implement pipelines in both Kep-
ler and as simple R scripts. We chose this dual imple-
mentation approach to maximize the utility of our work.
Kepler has significant advantages over simple scripting.
First, the graphical nature of the Kepler canvas makes
the flow of data and dependencies of modules on other
modules clear. Furthermore, the Kepler canvas (i.e.,
screen display) allows flexible placement of comments
with control of font properties. This feature promotes
user comprehension by allowing the workflow designer
to highlight certain points and minimize others. Second,
the nature of the Kepler canvas strongly promotes a sep-
aration of input parameters from data processing steps.
This division makes parameters clear. Third, Kepler, via
the bioKepler project [33], is developing powerful abil-
ities to directly interface with complex remote comput-
ing platforms (e.g., MapReduce; see [34]). As the
amount of data in typical bioinformatics analyses in-
creases, this will become more important. The contrast-
ing virtue of the R scripts (employing existing
Bioconductor packages) is their familiarity for many
bioinformaticians. Many investigators may wish to avoid
the Kepler framework and will be more comfortable
with straightforward R scripts. These investigators can
take advantage of our work without ever learning
Kepler.
We employed a set of software design principles. All

of these were in service to the greater goal of promoting
extensibility, modifiability, and comprehensibility to en-
able reproducible research. First, we emphasize the use

Fig. 6 More outputs from the full pipelines and individual components. All outputs are produced from all full pipelines (except the one starting
with only peak data), appropriate individual workflows, and Kepler-independent R scripts (see Table 2). Genes possessing a peak in the proximal
promoter are made into a list with an associated score equal to score of maximum scoring peak in the proximal promoter. This list is the input
into this analysis. a Partial gene ontology output for GATA1 dataset. Top four gene ontology categories are shown. b Partial GATA1 ChIP-seq
pathway analysis results. Top four pathways are shown. c Porphyrin pathway (hsa00860) image generated by workflow. Image is truncated for
presentation clarity. Red color indicates a gene with a peak in the proximal promoter (see IMPLEMENTATION AND RESULTS for details). Genes
without any color coding did not have peaks in their promoters. Note that this pathway is strongly implicated in GATA1 function (e.g., [43])
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of the R (with Bioconductor packages) framework for
processing, except when standalone programs are the ac-
cepted standard. R scripting allows great amounts of
customization and this environment is widely used in
bioinformatics. We expect that most bioinformaticians
will want to modify our graphical outputs for their own
purposes. Second, we used a modular development ap-
proach. Instead of presenting a single, large optimized
program, we chose to develop individual modules per-
forming discrete functions which were then combined to
form the full pipelines. This design strategy allows rela-
tively easy changes to modules, which we view as im-
portant in this rapidly evolving area of investigation. For
example, a bioinformatician wishing to use a different
pathway analysis software approach can easily modify
the pathway analysis module in our pipelines or the
individual modules. Third, we emphasized a careful sep-
aration of input values (“parameters”) from data process-
ing (“modules”, “actors”, “workflows”) steps. Kepler
naturally supports this division with the Kepler canvas.
For our R scripts, we developed a standard script format
featuring a delineated block of parameters to enable
rapid alteration of values. This design approach pro-
motes comprehension - by making the values of parame-
ters obvious - and extensibility and modifiability by
separating data processing from parameters.
Our work focuses on analysis of a single ChIP-seq

dataset (with an optional accompanying control/input
dataset). However, our work can be extended for analysis
of datasets with several replicates. For example, other
software (e.g., Galaxy components; [35]) may be used to
generate a consensus set of peaks. This consensus set of
peaks, along with the sequence data from a single repli-
cate, can be used as input into our full pipeline that
starts with peaks + sequence data (Pipeline_Mappe-
dReadsAndExternalPeakFile(.kar/.R)). Alternatively, the
investigator may use their consensus peak set with our
single module workflows/scripts for downstream ana-
lyses. For example, the investigator may wish to map the
consensus peaks to genes and then perform pathway
analyses, which can be easily accomplished using our in-
dividual workflows/modules. There are clearly other
ways in which our software modules could be incorpo-
rated into pipelines for analysis of multiple datasets.
Our work can also be used as a basis for ChIP-seq

pipelines addressing different types of scientific ques-
tions. Some analyses of chromatin involve comparing
datasets from multiple different factors (e.g., bivalent
promoters with H3K4me3 and H3K27me3 marks, see
[36]). Our modules performing basic initial functions
(read mapping, peak prediction) would be useful in this
scenario. The more downstream meta-analysis functions
(e.g., pathway analysis) will also usually be useful in
these cases. Other analyses integrate ChIP-seq data with

other types of data, most commonly large scale gene ex-
pression data (usually microarray or RNA-seq data) [37].
In this case, our full pipelines may become one compo-
nent in these more complex analyses, with the data inte-
gration steps often logically occurring after all the
processing in our pipeline is finished. To our knowledge,
existing software for these analyses (e.g., [38]) was not
designed specifically with a goal of extensibility and
modifiability and hence appears to be much more diffi-
cult to extend/modify than our software.
Finally, our work can also be easily adapted to address

“broad modifications”. The term “broad modification”
refers to a transcription factor or histone modification
that is found along a large region of a chromosome
(often >50kb to megabase length regions; e.g., see [36]).
Recently, there has been development of specialized
peak-detection software aimed at accurately detecting
broad modifications in ChIP-seq datasets [39, 40]. We
anticipate that it would be relatively straightforward to
replace MACS in the peak finding step with one of these
programs, enabling our pipelines to be used for broad
peak detection. However, it will also probably be neces-
sary to modify the peak annotation steps to allow a sin-
gle lengthy peak to be “mapped” to several genes.
There are some relatively obvious ways in which our

pipelines could be enhanced. These primarily involve de-
velopment and subsequent addition of new functional
modules. A quality control step could be implemented at
an early stage in the pipeline. At the end of the pipeline, a
full report of all results could be produced using “literate
programming” tools such as knitr [41] or sweave [42].

Conclusions
Comprehensive ChiP-seq analysis involves a large num-
ber of functional steps. In current software implementa-
tions, these often involve many individual software
packages. Our ChIP-seq pipelines and standalone, fully
independent component modules can be used as-is or
can be easily modified for other purposes, including re-
combination or integration into other pipelines. Our
software design approach emphasized modifiability, ex-
tensibility, and comprehensibility. These ChIP-seq ana-
lysis pipelines are implemented in a robust fashion using
Kepler and simple R scripting. It is advantageous to have
both complete pipelines and individual functional
modules.
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