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Abstract

Background: Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on
a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait
values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression
models which require quantitative encodings for the genotypes. There are lots of work on the prediction algorithms,
but none of the existing work investigated the effects of the encodings on the genetic trait prediction problem.

Methods: In this work, we view the genetic trait prediction problem from a novel angle: a multiple regression on
categorical data problem, which requires encoding the categorical data into numerical data. We further proposed two
novel encoding methods and we show that they are able to generate numerical features with higher predictive power.

Results and discussion: Our experiments show that our methods are superior to the other encoding methods for

both single marker model and epistasis model. We showed that the quantitative genetic trait prediction problem
heavily depends on the encoding of genotypes, for both single marker model and epistasis model.

Conclusions: We conducted a detailed analysis on the performance of the hybrid encodings. To our knowledge, this
is the first work that discusses the effects of encodings for genetic trait prediction problem.

Keywords: Quantitative genetic trait prediction, Encoding, Epistasis, Ridge regression

Background
Whole genome prediction of complex phenotypic traits
using high-density genotyping arrays has attracted a lot of
attention, as it is relevant to the fields of plant and ani-
mal breeding and genetic epidemiology [1-8]. Given a set
of biallelic molecular markers, such as SNPs, with geno-
type values typically encoded as {0, 1,2} on a collection
of plant, animal or human samples, the goal is to predict
the quantitative trait values by simultaneously modeling
all marker effects.

More specifically, the genetic trait prediction problem
is defined as follows. Given # training samples, each with
m > n genotype values (we use “feature’;, “marker’,

“genotype’, “SNP” interchangeably) and a trait value, and
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a set of 1’ test samples each with the same set of genotype
values but without trait value, the task is to train a pre-
dictive model from the training samples to predict the
trait value, or phenotype of each test sample based on
their genotype values. Let Y be the trait value of the train-
ing samples. The problem is usually represented as the
following linear regression model:

Y=po+Y BXite 1)

i=1

where X; is the i-th genotype value, m is the total number
of genotypes and p; is the regression coefficient for the i-
th genotype, ¢; is the error term. We call this model single
marker model.
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The above model assumes that only the single markers,
or main effects, play a role for the prediction. However,
it is known that the interactions of the markers may also
contribute to the genetic traits under certain conditions,
which is known as Epistasis [15]. The pairwise epista-
sis between two markers i and j is often modeled as
the product of the two genotype values. Therefore, with
the traditional representation, the linear regression model
with pairwise epistasis effects is modified as the following:

m m
Y =B+ Y BXit+ ) aijXiXj+e 2)
i=1 i

where X;X; is the product of the genotype values of the i-th
and j-th genotype and it denotes the interaction of the two
genotypes, «;; represents the coefficient for the interac-
tion. Thus in this epistasis model, the epistasis effects are
considered as augmented genotypes besides the original
genotype matrix X. We call this model epistasis model. As
multiplication is one of the most popular epistasis models,
in this work, we consider only the multiplication model
for epistasis.

Genotypes for a marker can be either homozygous
or heterozygous. For Genome Wide Association Study
(GWAS), we only need to identify the association between
a marker and the case/control trait. Therefore, we care
more about whether genotypes are homozygous or het-
erozygous, the specific alleles and their frequencies. The
genotypes don'’t necessarily need to be quantitative. They
are usually represented as a pair of alleles, for exam-
ple “AA" and “TT" for homozygous genotypes, “AT" for
heterozygous genotype.

On the other hand, for genetic trait prediction prob-
lem, in Eq. 1, the genetic trait values Y are quantitative.
Thus the genotypes X; needs to be quantitative as well.
Researchers generally assign three distinct encodings to
the three possible genotype values. A few common sets of
encodings for genotypes are {0, 1, 2}, where 0 and 2 are for
homozygous genotypes and 1 is for heterozygous geno-
type, and {—1,0,1}, where -1 and 1 are for homozygous
genotypes and 0 is for heterozygous genotype.

There have been lots of work on predicting genetic
trait values from genotype data, such as rrBLUP (Ridge
regression BLUP) [1], Elastic-Net, Lasso, Ridge Regression
[10, 11], Bayes A, Bayes B [1], Bayes C;; [12], and Bayesian
Lasso [13, 14], as well as other machine learning methods.
However, all previous work consider genetic trait pre-
diction problem as a regression problem on a numeri-
cal data set. We, on the contrary, look at the problem
from a totally different angle: we consider the problem
as a problem of multiple regression on categorical data,
namely a regression on multiple categorical features. The
genotype of each marker has three possible categories:
homozygous with major allele, homozygous with minor
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allele and heterozygous. In order to conduct regression
on categorical data, we need to first encode the categor-
ical data. Many encoding methods have been proposed
for categorical data, including dummy encoding, ordinal
encoding, target-based encoding etc. The traditional cod-
ing of {0,1,2} is indeed the ordinal coding, which assumes
that the categories follow certain order. In this prob-
lem setting, the three categories can be considered as
following the order of the number of major or minor
alleles.

In this work, we first review the existing encoding
mechanisms and we show that only ordinal encoding and
target-based encoding are appropriate for the genetic trait
prediction problem. The ordinal encoding encodes the
three categories into three unique numerical values, such
as {0,1,2} or {-1,0,1}. The advantage of the ordinal encod-
ing is that the order of the categories are maintained by the
encoding. The target-based encoding encodes the three
categories as follows: For each category g of each marker
i, we identify the set of trait values for the samples whose
category is g at marker i. Then we take the average of
this set of traits and assign the genotype with this aver-
age value. The advantage of the target-based encoding is
that each marker, or feature, can be encoded differently
according to the data. We also observe that the ordi-
nal encoding method always encodes different markers
with the same set of numerical values. On the contrary,
the target-based encoding methods can not maintain the
order of the categories. To combine the advantages of both
mechanisms and to address their drawbacks at the same
time, we further developed two hybrid encoding methods.
The hybrid methods conduct target-based encoding for
the two homozygous categories first, then encode the het-
erozygous category either as the mean of the trait for all
samples, or the mean of the two homozygous categories.
Thus they allow the flexibility of the encodings, where
different markers can be encoded differently. We showed
that the encoded value for the heterozygous category is
always bounded by the two values of the homozygous
categories. Therefore the hybrid encoding methods main-
tain the order of the categories. We also extended these
hybrid encoding methods to epistasis model. We showed
that our hybrid encoding methods are superior to both
ordinal and target-based encodings for both single marker
model as well as epistasis model. Due to space limit, we
did not include the experimental results for the epistasis
model, which will be included in the extended version of
the work.

Preliminaries

Given the traditional encoding of genotypes as {0,1,2},
lots of techniques have been applied to the genetic trait
prediction problem defined in Eq. 1. Consider the typical
situation for linear regression, where we have the training
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sety € RY, x € R, in a standard linear regression, we
wish to find parameters By, § such that the sum of square
residuals, > ;_; (v — Bo — xlT B)?, is minimized.

Many machine learning methods have been applied to
the genetic trait prediction problem, such as Elastic-Net,
Lasso, Ridge Regression [10, 11], Bayes A, Bayes B [1],
Bayes C, [12], and Bayesian Lasso [13, 14]. As in this
work, we applied rrBLUP and SVR, we mainly focused on
reviewing these two techniques.

min
(Bo,B)eR" 1

[

1

ﬂE i — o — x,.B)* + APy (B) |,
i=1

3)

rrBLUP (Ridge regression BLUP) [1, 9] is one of the most
popular methods for genetic trait prediction. rrBLUP sim-
ply is ridge regression with a specific choice of A in (3).
Specifically, Meuwissen et al. [16] assumes that the 8 coef-
ficients are iid from a normal distribution such that g; ~
N(O, 0;). Then the choice of A = crez/oé where o2 is the
residual error. In this case, the ridge regression penalized
estimator is equivalent to best linear unbiased predictor
(BLUP) [17].

Support vector machines (SVMs) are a tool in statistics
and machine learning for the task of supervised learning
[18-22] used for either classification or regression. Here
we are interested in the latter case. Following [23], given a
training set (x;,7;), i = 1,.../[, where x; € R”, the goal of
€-SV regression is to find a function f(x) that is at most €
deviation from the training data y; over the training data
X;, while remaining as flat as possible in the feature space.
Training an SVM requires solving

!
1 7
wr gereLs 0
subjectto y;(w'¢(x;) +b) >1—& —e,
& >0.

The data vectors x; are mapped to another space via the
function ¢, and SVM attempts to fit the data in this higher
dimensional space. Thus, the choice of ¢, referred to as the
kernel, has a large impact. Four kernels are usually used:

Linear: uTv,
Polynomial: (yu'v+ n% y >0,
Radial: exp(—y|u—v|?), y >0,
Sigmoid: tanh(y u'v+r).

Support vector regression involves solving Eq. 4 given
training data. The vector w, the choice of the kernel, and
the choice of kernel parameters, used previously to solve
Eq. 4 gives a model capable of predicting future data.
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Encoding mechanisms and evaluation

For a linear regression problem shown in Eq. 1, different
encodings would not change the regression result as the
coefficients and error terms would compromise the dif-
ference of the encodings. Assuming the old encoding and
new encoding for the i-the feature are X; and X respec-
tively, we could always have X] = X; + A;, where A; is a
vector. For example, [1, 2,4] = [0, 1, 2] + [1, 1, 2]. Then we
could have:

Y =po+ Y BiX|+e (5)
=Po+ Y BiXi+A)+e
= Po+ Y BXi+ ) Bihi+e
=Bo+ ) PiXit+e

where ¢ = ) BiA; + e. We can see that the regression
for the new encoding and old encoding indeed differ only
by the error term. As the error term e follows a normal
distribution N(0, §), For different encodings, the § could
be different, thus lead to different regression performance.
Therefore encodings does matter to the regression task, as
we will show in the next few sections.

Different encoding mechanisms
In this work, we view the quantitative genetic trait predic-
tion as a multiple regression on categorical data. Multiple
regression problem on categorical data requires encod-
ing. Various encoding mechanisms have been proposed.
The most common one is called dummy encoding. In
general, a categorical variable with k levels will be trans-
formed into k — 1 dichotomous variables each with two
levels. For example, for a variable of three possible val-
ues, or levels, we could transform it into two dummy
dichotomous variables A and B. For value one, we assign
A = 1,B = 0. For value two, we assign A = 0,B = 1.
For value three, we assign A = 0, B = 0. Thus for » mark-
ers, we need at least 2z dummy dichotomous variables.
As the complexity for rrBLUP is O(m?), where m is the
number of markers, the complexity with dummy encoding
becomes O(472). Given in our problem setting 7 is usually
tens of thousands, O(4#?) in reality is significantly bigger
than O(n2). Another issue is that using dummy encod-
ing, we are not able to obtain a single coefficient for a
marker, which is generally considered as the importance
of the markers for plant and animal breeding. A set of
similar encoding mechanisms such as Forward Difference
Coding, Backward Difference Coding, Helmert Coding,
Reverse Helmert Coding, Deviation Coding, Orthogonal
Polynomial Coding all have the same issues for a combi-
nation of categorical variables for similar reasons.
Another very popular encoding method that addresses
the scalability issue is ordinal encoding. Ordinal encod-
ing assumes that the categories follow certain order and
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then encodes the categories with numerical values such
as 0, 1, 2. This is indeed the case for our problem setting
where the three categories can be considered as follow-
ing the order of the number of major or minor alleles.
When a combination of categories are considered, each
category is encoded independently. For genotype encod-
ing, a traditional way is to encode the three categories
the same way across all markers. A different encoding
mechanism, Target-based encoding encodes each cate-
gory as the mean of the target variable for that specific
category. This encoding method allows each marker to be
encoded differently. However, the order of the categories
are not maintained. Thus for a combination of categori-
cal variables, the order of the categories of each variable is
relatively random.

In this work, in order to address the drawbacks of the
ordinal encoding and the target-based encoding while
maintaining both of their advantages, we develop two
hybrid encoding methods. Assuming O stands for the
homozygous genotype with major allele, 2 stands for the
homozygous genotype with minor allele, 1 stands for the
heterozygous genotype, the first hybrid method computes
new encodings of genotypes at marker i as the follows:

E(i,0) = Ave(trait(i, 0)) (6)
E(i,2) = Ave(trait(i,2))
E(i,1) = Ave(trait(i, {0, 1,2}))

where E(i, 0) is the new encoding for genotype of value 0
at marker i, trait(i,0) is the set of traits for the samples
whose genotypes are 0 at marker i, Ave() is the function
to compute the average value. We call this method Hybrid
One.

The second hybrid method computes E(i,0) and E(i, 2)
the same as algorithm hybrid one does. However, instead
of the average of the trait, E(i, 1) is computed as the aver-
age of E(i,0) and E(;,2). We call this method Hybrid
Two.

E(i,0) = Ave(trait(i, 0)) (7)
E(i,2) = Ave(trait(i,2))
E(,0) + E(i,2)

2

We can see that for both hybrid one and hybrid two,
E(i,0) and E(j,2) are computed the same as those from
target-based encoding. However, target-based encoding
computes E(i, 1) as Ave(trait(i,1)) which then loses the
order of the categories. For both hybrid one and hybrid
two, it is guaranteed that E(i, 1) = Ave(trait(i, {0, 1,2}))
and E(j,1) = w are in between of E(i,0) and
E(i,2). Thus the order of categories is maintained. The dif-
ference is that E(i,1) = Ave(trait(i, {0, 1,2})) is closer to
E(i,0) as 0 stands for the heterozygous with major allele,
where most of the samples have this genotype, thus the

EG,1) =
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average of the whole trait values is close to E(i,0). On
the contrary, E(i,1) = w requires its value as
the mean of E(i, 0) and E(i, 2). From our experiments, the
second strategy achieves slightly better performance.

We show an example in Fig. 1. The figure on the left
shows the multiple regression problem. The figures on
the right show the codings of different encoding meth-
ods. Notice we just simply give some sample regression
and the regressions might not be perfect. As we can see,
for ordinal encoding, X is positively correlated to Y, X is
negatively correlated to Y. For the other encodings, both
X1 and X; are positively correlated to Y.

Notice for the ordinal encoding, we could check if the
correlation between a feature and the trait is positive or
not. If the correlation is negative, we could flip 0 and 2
to make the feature positively correlated to the trait. This
strategy would work well for single marker model. How-
ever, it can not be extended to the epistasis model where
we could have 9 values for each feature for the pairwise
epistasis case and 3¥ values for the k-way interactions.

Performance analysis of different encoding mechanisms
As we will show later in the experiments in
Section “Results’, the hybrid encoding methods are able
to improve the performance not only for the epistasis
model, but also for the single marker model. Next we
investigate the reason that the hybrid encodings are in
general superior to the other encoding methods.

Importance of encoding flexibility

The issue of the traditional encoding, or the ordinal
encoding for multiple regression problem is that as all the
categories are encoded the same way for different mark-
ers. Our encoding methods, as well as the target based
encoding, encode each marker by assigning values similar
to the trait values according to how the genotype cate-
gories are distributed for the marker. As we will show later
in our experiments, this strategy is able to improve the

Ordinal
X1 X2 Y
0 2 1
1 1 2 =
- 2 . a2 Y=X1+0X2+1
HOA  HOI 1 2 0 3
HET HET 2
HOI HOA 3 Hybrid Two/Target-Based
HOI HOA 3
X1 X2 Y
HOA: Homozygous Major Allele ; ; ; Y=X1+0X2+0
HET: Heterozygous Allele g g g ¥=0.5X1+0.5X2+0
Y =0.2X1+0.8X2+0
HOI: Homozygous Miner Allele Hybrid One
X1 X2'Y Y=X1+0X2+0
11 1 -
45 45 2 Y =0.5X1+0.5X2+0
3 3 3 Y =0.3X1+0.7X2 + 0
3 3 3
Fig. 1 Examples of different encodings
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correlation of the encoded features to the trait value and
thus tends to improve the regression performance.

Importance of maintaining the order of categories

The issue of target-based encoding is that the encoded
values of the categories completely depend on the trait
and therefore the order of the categories are not main-
tained. The encoded value for the heterozygous category
for target-based encoding could be smaller or greater
than the values for both homozygous categories. On the
contrary, for the hybrid encoding, the value for the het-
erozygous category is always in between of the values of
the two homozygous categories and therefore the order of
the categories are maintained.

To evaluate the importance of such category order
maintenance, we calculate the distance between samples
for different encodings, where we consider each sample as
a m dimensional vector and m is the number of features.
The distance is computed as the follows.

We first compute the z-score of trait value for each sam-
pleas ’68_—2", where x is the original trait value, p is the mean
of all the traits, § is the standard deviation of all the traits.
Then, we assign discretized values to samples according
to their trait z-score using the following formula:

—1 ifz-score < -1
discretized value = { 1 if z-score > 1 (8)
0 otherwise

Then we consider the distance of the samples with iden-
tical discretized trait value. The intuition is that when a
set of samples have similar trait values and they are close
to each other in the feature space, the residual error of the
regression tend to be small. An extreme scenario is all the
samples have the same trait value and also the same fea-
ture values, namely all these samples are identical points
in the feature space, the regression will have residual error
0. On the contrary, if the samples are far from each other
while they have the same trait value, the residual error
tend to be large.

As for different encodings the scales of the encoded val-
ues are different, we normalize the encoded values and
compute the z-score of the j-th marker for the i-th sam-

S 2
ple as z(i,j) = 7(’6(“{})‘”5)(’))

for sample i at marker j, x(i,j) is the encoded value of
sample i at marker j, 1 (j) is the mean of the encoded val-
ues for marker j for all samples, var(j) is the variance of
the encoded values for marker j. Once we compute the
z-score of each marker for each sample under each encod-
ing, we measure the pairwise distance between every
pair of samples i,j using Euclidean distance as dis(i,j) =
VY (z(i, k) — z(j, k)%, for 1 < k < d and d is the
total number of markers. Then we compute the average

, where z(i,j) is the z-score
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distance. The smaller the average distance is, the closer
the samples are. As we will show later, the target-based
encoding has higher sample-wise distance than the ordi-
nal encoding and hybrid encoding, which explains the
observation that the hybrid encoding methods lead to
better regression performance.

As we can see, both the encoding flexibility and the
order of the categories are important for multiple regres-
sion on categorical data. Our hybrid encoding methods
keep the encoding flexible among markers and in the
meanwhile maintain the order of the categories. There-
fore our methods achieve better performance than both
the ordinal encoding and the target-based encoding do.

Extension to epistasis model
The hybrid encoding strategies can be naturally extended
to pairwise epistasis effects or even higher dimensional
epistasis effects. As shown in Fig. 2, for pairwise epistasis
effects, given the traditional encoding {0, 1,2}, we have 9
possible combinations for markers i and j, organized in the
3 x 3 grid matrix. Assuming O is the traditional encoding
for homozygous genotype with major allele, 2 is the tra-
ditional encoding for homozygous genotype with minor
allele, 1 is traditional encoding for heterozygous genotype,
then the cell (0, 0) (from now on, for simplicity, we ignore
the marker indices i, j for the cell) is the traditional encod-
ing for a pair of homozygous genotypes, both with major
allele, the cell (2,2) is the traditional encoding for a pair
of homozygous genotypes, both with minor allele, the cell
(1,2) is the traditional encoding for a pair of heterozygous
genotype and homozygous genotype with minor allele.
The meaning of the other cells can be inferred similarly.
Our goal is to encode each cell using the hybrid
approach. We first compute the hybrid encoding for the
four corner cells (0,0), (0,2),(2,0),(2,2) as the average

E(ij,0,0) [EG,0,1) |EGj,0,2)

E(iy,1,0) (EGy,1,1) |EG,1,2)

Ei,20) [EG,20) [EG,2.2)

Fig. 2 The nine possible combinations for a pair of markers i, j
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Table 1 Summary of the data sets

Data set Num. of markers Num. of samples
Maize: Flint (all three datasets) 29094 261

Maize: Dent (all three datasets) 30027 261

Rice (both datasets) 36901 413

Pig (both datasets) 52842 3534

QTLMAS (both datasets) 10031 2326

of their corresponding trait values, as shown in Fig. 2.
For example, E(i,},0,0) = Ave(trait(i,j,0,0)), where
trait(i, ,0,0) is the set of traits for the samples whose
traditional genotypes at marker i,j are 0 and 0, respec-
tively. Then for the cells (1, 0), (0, 1), (2, 1), (1,2), we com-
pute their hybrid encoding by extending the encoding
strategy for single markers. For example, £(i,j,1,0) =
Ave(trait(i, ], {0, 1,2},0)), where trait(i, }, {0, 1,2}, 0) is the
set of traits for the samples whose traditional geno-
type at marker i is 0 or 1 or 2, and at marker j is
0, respectively. The intuition is that we consider the
encoding for the three cells (0,0),(1,0),(2,0) for the
marker pair i,j as fixing the genotypes for marker j
as 0. Then the problem is converted to computing
the encoding for a single marker i, whose genotype
can be either 0, or 1, or 2. Similar encoding strate-
gies are also applied on the cells [(0,2),(1,2),(2,2)],
[(0,0), (0,1),(0,2)], [(2,0),(2,1),(2,2)] to compute the
encodings for cells (1, 2), (0, 1), (2, 1), respectively. Finally
for the cell in the center (1,1), we compute its hybrid
encoding as the average of all the traits, namely
E(i,j,1,1) = Ave(trait(i, }, {0, 1, 2}, {0, 1,2})).

The above is a straight-forward extension of Hybrid
One for single markers. The extension of Hybrid Two
is a similar procedure with the following differences:
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E(i,j,1,0) = Ave(trait (i, j, E200TEG2D o)) and similar
encodings for cells (1,2),(0,1),(2,1), E@,j,1,1) =
Ave(tmit(i,j, E(L,],1,0)+E(l,],1,2)ZE(L,},O,I)-‘:—E(Z,},Z,]) ))

The same hybrid encoding algorithm can be further
extended to higher dimensional epistasis effects. In this
work, we only focused on the application of the hybrid
encoding algorithm on single marker and pairwise epista-
sis effects.

Results

As rrBLUP is one of the most commonly used methods
for genetic trait prediction, in our experiments, we evalu-
ate the prediction accuracy for different encodings mainly
using rrBLUP.

We apply the new encoding strategy to four different
data sets, summarized in Table 1. We compare the per-
formance of rrBLUP on both the traditional encoding and
the two hybrid encodings and the target-based encoding.
As r2, the square of the Pearson’s correlation coefficient
is the most common evaluation metric for genetic trait
prediction problem, we show the average r? of 10-fold
cross validation. Notice all the encodings are generated
only from the training data and then applied to the test
data accordingly.

The first data set is the Maize data set [7] which consists
of two maize diversity panels with 300 Flint and 300 Dent
lines developed for the European CornFed program. The
two panels, Flint and Dent, were genotyped using a 50k
SNP array, which after removing SNPs with high rate of
missing markers and high average heterozygosity, yielded
29,094 and 30,027 SNPs respectively. Both of them contain
261 samples.

The second data set is the Asian rice, Oryza sativa,
data set [24]. This data set was based on 44,100 SNP
variants from 413 accessions of O. sativa, taken from

Table 2 Performance of rrBLUP (average r?) on the traits of four real data sets under the traditional encoding vs. the hybrid encodings
vs. the target-based encoding. We also show the improvements of the hybrid encodings over the traditional encoding

Data set Traditional encoding Hybrid one (improvement) Hybrid two (improvement) Target-based
Rice: Pericarp.color 0433 0.499 (16 %) 0.504 (16.4 %) 0.493
Rice: Protein.content 0.176 0.176 (1 %) 0.177 (1 %) 0177
Pig: Trait 2 0.237 0.238 (1 %) 0.239 (1 %) 0.236
Pig: Trait 4 0.203 0.218 (7 %) 0.218 (7 %) 0.207
QTLMAS: Trait 1 0.358 0.36 (1 %) 0.361 (1 %) 0.36
QTLMAS: Trait 2 0.187 0.179 (-4 %) 0.18 (-4 %) 0.178
Maize: Flint 1 TASS 047 0.492 (5 %) 0.492 (5 %) 0475
Maize: Flint 2 DMC 0301 0.311 (2.5 %) 0.308 (2.3 %) 0.289
Maize: Flint 3 DM_Yield 0.057 0.07 (20 %) 0.068 (19 %) 0.062
Maize: Dent 1 Tass 0.59 0.615 (4.4 %) 0.616 (4.4 %) 0.593
Maize: Dent 2 DMC 0.562 0.58 (3.2 %) 0.58 (3.2 %) 0.582
Maize: Dent 3 DM_Yield 0.321 0.343 (8.6 %) 0.349 (8.7 %) 0.346

The bold numbers are the ones with the best performance
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Table 3 Performance of SYM (average r?) on the traits of Maize data set under the traditional encoding vs. the hybrid encodings vs. the

target-based encoding

Data set Traditional encoding Hybrid one Hybrid two Target-based
Maize: Flint T TASS 0317 0.344 0.344 0328

Maize: Flint 2 DMC 0278 0.29 0.29 0.27

Maize: Flint 3 DM_Yield 0.066 0.075 0.074 0.05

Maize: Dent 1 Tass 0.2 0.27 0.27 0.27

Maize: Dent 2 DMC 045 049 0.495 0.48

Maize: Dent 3 DM_Yield 032 0.34 0.34 033

The bold numbers are the ones with the best performance

82 countries containing 34 phenotypes. We selected two
phenotypes, one is polygenic (Protein.content), one is oli-
gogenic (Pericarp.color). The data sets have 36,901 mark-
ers and 413 samples.

The third data set is Pig data set, which is a collection
data on male and female pigs born since 2000 and was
taken from [5] and consists of 3,534 animals from a sin-
gle PIC nucleus pig line yielding 52,842 SNPs with five
measured traits (phenotypes). Only traits 2 and 4 were
selected for study here. As described in [5], genotypes
were sequenced from the Illumina PorcineSNP60 chip and
full pedigree information is available, which we did not
use in this study. In the original study, trait 2 was rescaled
by a weighted mean of corrected progeny phenotypes.
Whereas trait 4 was corrected for environmental factors
such as year of birth and location. Genotypes were fil-
tered for minor allele frequency less than 0.001 and with
missing genotypes less than 10 %. The original study used
Alphalmpute to impute any missing data [14].

The fourth data set is QTLMAS data set, which was
taken from the QTL-MAS Workshop, which was held
on May 17-18, 2010 in Poznan Poland [1]. The data set
consists of 3,226 individuals over five generations (FO-
F4) with 20 founders, five male and 15 females. There
were two phenotype traits, the first a quantitative trait
and the second a binary trait. Only the first four gen-
erations (2,326 individuals) have phenotype records. The
genome is approximately 500 million bp with five chromo-
somes, each 100 million bp. In total, each individual was
genotypes for 10,031 biallelic SNPs.

For genetic prediction, to our knowledge, there is no
method can achieve consistently better performance than
rrBLUP does with similar running time. Also compared
with rrBLUP, even for cases where the performance can
be improved, most of the other methods can not make
an improvement over 5 %. Thus we consider an improve-
ment of 5 % as significant. As shown in Table 2, in general
the hybrid encodings are able to improve the prediction
performance and in many cases the improvement is signif-
icant. The target-based encoding is slightly better than the
traditional encoding, but worse than both hybrid encod-
ings. Thus for single marker model, the hybrid encodings
are superior to the traditional encoding and the target-
based encoding. The two hybrid encodings have similar
performance.

We also conducted SVR (support vector regression)
with sigmoid kernel on all the data sets with different
encodings. We show only the results for the Maize data.
The results are shown in Table 3. We can see that the two
hybrid encoding methods achieve almost identical accu-
racies, both are higher than the accuracy from the target
based encoding. The traditional encoding has the worst
accuracy.

Next we compute the average correlation of the top-100
markers with the highest absolute correlation values (as
the correlation could be either positive or negative) to the
trait under different encoding methods. The results are
shown in Table 4. We show only the results for the Maize
data. We can see that for the ordinal encoding, the average
correlations are smaller than those of the other encoding

Table 4 The average correlation of the top-100 markers with the highest absolute correlation values to the trait under different
encoding methods. We also show the percentage of the positively correlated features for the traditional encoding

Data set Ordinal encoding Hybrid one Hybrid two Target-based
(positive percentage) encoding
Maize: Flint 1 TASS 04 041 0.41 043
Maize: Flint 2 DMC 0.35 0.37 037 0.38
Maize: Flint 3 DM_Yield 022 023 0.23 0.30
Maize: Dent 1 Tass 0.36 0.37 037 038
Maize: Dent 2 DMC 04 040 0.40 0.40
Maize: Dent 3 DM_Yield 032 033 033 0.34
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Table 5 Average pairwise distance of the samples under different encoding methods
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Data set Ordinal Hybrid one Hybrid two Target-based
encoding encoding

Maize: Flint 1 TASS 608 628 608 691

Maize: Flint 2 DMC 608 637 608 749

Maize: Flint 3 DM_Yield 608 628 608 692

Maize: Dent 1 Tass 620 657 620 1641

Maize: Dent 2 DMC 620 641 620 1725

Maize: Dent 3 DM_Yield 620 642 620 1503

methods, indicating that by allowing encoding flexibility,
we could potentially improve the regression performance.
The target-based encoding has the highest average corre-
lation. However, due to its lack of category order main-
tenance, its performance is worse than those from the
hybrid methods. The two hybrid methods have identical
average correlations which are slightly lower than that of
the target-based encoding.

In order to show the importance of category order main-
tenance, we show in Table 5 the average pairwise distance
of the samples for each encoding method. Due to space
limit, we show only the results for the Maize data. We
can see that the target-based encoding has the biggest
pairwise distance while the hybrid encoding methods
have lower pairwise distance. The traditional encoding
has lower pairwise distance, but due to its mixture of
both positively-correlated and negatively-correlated fea-
tures, its performance is worse than those of the hybrid
encodings.

We also applied the hybrid encoding strategies on the
epistasis model shown in Formula 2. Due to space limit,
we did not include the experimental results for the epista-
sis model, which will be included in the extended version
of the work. However, our experiments indicate that the
hybrid encoding strategies improved the prediction per-
formance on the epistasis model as well.

Conclusions

In this work, we showed that the quantitative genetic
trait prediction problem heavily depends on the encoding
of genotypes, for both single marker model and epista-
sis model. We developed two hybrid encoding methods
which are simple but effective. Our experiments show
that the hybrid encodings are able to improve the predic-
tion accuracy for both single marker model and epistasis
model. We also conducted a detailed analysis on the per-
formance of the hybrid encodings. To our knowledge, this
is the first work that discusses the effects of encodings for
genetic trait prediction problem. In our future work, we
would like to develop more effective encoding methods
for both single marker and epistasis models. We would
also like to investigate the effects of variation of allele

frequency between train and test data and the effects of
correlation of markers (linkage).
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