
Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267
DOI 10.1186/s12859-016-1128-0

RESEARCH Open Access

Parallel algorithms for large-scale
biological sequence alignment on Xeon-Phi
based clusters
Haidong Lan1†, Yuandong Chan1†, Kai Xu1, Bertil Schmidt2, Shaoliang Peng3 and Weiguo Liu1*

From IEEE International Conference on Bioinformatics and Biomedicine 2015
Washington, DC, USA. 9-12 November 2015

Abstract

Background: Computing alignments between two or more sequences are common operations frequently
performed in computational molecular biology. The continuing growth of biological sequence databases establishes
the need for their efficient parallel implementation on modern accelerators.

Results: This paper presents new approaches to high performance biological sequence database scanning with the
Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW
heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full
advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level
coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence
datasets and use Xeon Phi shuffle operations to improve I/O efficiency.

Conclusions: Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning
real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P
cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both
database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive
in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.
com/turbo0628/LSDBS-mpi.

Keywords: Smith-Waterman, Dynamic programming, Pairwise sequence alignment, Multiple sequence alignment,
Xeon Phi clusters

Background
Calculating similarity scores between a given query pro-
tein sequence and all sequences of a database and comput-
ing multiple sequence alignments are two common tasks
in bioinformatics. Both tasks include iterative calculations
of pairwise local alignments as a basic building block.
This can lead to high runtimes for large-scale input data
sets. Since biological sequence databases are continuously
growing, finding fast solutions is of high importance. An

*Correspondence: weiguo.liu@sdu.edu.cn
†Equal contributors
1School of Computer Science and Technology, Shandong University,
Shunhua Road 1500, Jinan, Shandong, China
Full list of author information is available at the end of the article

approach to reduce associated runtimes is the implemen-
tation of basic alignment algorithms on parallel computer
architectures [1–3]. More recently, the usage of mod-
ern massively parallel accelerator architectures such as
CUDA-enabled GPUs has gained momentum [4]. In this
paper we are investigating how a Xeon Phi-based compute
cluster can be used as a computational platform to acceler-
ate alignment algorithms based on dynamic programming
for two applications:

(i) databases scanning of protein sequence databases
with the Smith-Waterman algorithm, and

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1128-0-x&domain=pdf
https://github.com/turbo0628/LSDBS-mpi
https://github.com/turbo0628/LSDBS-mpi
mailto: weiguo.liu@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 12 of 66

(ii) distance matrix computation for multiple sequence
alignment (i.e. the first stage of the popular ClustalW
heuristic).

Three levels of parallelization are required in order to
exploit the compute power available in a cluster of Xeon
Phis. Parallelization within a Xeon Phi is usually based on
the “scale-and-vectorize” approach: scaling across the up
to 61 cores requires the usage of several hundred threads
while exploiting the 512-bit wide vector units requires
SIMD vectorization within each core. Recent examples
of efficient parallelization on Xeon Phis include scientific
computing [5], bioinformatics [6–10], and database oper-
ations [11]. Furthermore, parallelization between Xeon
Phis adds another level of message passing based paral-
lelism. This level needs to consider data partitioning, load
balancing, and task scheduling. The accelerator-based
approach is motivated by the fact that the performance of
many-core architectures is growing. For example, the 2nd
generation Xeon Phi processor named “Knight’s Landing”
has already been announced.
The rest of this paper is organized as follows.

The “Related work” Section provides important back-
ground information about the Xeon Phi program-
ming model, pairwise and multiple sequence alignment,
and hardware accelerated alignment algorithms. Our
single-node parallel algorithms are presented in the
“Algorithms on a single node” Section. The “Cluster level
data parallelization” Section describes our cluster-level
parallelization. Section “Results and discussion” evalu-
ates performance. Some conclusions are drawn in Section
“Conclusion”.

Related work
Programmingmodels on Xeon Phi coprocessor
Xeon Phi is a coprocessor connected via the PCI express
(PCIe) bus to a host CPU. From a hardware perspective,
it contains up to 61 86 compatible cores. Each core fea-
tures a 512-bit vector processing unit (VPU) based on a
new instruction set. The cache hierarchy contains a L1
data cache of size 32KB and a 512KB per core L2 cache.
The cores are connected via a bidirectional ring bus which
enables L2 cache coherence based on a directory based
protocol. Each core can execute up to four threads at the
same time.
Assuming a Xeon Phi with 61 usable cores running at

1.238 GHz, we can determine the peak performance for
32-bit integer (integer arithmetic is commonly used for
sequence alignment calculations) operations as follows: 16
(#SIMD lanes) × 1 integer operation × 1.238 GHz × 61
(#cores) = 1.208 Tera integer operations per second.
From a software perspective, three programming mod-

els can be used in order to harness the compute power
of the Xeon Phi: (i) native model, (ii) offload model, and

(iii) symmetric model. In this paper, we have chosen the
offload model. In this model, code sections and data can
be offloaded from the host CPU to the Xeon Phi. Using
OpenMP pragmas, offload regions can be specified.When
encountering such a region during program execution, the
necessary data transfers between host and Xeon Phi are
performed and the code inside the (parallelized) region is
executed on the Xeon Phi.

Pairwise sequence alignment and database search
The database search application considered in this paper
scans a protein sequence database using a single pro-
tein sequence as a query (similar to BLASTP). Differ-
ent to the BLASTP heuristic, we calculate the score of
an optimal local alignment between the query and each
subject sequence using the Smith-Waterman algorithm
with affine gap penalties (instead of a seed-and-extend
approach). The subject sequences are ranked in terms
of this score. Actual alignments are only computed for
the top-ranked database sequences which only takes a
negligible amount of time in comparison to the score-
only search procedure. Note that the score-only Smith-
Waterman computation can be performed in linear space
and quadratic time with respect to the length of the
alignment targets.
Consider two protein sequences Q and S and length q

and s, respectively. We want to compute the score of an
optimal local alignment of Q and S with respect to a given
scoring scheme consisting of a gap opening penalty α, a
gap extension penalty β and an amino acid substitution
matrix sbt(). The well-known Smith-Waterman algorithm
solves this problem by computing a dynamic program-
ming matrix iteratively based on the following recurrence
relations:

HA(i, j) = max{0,E(i, j), F(i, j),HA(i − 1, j − 1)
+sbt(Q[i] , S[j])} (1)

E(i, j) = max{HA(i, j − 1) − α,E(i, j − 1) − β}
F(i, j) = max{HA(i − 1, j) − α, F(i − 1, j) − β}

The iterative computation of theses matrices is started
with the initial values: HA(i, 0) = HA(0, j) = E(i, 0) =
F(0, j) = 0 for all 0 <= i <= q, 0 <= j <= s.

Progressive multiple sequence alignment
The time complexity of computing an optimal multiple
alignment of more than two sequences grows exponen-
tially in terms of the number of input sequences. Thus,
heuristic approaches with polynomial complexities must
be used in practice for large inputs to approximate the
(generally unknown) optimal multiple alignment.
The multiple (protein) sequence alignment application

considered in this paper is the first stage of the popular

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 13 of 66

ClustalW heuristic [12]. ClustalW is based on the classi-
cal progressive alignment approach [13] featuring a 3-step
pipeline (see Fig. 1):

(a) Distance matrix: For each input sequence pair, a
distance values is computed based on the
Smith-Waterman algorithm

(b) Guide tree: Using the distance matrix computed in
the previous step is taken as an input to compute an
evolutionary tree using the neighbor-joining method
[14].

(c) Progressive alignment: Following the branching
order of the tree a multiple sequence alignment is
build progressively.

Hardware accelerated alignment algorithms
We briefly review some previous work on accelerat-
ing pairwise alignment (based on Smith Waterman)
and progressive multiple sequence alignment (based on
ClustalW) on a number of parallel computer architec-
tures. A number of SIMD implementations have been
designed in order to harness the vector units of com-
mon multi-core CPUs (e.g. [15–21]) or the the Cell/BE
(e.g. [22, 23]). Recent years has seen increased interests
in acceleration of sequence alignment on massively par-
allel GPUs. Initially, programming these graphics chips
for bioinformatics application still required programming
with shaders using languages such as OpenGL [24]. The
release of CUDA in 2007 made the usage GPUs for gen-
eral purpose computing more accessible and subsequently
a number of CUDA-enabled Smith-Waterman implemen-
tation have been presented in recent years [4, 25–33].
A number of MPI-based solutions for progressive mul-
tiple sequence alignments are targeted towards PC clus-
ters [34–37]. Another attractive architecture for sequence
analysis are FPGAs [38–41] which are based on recon-
figurable hardware. However, in comparison to the other
mentioned architectures, FPGAs are often less accessible
and generally more difficult to program.
The solution in this paper is based on a cluster of Xeon

Phis. Compared to common CPUs, a Xeon Phi contains
significantly more cores and often a wider vector unit.

Different fromCUDA-enabled GPUs, a Xeon Phi provides
x86 compatibility, which often simplifies the implemen-
tation process. Nevertheless, achieving near-optimal per-
formance is still a challenge which needs to be addressed
by parallel algorithm design and efficient implementa-
tion. In this paper we demonstrate how this can be done
for protein sequence database search and distance matrix
computation for multiple sequence alignment.
Compared to our previously presented LSBDS [9], we

introduce the following new contributions in this paper:

• We have designed new algorithms which can handle
searching tasks for large-scale protein databases on
Xeon Phi clusters.

• We have designed new algorithms for calculating
large-scale multiple sequence alignments on Xeon
Phi clusters.

• We have implemented our multiple sequence
alignment algorithm using the offload model to make
full use of the compute power of both the multi-core
CPUs and the many-core Xeon Phi hardware.

Methods
Algorithms on a single node
Protein sequence database search
We have observed two facts: (1) protein sequence
database search has inherent data parallelism; (2) each
VPU on Xeon Phi can execute multiple integer operations
in an SIMD parallel way efficiently. Based on these two
facts, we have partitioned the database search process on
a single node into two data parallel parts: device level and
thread level. The device level data parallel part is encoded
on the host CPU. It splits the subject database into multi-
ple batches that can be distributed to CPU and Xeon Phi
devices. The thread level data parallel part is used to pro-
cess data batches locally. In order to support search tasks
for large-scale databases, we have designed a dynamic data
distribution framework to distribute these batches to both
the host CPU device and the Xeon Phi devices. In order
to solve the performance loss problem for searching long
query sequences, we have also proposed amulti-pass algo-
rithm where long query sequences are partitioned into

a b c
Fig. 1 Illustration of the three stages of progressive multiple alignment (see text for details)

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 14 of 66

multiple short subsequences for consecutive searching
passes. We have presented more implementation details
of our algorithm in [9].

MSA
The distance matrix computation stage of ClustalW is
typically a major runtime bottleneck. Thus, in our work
we have only concentrated on designing a parallel algo-
rithm for this stage. ClustalW bases the distance compu-
tation between two protein sequences on the following
concept [24]:

Definition 1. Consider two sequences Si, Sj ∈ S =
{S1, . . . Sn}. The following equation defines their distance
d(Si, Sj):

d(Si, Sj) = 1 − nid(Si, Sj)
min{li, lj}

whereby nid(Si, Sj) is defined as the number of exact
matches in an optimal local alignment between Si and Sj.
li (lj) is the length of Si (Sj).

The value nid(Si, Sj) can be calculated in the Smith-
Waterman traceback procedure by counting the num-
ber of exact character matches. Figure 2 illustrates this
method. However, this direct method does not work well
for long sequences and large-scale datasets because it
needs to store the whole DP matrix. In order to solve
this problem, we have adapted the method presented in
[24] to do the nid-value computation on the Xeon Phi
architecture. That is we have used the following definition
and theorem to calculate the nid-value without doing the
actual traceback.

Definition 2. Consider two protein sequences S1 and
S2, affine gap penalties α, β , and substitution matrix sbt.
The matrix NA(i, j) (1 ≤ i ≤ l1, 1 ≤ j ≤ l2) is defined in
terms of the following recurrence relations:

\ A T C T C G T A T G A T\\
0

A
0

T
0

C
0

T
0

C
0

G
0

T
0

A
0

T
0

G
0

A
0

T
00

0
0
0

0
0

0
0

0
0

0
0

0
3

0
2

0
1

0
0

0
3

0
2

0
10

0
0
0

0
3

0
2

0
3

0
2

3
2

2
6

1
5

0
4

3
3

2
2

1
5

0 0 2 6 5 6 5 5 5 4 3 2 40
0

0
0

2
3

6
5

5
9

6
8

5
7

5
8

5
7

4
8

3
7

2
6

4
5

0 3 2 4 8 8 7 7 11 10 9 10 90
0

3
2

2
3

4
3

8
7

8
7

7
7

7
10

11
10

10
14

9
13

10
12

9
13

0 1 2 6 6 10 9 9 9 13 13 12 120
0

1
3

2
2

6
5

6
5

10
9

9
9

9
8

9
12

13
12

13
12

12
16

12
15

0 2 2 5 4 8 8 8 11 11 11 15 15

\\
GG
T

CC
T
AA
T

CC
A
C

Fig. 2 An example of how to compute the nid-value in the traceback
procedure. The matrix HA(i, j) is shown for a linear gap penalty α = 1,
and a substitution score +3 for the exact match and −1 otherwise.
The nid-value here is five

NA(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if HA(i, j) = 0

NA(i − 1, j − 1) + m(i, j),
if HA(i, j) = HA(i − 1, j − 1)

+ sbt(S1[i] , S2[j])

NE(i, j), if HA(i, j) = E(i, j)

NF(i, j); if HA(i, j) = F(i, j)

where

m(i, j) =
{
1, if S1[i]= S2[j]
0; otherwise

NE(i, j) =
⎧⎨
⎩
0, if j = 1
NA(i, j − 1), if E(i, j) = HA(i, j − 1) − α

NE(i, j − 1); if E(i, j) = E(i, j − 1) − β

NF(i, j) =
⎧⎨
⎩
0, if i = 1
NA(i − 1, j), if F(i, j) = HA(i − 1, j) − α

NF(i − 1, j); if F(i, j) = F(i − 1, j) − β

It can be shown that

nid(S1, S2) = NA(imax, jmax)

where (imax, jmax) denote the coordinates of themaximum
value in the corresponding pairwise local alignment DP
matrix HA.

Input data set sizes for MSA are typically smaller than
for database search (protein sequence databases typically
contain maymillions of sequences while large-scale MSAs
are computed for a few thousand protein sequences)
making the subject sequence set for distance matrix
computation comparatively small. In order to design an
efficient parallel distance matrix computation algorithm
on Xeon Phi, we have used the task partitioning method
shown in Fig. 3. In our method, the sequences are sorted
by their lengths and then partitioned into smaller sized
batches. In an alignment task, a query sequence will be
aligned to the corresponding sequence batch. This pro-
cedure will continue until all task batches are calculated.
We have implemented the whole process into two par-
allel parts: the thread level and the VPU level. On the
thread level, the process aligning Si to S = {S(i+1), . . . , Sn}
is grouped to taski, and each task is processed by a
thread. On the VPU level, multi-pairwise comparisons
are performed in parallel on VPUs. In our method, S =
{S(i+1), . . . , Sn} is packed into a 2D buffer which has 16
channels, meaning that sequence Si can be aligned to 16
different sequence in the 16-channel buffer in parallel.
We have used Knights Corner instructions to implement
this part. Figure 4 shows the pseudo-code of our algo-
rithm framework. In order to take advantage of both CPUs
and Xeon Phis in a node to process MSA for large-scale
datasets, we have implemented our algorithm framework

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 15 of 66

Fig. 3 Illustration of our task partitioning scheme

using the offload model. We have implemented the arith-
metic operations specified by the equations in Definition
2 using a number of Knights Corner instructions (see
Fig. 5) for Xeon Phis. These instructions are executed on
VPUs to calculate the sixteen residue vectors of align-
ment matrices according to Definition 2. For CPUs, VPUs
fetch 8 residues each time. The core instructions used on
CPUs are identical with Xeon Phis, whereas they have
been implemented using different 256-bit AVX intrinsic
instructions.
Before performing the alignment process, two tempo-

rary score vectors (the sprofile and the mprofile in Fig. 4)
are created to help improve the IO efficiency for loading
the substitution matrix values and the m(i, j) (see Defini-
tion 2) values in parallel. Figure 6 shows an example of
how to create these two temporary vectors. From Fig. 6
we can see that the substitution score matrix, the cur-
rent database sequence vector, and the query sequence
will be used to create the sprofile and the mprofile.
VPUs will make use of these two score vectors to load

substitution values and m(i, j) values quickly. The shuf-
fling procedure in Fig. 6 is used to help VPUs fetch
corresponding values from the substitution matrix in
parallel [7].
In our implementation, the size of these two temporary

vectors for Xeon Phi and CPU is 16 and 8 separately.
We have designed and implemented a device level

dynamic task distribution framework to distribute tasks
to both the CPU device and the Xeon Phi device. Figure 7
shows our framework. In this framework, the task distrib-
utor is implemented as a critical section to prevent the
concurrent access to shared tasks. It is also used to per-
form the dynamic distribution of tasks to CPUs and Xeon
Phis. In Fig. 7, both CPUs and Xeon Phis fetch and pro-
cess multiple tasks in parallel. After the allocated tasks
are processed, both devices will send requirements to the
data distributor to request for new tasks. All new task
requirements will first be identified and queued by the
data distributor. It then distributes tasks to the queue in
order.

Fig. 4 The pseudo-code of our MSA algorithm framework on a single computing node

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 16 of 66

Fig. 5 Xeon Phi vectorized implementation of pairwise alignment according to Definition 2 by dynamic programming using 25 core instructions.
The variables in these instructions can be divided into two classes. One class includes vHA , vE, vF, and vS which are used in the Smith-Waterman
algorithm. Another class contains vNA , vNE , vNF and vNS which are defined in Definition 2. Here vNA is the target vector and vNS is the value nid(Si , Sj)

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 17 of 66

AA CC DD EE FF GG HH II JJ LL MM NN OO PP QQ RR SS TT UU VV WWYYKKAA
CC
DD
EE
FF
GG
HH
II
JJ

LL
MM
NN
OO
PP
QQ
RR
SS
TT
UU
VV
WW
Y

WW
Y

KK

T
I

R
C

S
E

V
I

V
I

R
L

S
E

R
E

S
M

T
I

R
M

V
L

T
E

T
I

R
C

R
C

Shuffling procedure

TT RR SS VV RR SS RR SS RR VV TT TT RR RRTT

AA
II CC EE II II LL EE EE MM MM LL EE II CC CCII

Score Matrix

Database Sequences

VV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TT RR SS VV RR SS RR SS RR VV TT TT RR RRTT

AA
II CC EE II II LL EE EE MM MM LL EE II CC CCIIVV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sprofile mprofile
Fig. 6 An example of how to create the sprofile and themprofile for two sequence vectors to match the ‘A’ residue

Cluster level data parallelization
Our approach is based on the fact that both subject
database batches (for database searching) and MSA tasks
can be scanned in parallel. Thus we have implemented the
cluster level data parallel algorithm for these two align-
ment applications. The cluster level data parallel algo-
rithm is encoded on the master node. The master-node
partitions the subject database or the MSA tasks into a
number of chunks that will be sent to different compute
nodes. Our approach is implemented using the following
modules:

Dispatcher (Master): Partitions subject database or
MSA tasks into a number of chunks in a
preprocessing steps and sends them to compute
nodes.
Algorithms on a Single Node (Worker): Receives
sequence chunks from master and performs the
corresponding DP calculations.
Result Collector (Master): Performs additional
operations required to further process the returned
results.

Protein sequence database search
In our work, we have implemented a static dispatcher
for our cluster level parallel database searching algorithm.

Figure 8 illustrates our method. In Fig. 8, the static dis-
patcher in the preprocess stage first divides the database
into several chunks with respect to the total number of
nodes. The database chunks are then sent to the cor-
responding node for local searching. Since the compute
power of all compute nodes may vary, the size of each
database subset can also vary. In order to achieve load bal-
ancing among all nodes, we have implemented a sample
test method. In our method, at the preprocess stage (see
Fig. 8), firstly a sample test is performed to explore the
compute power of all compute nodes. Performance fac-
tors of different nodes are then automatically generated.
In our work, we name this factor the compute power Pi for
node i. With the performance factor Pi, we can then calcu-
late the appropriate size of the database subset allocated
to node i.

MSA
We have designed and implemented a cluster level
dynamic dispatcher to distribute tasks to compute nodes.
Figure 9 illustrates our method. In this method, the
dynamic dispatcher first divides the dataset into a set of
tasks which are organized as a task pool. Then, multi-
ple tasks are sent to each node for local distance matrix
computation. After the allocated tasks are processed, each
node will send requirements to the dispatcher to ask for

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 18 of 66

Fig. 7 Our device level dynamic task distribution framework. The black dots denote tasks

new tasks to process. This procedure will continue until
all tasks are processed.

Results and discussion
Test platforms
We have implemented the proposed methods using C++
and evaluated them on compute nodes with the following
Xeon Phi cards (with ECC enabled) installed:

- Intel Xeon Phi 7110P : 61 hardware cores, 1.1GHz
processor clock speed, 8GB GDDR5 device memory.

- Intel Xeon Phi 31S1P : 57 hardware cores, 1.1GHz
processor clock speed, 8GB GDDR5 device memory.

Tests have been conducted on a Xeon Phi cluster with
three compute nodes that are connected by an Ethernet
switch. There are two Xeon E5 CPUs and 16GB RAM on
each compute node. The cluster runs Centos 6.5 with the
Linux kernel 2.6.32-431.17.1.el6.x86_64. The CPU con-
figuration on each node varies, as is listed in Table 1.
We also have SSD hard disks installed on each compute
node.

Protein sequence database search
A performance measure commonly used in computa-
tional biology to evaluate Smith-Waterman implemen-
tations is cell updates per second (CUPS). A CUPS
represents the time for a complete computation of one
entry of the DP matrix, including all comparisons, addi-
tions and maxima operations.
We have scanned three protein sequence databases:

(i) the 7.5GB UniProtKB/Reviewed and Annotated
(5,943,361,275 residues in 16,110,751 sequences), (ii) the
18GB UniProtKB/TrEMBL (13,630,914,768 residues in
42,821,879 sequences), and (iii) the 37GB merged Non-
Redundant plus UniProtKB/TrEMBL (24,323,686,690
residues in 73,401,766 sequences) for query sequences
with varying lengths. Query sequences used in our tests
have the accession numbers P01008, P42357, P56418,
P07756, P19096, P0C6B8, P08519, and Q9UKN1.

Performance on a single node
We have firstly compared the single-node performance of
our methods to SWAPHI [8] and CUDASW++ 3.1 [26].

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 19 of 66

Fig. 8 Illustration of our method to dispatch database subsets to all nodes. The node who has more computing power will be dispatched more
sequences, which will finally balance the workload at runtime

SWAPHI is another parallel Smith-Waterman algorithm
on Xeon Phi-based neo-heterogeneous architectures. It
is also implemented using the offload model. However,
SWAPHI can only run search tasks on Xeon Phi; i.e.
it does not exploit the computing power of multi-core
CPUs. SWAPHI cannot handle search tasks for large-
scale biological databases. In our tests, we find that the

database size limitation for SWAPHI is less than the avail-
able RAM size; i.e. 16GB. CUDASW++ 3.1 is currently
the fastest available Smith-Waterman implementation for
database searching. It makes use of the compute power
of both the CPU and GPU. At the CPU side, CUD-
ASW++ 3.1 carries out parallel database searching by
invoking the SWIPE [18] program. It employs CUDA

Fig. 9 Illustration of our method to dispatch tasks dynamically to all nodes. The task partition method is illustrated in Fig. 3

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 20 of 66

Table 1 Test cluster configurations

Node CPU Coprocessor

N1 Xeon E5-2620 (6 cores) * 2 Xeon Phi 7110p * 1

N2 Xeon E5-2620v2 (6 cores) * 2 Xeon Phi 7110p * 2

N3 Xeon E5-2650v2 (8 cores) * 2 Xeon Phi 31s1p * 4

PTX SIMD video instructions to gain the data parallelism
at the GPU side. The database size supported by CUD-
ASW++ 3.1 is less than the memory size available on the
GPU. Neither SWAPHI nor CUDASW++ 3.1 supports
clusters.
For single-node tests, we have used the N2 node (see

Table 1) as test platform. In our experiments, we run our
methods with 24 threads on two Intel E5-2620 v2 six-core
2.0GHz CPUs and 240 threads on each Intel Xeon Phi
7110P respectively.We execute SWAPHI with 240 threads
on each Xeon Phi 7110P. We have executed CUDASW++
3.1 on another server with the same two Intel E5-2620 v2
six-core 2.0GHz CPUs plus two Nvidia Tesla Kepler K40
GPUs with ECC enabled. 24 CPU threads are also used
for CUDASW++ 3.1. If not specified, default parameters
are used for both SWAPHI and CUDASW++ 3.1. Fur-
thermore, all available compiler optimizations have been
enabled. The parameters α = 10, and β = 2 have been
used in our experiments. The substitution matrix used is
BLOSUM62.
We have measured the time to compute the simi-

larity matrices to calculate the computing CUPS values
in our experiments. Figure 10a shows the correspond-
ing computing GCUPS values of our methods, SWAPHI

and CUDASW++ 3.1 for searching the 7.5GB UniPro-
tKB/Reviewed and Annotated protein database using dif-
ferent query sequences. From Fig. 10a we can see that
the computing GCUPS of our multi-pass method is com-
parable to CUDASW++ 3.1. Both of them achieve better
performance than SWAPHI.
SWAPHI and CUDASW++ 3.1 cannot support search

tasks for the 18GB and 37GB databases. Thus, we only
use our methods to search them. Figure 10a also reports
the performance of our methods for searching these two
databases. The results show that our methods can handle
large-scale database search tasks efficiently.

Performance on a cluster
Figure 10b shows the performance of our methods using
all three cluster nodes. The result indicates that our meth-
ods exhibit good scalability in terms of sequence length
and size, and number of compute nodes. Our method
achieves a peak overall performance of 730 GCUPS on the
Xeon Phi-based cluster.

MSA
A set of performance tests have been conducted using
different protein sequence datasets to evaluate the pro-
cessing time for the distance matrix computation step of
our implementation in comparison to MSA-CUDA [32].
The datasets are extracted from the UniProtKB/Reviewed
database, whose details are listed in Table 2. We have
used two groups of datasets in our tests. Datasets S1 to
S6 are used to compare the performance of our method
and MSA-CUDA, where the sequence numbers are small
since MSA-CUDA can not handle datasets with large
sequence number. Datasets L1 to L6 are used to evaluate

a b
Fig. 10 a performance comparison on a single node (N2) between our method, CUDASW++v3.1 and SWAPHI. b performance results of our method
using all three compute nodes

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 21 of 66

Table 2 Test datasets for MSA

Dataset Avg. Length #Sequences Workload (GCells)

S1 465 200 4.35

S2 472 400 17.84

S3 474 600 40.52

S4 476 800 72.56

S5 476 1000 113.54

S6 480 1200 164.13

L1 150 30000 10891

L2 382 16000 18692

L3 935 10000 39148

L4 274 40000 60246

L5 1350 10000 88013

L6 700 24000 133112

the performance of our method for handling large-scale
datasets. These datasets consist at least 10,000 sequences.
The workload for computing a distant matrix grows

quadratically with respect to the number of input
sequences. The average sequence length of the dataset
also has a great impact on the computing workload. We
have used the following equation to measure the workload
needed to process a dataset.

W =
n∑

i=1

⎛
⎝Li ∗

n∑
j=i+1

Lj

⎞
⎠

where Li denotes the length of the ith sequence in the
dataset. Thus, the workload W is actually the total num-
ber of matrix cells to be calculated. As our method utilizes
the constant 25 instructions for calculating each cell (as is
listed in Fig. 5), the execution time grows linearly withW .
Table 2 also lists the workload needed for processing each
dataset.

Performance for processingmedium-scale datasets
For the medium-scale datasets S1 to S6, MSA-CUDA is
benchmarked on a Tesla K40 GPU with default options
and all available compiler optimizations enabled. Our
implementation runs on an Intel Xeon Phi 7110P with
240 threads. Figure 11 shows the performance comparison
between our method and MSA-CUDA. From Fig. 11 we
can find our implementation achieves significantly better
performance compared to MSA-CUDA.

Performance for processing large-scale datasets
For the large-scale datasets L1 to L6, MSA-CUDA cannot
work normally. We have run our methods on a single Intel
Xeon Phi 7110P, the N2 node and the cluster respectively.
The performance results are shown in Fig. 12. Figure 12
indicates that our methods exhibit very good scalabil-
ity in terms of workload and number of compute nodes.
Although the nodes in our cluster have different com-
pute power, our dynamic task dispatching scheme still
works efficiently. Moreover, our method on the cluster is
able to process large-scale datasets that are rarely seen in
other MSA implementations, whereas the runtime is still
acceptable.

Fig. 11 Runtime (in seconds) for processing datasets S1 to S6. Our method runs on a Xeon Phi 7110P. MSA-CUDA runs on a Tesla K40 GPU

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 22 of 66

Fig. 12 Runtime (in seconds) for processing datasets L1 to L6. We have run our method on an Intel Xeon Phi 7110P, the N2 node and the cluster,
respectively

Conclusion
We have presented two parallel algorithms for protein
sequence alignment based on the dynamic programming
concept which can be efficiently mapped onto Xeon Phi
clusters. Our methods exhibit good performance on a sin-
gle compute node as well as good scalability in terms of
sequence length and size, and number of compute nodes
for both protein sequence database search and distance
matrix computation employed in multiple sequence align-
ment. Furthermore, the achieved performance is highly
competitive in comparison to other optimized Xeon Phi
and GPU implementations. Biological sequence databases
are continuously growing establishing the need for even
faster parallel solutions in the future. Hence, our results
are especially encouraging since performance of many-
core architectures grows much faster than Moore’s law
as it applies to CPUs. For instance, the performance
improvement with at least a factor of 3 can be expected on
the already announced next-generation Xeon Phi product.

Declarations
Publication of this article was funded by the PPP project from CSC and DAAD,
Taishan Scholar, and NSFC Grants 61272056 and U1435222.
This article has been published as part of BMC Bioinformatics Vol 17 Suppl 9
2016: Selected articles from the IEEE International Conference on
Bioinformatics and Biomedicine 2015: genomics. The full contents of the
supplement are available online at http://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-17-supplement-9.

Availability of data andmaterials
Project name: LSDBS-mpi
Project homepage: https://github.com/turbo0628/LSDBS-mpi
Operating System: Linux
Programming Language: C++

Authors’ contributions
HL, BS, and WL designed the study, wrote and revised the manuscript. HL, YC,
and KX implemented the algorithm, performed the tests, analysed the results.
BS, SP, and WL contributed the idea of using Knights Corner instructions and
Xeon Phi clusters, participated in the algorithm optimization, analysed the
results. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1School of Computer Science and Technology, Shandong University, Shunhua
Road 1500, Jinan, Shandong, China. 2Johannes Gutenberg University, Mainz,
Germany. 3School of Computer Science, National University of Defense
Technology, Changsha, Hunan, China.

Published: 19 July 2016

References
1. Schmidt B, Schröder H, Schimmler M. Massively parallel solutions for

molecular sequence analysis. International Parallel and Distributed
Processing Symposium parallel solutions for molecular sequence analysis.
IEEE; 2002. p. 0186.

2. Bader DA. Computational biology and high-performance computing.
Commun ACM. 2004;47(11):34–41.

3. Rajko S, Aluru S. Space and time optimal parallel sequence alignments.
IEEE Trans Parallel Distrib Syst. 2004;15(11):1070–81.

4. Liu Y, Schmidt B. SWAPHI: Smith-waterman protein database search on
Xeon Phi coprocessors. Application-specific Systems, Architectures and
Processors (ASAP), 2014 IEEE 25th International Conference on. IEEE; 2014.
p. 184–5.

5. Heinecke A, Vaidyanathan K, Smelyanskiy M, et al. Design and
implementation of the linpack benchmark for single and multi-node
systems based on intel xeon phi coprocessor. Parallel & Distributed

http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-9
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-9
https://github.com/turbo0628/LSDBS-mpi

Lan et al. BMC Bioinformatics 2016, 17(Suppl 9):267 Page 23 of 66

Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE;
2013. p. 126–37.

6. Pennycook SJ, Hughes CJ, Smelyanskiy M, et al. Exploring SIMD for
Molecular Dynamics, Using Intel Xeon Processors and Intel Xeon Phi
Coprocessors. Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on. IEEE; 2013. p. 1085–97.

7. Wang L, Chan Y, Duan X, et al. XSW: Accelerating biological database
search on xeon phi. Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International. IEEE; 2014. p. 950–7.

8. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Res Notes. 2009;2(1):73.

9. Lan H, Liu W, Schmidt B, et al. Accelerating large-scale biological
database search on Xeon Phi-based neo-heterogeneous architectures.
Bioinformatics and Biomedicine (BIBM), 2015 IEEE International
Conference on. IEEE; 2015. p. 503–10.

10. Rucci E, García C, Botella G, Degiusti A, Naiouf M, Prieto-Matías M. An
energy-aware performance analysis of swimm: Smith—waterman
implementation on i ntel’s m ulticore and m anycore architectures.
Concurr Comput Pract Experience. 2015;22(6):865–72.

11. Lu M, Zhang L, Huynh HP, et al. Optimizing the mapreduce framework
on intel xeon phi coprocessor. Big Data, 2013 IEEE International
Conference on. IEEE; 2013. p. 125–30.

12. Thompson J, Higgins D, Gibson T. ClustalW: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting
position specific gap penalties and weight matrix choice. Nucleic Acids
Res. 1994;22:4673–680.

13. Feng D, Doolittle R. Progressive sequence alignment as a prerequisite to
a correct phylogenetic trees. J Mol Evol. 1987;25:351–60.

14. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

15. Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Comput Appl Biosci. 1997;13(2):145–50.

16. Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common
microprocessors. Bioinformatics. 2000;16(8):699–706.

17. Alpern B, Carter L, Su Gatlin K. Microparallelism and high-performance
protein matching. Proceedings of the 1995 ACM/IEEE conference on
Supercomputing. ACM; 1995. p. 24.

18. Rognes T. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinforma. 2011;12:.

19. Edgar RC. Muscle: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

20. Notredame C, Higgins D, Heringa J. T-coffee: A novel method for fast
and accurate multiple sequence alignment. J Mol Biol. 2000;302:205–17.

21. Chaichoompu K, Kittitornkun S, Tongsima S. MT-ClustalW: multithreading
multiple sequence alignment. Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International. IEEE; 2006. p. 8.

22. Wirawan A, Kwoh CK, Hieu NT, et al. CBESW: sequence alignment on the
playstation 3. BMC Bioinforma. 2008;9(1):377.

23. Szalkowski A, Ledergerber C, Krähenbühl P, et al. SWPS3–fast
multi-threaded vectorized Smith-Waterman for IBM Cell/BE and x86/SSE2.
BMC Res Notes. 2008;1(1):107.

24. Liu W, Schmidt B, Voss G, Mueller-Wittig W. Streaming algorithms for
biological sequence alignment on gpus. IEEE Trans Parallel Distrib Syst.
2007;18(9):1270–81.

25. Liu Y, Schmidt B, Maskell DL. CUDASW++ 2.0: enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs based
on SIMT and virtualized SIMD abstractions. BMC Res Notes. 2010;3(1):93.

26. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions. BMC Bioinforma. 2013;14(1):117.

27. Manavski S, Valle G. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinforma.
2008;9(2):1.

28. Ligowski L, Rudnicki W. An efficient implementation of Smith-Waterman
algorithm on GPU using CUDA, for massively parallel scanning of
sequence databases. 2009 International Parallel and Distributed
Processing Symposium. IEEE; 2009. p. 1–8.

29. Khajeh-Saeed A, Poole S, PJ B. Acceleration of the Smith-Waterman
algorithm using single and multiple graphics processors. J Comput Phys.
2010;229(11):4247–58.

30. Blazewicz J, Frohmberg W, Kierzynka M, Pesch E, Wojciechowski P.
Protein alignment algorithms with an efficient backtracking routine on
multiple gpus. BMC Bioinforma. 2011;12:181.

31. Hains D, Cashero Z, Ottenberg M, et al. Improving CUDASW++, a
parallelization of Smith-Waterman for CUDA enabled devices. Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on. IEEE; 2011. p. 490–501.

32. Liu Y, Schmidt B, Maskell DL. MSA-CUDA: multiple sequence alignment
on graphics processing units with CUDA. Application-specific Systems,
Architectures and Processors, 2009. ASAP 2009. 20th IEEE International
Conference on. IEEE; 2009. p. 121–8.

33. Hung CL, Lin YS, Lin CY, Chung YC, Chung YF. CUDA ClustalW: An
efficient parallel algorithm for progressive multiple sequence alignment
on multi-gpus. Comput Biol Chem. 2015;58:62–8.

34. Li K. ClustalW analysis using parallel and distributed computing.
Bioinformatics. 2003;19:1585–6.

35. Ebedes J, Datta A. Multiple sequence alignment in parallel on a
workstation cluster. Bioinformatics. 2004;20:1193–5.

36. Cheetham J, Dehne F, Pitre S, et al. Parallel clustal w for pc clusters[M].
Computational Science and Its Applications—ICCSA 2003. Berlin
Heidelberg: Springer; 2003, pp. 300–9.

37. Tan J, Feng S, Sun N. Parallel multiple sequences alignment in SMP
cluster. Int Conf High Perform Comput Asia Reg. 2005;20:425–31.

38. Oliver T, Schmidt B, Maskell D. Hyper customized processors for
bio-sequence database scanning on FPGAs. Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. ACM; 2005. p. 229–37.

39. Li ITS, ShumW, Truong K. 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinforma.
2007;8(1):1.

40. Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D. Using
reconfigurable hardware to accelerate multiple sequence alignment with
ClustalW. Bioinformatics. 2005;21:3431–432.

41. Boukerche A, Correa JM, de Melo ACMA, et al. An FPGA-based
accelerator for multiple biological sequence alignment with DIALIGN[M].
High Performance Computing-HiPC 2007. Berlin Heidelberg: Springer;
2007. p. 71–82.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Programming models on Xeon Phi coprocessor
	Pairwise sequence alignment and database search
	Progressive multiple sequence alignment
	Hardware accelerated alignment algorithms

	Methods
	Algorithms on a single node
	Protein sequence database search
	MSA

	Cluster level data parallelization
	Protein sequence database search
	MSA

	Results and discussion
	Test platforms
	Protein sequence database search
	Performance on a single node
	Performance on a cluster

	MSA
	Performance for processing medium-scale datasets
	Performance for processing large-scale datasets

	Conclusion
	Declarations
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

