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Abstract

Background: Biomedical information and knowledge, structural and non-structural, stored in different repositories
can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts
and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount
importance for precision medicine, and a major challenge facing the biomedical research community.

Results: In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple
biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness
between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we
developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness
network (RN) is defined and computed across multiple ontologies using a formal inferencemechanism of set-theoretic
operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network.

Conclusions: Experiments to test examples of several biomedical applications have been carried out, and the
evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge
discovery.

Keywords: Biomedical ontology, Knowledge network, Implicit relatedness

Background
Precision medicine [1] has become a most promising
methodology for clinical medicine, which relies heavily on
rich biomedical knowledge and information of individual
patients such as genetic content, living habits, environ-
mental factors, etc. [2]. US National Academy of Sciences
claims in a 2011 research report that a biomedical knowl-
edge network based on biological data and knowledge is
necessary for precision medicine [3]. How to compute
relatedness between concepts and discover valuable infor-
mation and implicit knowledge effectively and efficiently
from such hybrid knowledge (both structural and non-
structural) networks is a key of paramount importance to
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the realization of precisionmedicine, and a huge challenge
facing the biomedical research community. It is agree-
able that the knowledge network should include all the
knowledge sources, information systems and repositories
in biomedicine available today and in the future, span-
ning the whole spectrum of structural and non-structural
information and knowledge.
One type of important knowledge sources is ontol-

ogy. Knowledge represented in biomedical ontology sys-
tems such as Gene Ontology [4] and Disease Ontology
[5] is a conceptualization of agreed-upon observations
or findings in a domain of the actual world, and is
structural to logically represent the taxonomical relation-
ships between biomedical entities (concepts) as well as
other semantic (e.g. causal) relationships of various kinds.
Such knowledge in general can be considered as explicit
knowledge. However, when a biomedical ontology sys-
tem becomes very large, or multiple ontologies are being
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studied together, the semantic relatedness of two biomed-
ical entities not directly connected may not be easy to
see or understand. For example, the relatedness between a
gene and a disease may not be easily or directly observable
as a simple causal relationship. Yet, this type of implicit
relatedness can be “interesting” and potentially valuable
for it may lead us to the discovery and the establish-
ment of important relationship between the two. Different
from explicit knowledge, implicit knowledge in general,
though there appears to be no generally agreed-upon def-
inition for it [6–8], may be characterized in terms of
weak relationships between biomedical entities, for exam-
ple, a disease may be often mistaken as another disease
(misdiagnosis), or a disease may share similar symp-
toms with another, etc. Relationships of this nature may
often seem to be of small significance, but some of them
may reveal or imply important, though implicit, relat-
edness between the biomedical entities, providing valu-
able information or knowledge in revealing deeper and
more subtle connections between the related biomedical
entities.
A great number of research studies in working with

biomedical knowledge or information have been focus-
ing on mining knowledge from massive genomics data.
Very limited efforts have been devoted to exploring
implicit knowledge using biomedical ontologies. All these
works, though have made important progress in biomed-
ical knowledge discovery, do not provide a unified and
systematic approach to the problem of implicit knowl-
edge discovery within the knowledge networks of mul-
tiple and different biomedical knowledge sources, thus
limiting their ability to combine both structural and non-
structural knowledge and information sources in discov-
ering hidden or implicit relatedness between biomedical
entities.
To overcome or at least alleviate the above mentioned

shortcoming, we define a novel unified computational
framework based on a network of biomedical entities
across multiple and different knowledge and informa-
tion sources such as disease ontology, gene ontology and
PubMed, linked using inter-relationships between them.
Based on this model, we propose a new measurement of
concept relatedness, and develop a set-theoretic inference
scheme to compute a network of relatedness between con-
cepts that may uncover valuable and implicit relationships
(implicit knowledge) between them.We provide a system-
atic evaluation of the method using experimental results
of example applications in biomedicine.
The main contribution of our work is the formulation

and implementation of a unified computational frame-
work based on which a hybrid biomedical knowledge
network can be structural, concept relatedness and relat-
edness networks can be computed using a formal infer-
ence mechanism based on set-theoretic operations.

Related work
Most existing biomedical knowledge repositories can be
classified into two categories: non-structural (e.g. research
papers) and structural (e.g. semantic network, knowledge
graph, ontologies, etc.). Research on knowledge represen-
tation and discovery with these two types of knowledge
has been making encouraging progresses in recent years.

Non-structural biomedical knowledge discovery Lit-
erature is a main form of non-structural knowledge, such
as research publications, clinical guidelines, clinical tri-
als, and reports of case studies. Increasing efforts have
been made to extract various types of disease-related
knowledge from these relatively unstructural materials.
Liu and Hu [9] developed a distant supervised model to
extract gene expression relationship between genes and
brain regions from literature. Marwah et al. [10] imple-
mented a context-specific Bayesian framework for com-
puting functional relationships as links between ontolo-
gies, based on the statistics of co-occurrence of terms in
the literature. Xu et al.’s work [11] focuses on extracting
disease-manifestation relationships from the literature,
while De la Iglesia et al. [12] deal with ontology con-
cept extraction in the context of classification of clinical
trial information. According to Seyfang et al. [13] and
Isern et al. [14], ontologies can be developed to repre-
sent formal guidelines. Cheng et al. [15] have also made
progress in establishing semantic associations among dis-
ease related databases to provide a more global view of
human diseases.

Semantic network and semantic web Semantic Net-
work [16] is a network representing knowledge in terms
of concepts and their semantic relations. WordNet [17] is
one of well-known examples of semantic network. Non-
Axiomatic Reasoning System (NARS) [18] also represents
knowledge in the form of network. Semantic Web [19],
on the other hand, provides a common framework over
the Web for knowledge sharing and reuse across appli-
cations, enterprises, and community boundaries. Chen
et al. [20] conduct fruitful research on semantic web based
biomedical data analysis.

Knowledge graph Knowledge Graph (KG) is a repre-
sentational model proposed by Google to capture and
graphically represent the semantics of real-world entities
and their relationships [21], which supports more infor-
mative keyword based search. A number of knowledge
graphs have been built, such as YAGO [22], DBpedia [23],
NELL [24], Freebase [25]. Efforts have been made to build
biomedical knowledge bases in the form of KG [26].
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Artificial Neural Network Artificial Neural Network
andDeep Learning havemade a significant leap in the per-
formance of AI systems. For example, the 152-layer neural
network developed by Microsoft Research Asia achieves
an error rate of 3.57 % on the test set of ImageNet [27].
Recently, AlphaGo, a computer Go program that uses
‘value networks’ to evaluate board positions and ‘policy
networks’ to select moves, defeated the human world Go
champion [28]. However, the cover story of a recently pub-
lished Science Magazine pointed out that, people learn-
ing new concepts can often generalize successfully from
just a single example based on already learned knowl-
edge, yet machine learning algorithms typically require
tens or hundreds of examples to perform with similar
accuracy [29].

Biomedical knowledge representation and discovery
in ontology Ontology is a main form of structural
knowledge system, and a formal, explicit specification
of shared conceptualization [30]. It’s main function is
sharing and reuse of knowledge [31]. Many biomedical
ontology systems have been built such as Gene Ontology
[4], Disease Ontology [5], Human Phenotype Ontology
[32], Environment Ontology [33], Protein Ontology [34],
etc. Mohammed et al. [35] align the Diseases Ontol-
ogy with the Symptoms Ontology by exploring links
between diseases and symptoms. Concepts in these and
other biomedical ontologies are organized primarily using
hierarchical “is-a” relationships, while other valuable rela-
tionships such as “may-have-complication” and “may-
have-side-effect” are mostly missing for they are usually
weak and statistical in nature. For knowledge reuse, tech-
niques like ontologymapping [36] and ontology alignment
[37] enable us to bridge different biomedical ontologies by
identifying concepts that share the same meaning. Some
research studies ontology systems for a specific domain
by applying network structure analysis. Wang et al. [38]
propose a Network Ontology Analysis (NOA) method to
perform gene ontology enrichment analysis on biologi-
cal networks. Weng and Chang [39] apply the technique
of ontology network analysis to document recommenda-
tions. Other studies, like Chen [8] and Liu et al. [40], ana-
lyze ontology networks by applying methods developed
for complex networks or social network.
The above mentioned research and many other similar

studies in structural knowledge representation and dis-
covery are mostly focusing on the development of new
biomedical knowledge systems and improvement of the
existing ones. These systems to date remain indepen-
dent or even isolated from one another. Furthermore,
most existing works with multiple ontologies are explor-
ing direct and explicit relationships between concepts by
mapping and integrating different ontologies. Much less

attention has been paid to the development of a uni-
fied knowledge representation framework linking seman-
tically all biomedical knowledge ontologies. In recent
years, work on integrating different knowledge repos-
itories (both structural and non-structural) to explore
indirect relatedness between concepts starts emerging.
Corinna Vehlow et al. [41] developed a method to visual-
ize and analysis of existing knowledge (from databases and
the literature) and experimental data together in a net-
workmodel. Spangler andHan et al. [42, 43] focus onmin-
ing relevance between heterogeneous biomedical entities
from literature. These studies mostly use statistical meth-
ods (e.g. co-occurrence) to explore relationships between
concepts. However, important relationships between con-
cepts sometimes can only be revealed by examining indi-
rect relatedness.
In this paper, a network based biomedical knowledge

representation framework and a corresponding computa-
tional model are proposed to address the issue of implicit
relatedness computing.

Methods
We developed a unified computational model based on a
hybrid biomedical knowledge network of linked biomed-
ical concepts across multiple different knowledge and
information sources. It consists of biomedical ontologies
as well as other biomedical information and knowledge
repositories such as PubMed. This system was con-
structed using relationships between concepts from each
respective knowledge source (e.g. disease ontology, gene
ontology, and online biomedical publication repositories).
To discover interesting relatedness between concepts for
which potential valuable relationships (implicit knowl-
edge) may exist, a new measurement of relatedness and a
new set-theoretic inference scheme were also proposed.

Construction of biomedical knowledge network (BMKN)
Biomedical knowledge represented and managed in dif-
ferent knowledge repositories in general can be classi-
fied as structural knowledge such as ontology, semantic
web and knowledge graph, and non-structural knowl-
edge such as research papers, medical case reports, and
text books. Relationships between biomedical concepts
can be searched and extracted from these repositories.
Many important concepts in the structural repositories
like ontology have direct mapping in the non-structural
repositories like literature. For instance, concept of “breast
cancer” in disease ontology is also mentioned and dis-
cussed in many research papers. A specific concept like
“breast cancer” in a research paper can be viewed as an
instance of the same concept in the disease ontology. We
can also further generalize this mapping by treating the
instance of concept “breast cancer” and the context (e.g.
the paper) within which it is discussed as an instantiation
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of the concept in disease ontology. Using this type of
mapping or instance-of relationship, we linked ontolo-
gies to non-structural repositories. Using relationships
between concepts across multiple knowledge sources,
we constructed the system containing linked biomedical
ontologies and non-structural knowledge repositories. As
shown in Fig. 1, relationships between concepts within
an ontology system are extracted from structural knowl-
edge repositories, and relationships between ontologies
are extracted from non-structural knowledge reposito-
ries. Concepts appeared in both an ontology system and a
paper in a non-structural repository are mapped through
an instance-of relationship.
A Biomedical Knowldge Network (BMKN) can be for-

mally defined as a directed graph G = (V ,E,C, S), where
V denotes a node of concept, E denotes a link of relation-
ship between concepts, C denotes a confidence factor of
the link and S denotes a significance factor of the link. A
concept-ontology mapping is defined as � : V → O and
function �(v) ∈ O gives a specific ontology for a spe-
cific concept v. Relationship mapping function is defined
as � : E → R, and �(e) ∈ R gives a specific relation-
ship for link e(u, v) ∈ E. Relationships can be extracted
from both non-structural (e.g. research publications) and
structural knowledge sources (ontologies). A confidence
factor for a link e is defined as C (e), representing the
probability that link or edge e of relationship may exist
between concept u and concept v. For edges extracted

from non-structural repositories, the confidence values
are computed by normalized frequency of co-occurence
(TF-IDF). For links extracted from structural knowledge
sources, the existing or given confidence values are used.
For ontologies, a default confidence value 1 for edges is
chosen. Significance value of an link S (e) computed from
non-structural knowledge is defined, in our experiments
with the framework, in terms of the impact factors of the
publication where concepts u and v co-occurenced. Sim-
ilarly, the significance factors computed from structured
knowledge sources are given a default value. Our frame-
work also support other measurement of the significance
factor in terms of the importance of relationship.
Once the knowledge network is constructed, explo-

ration of implicit relatedness between concepts within and
across multiple ontologies can be carried out based on a
computational model we developed called MORM.

Multi ontology relatedness model (MORM)
There are different types of semantic relationships in
the constructed BMKN, e.g. has-symptom, regulate, etc.
These relationships between biomedical concepts or enti-
ties are expressions of known biological processes within
the human body. How to use these explicit relationships
to further explore and uncover indirect or implicit rela-
tionships is still an open issue. For instance, if a specific
disease entity DO1 in disease ontology has a relationship
with an entity GO1 in a gene ontology system due to the
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Fig. 1 Biomedical knowledge network construction
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biomedical function of GO1, then it would be very mean-
ingful and interesting to question if some similar/related
diseases of DO1 may have an implicit relationship with
similar/related concepts of GO1. However, such type of
implicit relationships has not been formulated at the level
of abstraction such that they can be treated systematically
in exploring indirect or implicit relationships between
biological concepts. In MORM model, we generalize and
treat all the different types of relationships as one of
“relatedness of concepts”.
An intra-relationship Rintra is defined as a generic rela-

tionship of any kind between two concepts within a same
ontology.
An inter-relationship Rinter is defined as a generic rela-

tionship of any kind between two concepts across multiple
ontologies.
They are defined as follow: ∀e(u, v) ∈ E, �(u) = Oi,

�(v) = Oj

{
�(e) = Rintra, if i = j
�(e) = Rinter, if i �= j

In MORM, multiple related ontologies are represented
as a connected network of concepts via both intra-
relationships within a same biomedical ontology (e.g. lung
cancer is-a respiratory system cancer in a disease ontol-
ogy), and inter-relationships across multiple biomedical
ontologies (e.g. lung cancer has-symptom-of cough across
both a disease ontology and a symptom ontology). In
this model, semantic relatedness between one concept
and all of its semantically connected concepts is rep-
resented in terms of a Relatedness Network (RN), and

computed using a general inference mechanism based on
a set-theoretic method.
A RN is a graph of linked concepts. A link in this graph is

either of the intra-relationship or inter-relationship type.
The relatedness between any two concepts are measured
and computed by MORM’s inference mechanism.
As an example shown in Fig. 2, a RN is computed

by linking the concepts in three different biomedical
ontologies through both intra-relationship (Rintra) and
inter-relationship (Rinter) relationships. A concept node
(in red) in the disease ontology, called an “anchor con-
cept”, directly connects (red link) to other three concepts
(in blue) within the disease ontology (intra-relationship)
and to two concepts (in blue) in the symptom ontology
and gene ontology respectively (inter-relationship). These
directly linked concepts and their relationships together
form a semantic structure we can easily see and interpret,
representing a type of explicit knowledge. In this exam-
ple, the node of lung cancer is directly linked to the node
of respiratory system cancer (Rintra) and we can easily see
and interpret it as lung cancer being a type of respira-
tory system cancer. Similarly, the connection of Rinter type
between the node of lung cancer and a blue node of cough
in the symptom ontology, and the connection of Rinter type
between lung cancer and a blue node of BRCA2 in the
gene ontology represent a type of explicit knowledge that
can also be easily observed and interpreted.
Any two concepts may also be connected indirectly via

multiple links and nodes (biomedical entities) represent-
ing indirect or implicit relationships of both the Rintra and
Rinter types. As shown in Fig. 2, the node of lung can-
cer is indirectly connected to the larynx cancer node via

Disease Ontology

Symptom Ontology Gene Ontology
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Cancer

Cough BRCA2

Respiratory 
System Cancer

Intra-Relationship Explicit intra-knowledge Anchor Concept Other Concept 
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Cancer
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Fig. 2 Biomedical ontologies in MORM
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the node of respiratory system cancer, and also connected
indirectly to breast cancer via the node of gene BRCA2.
Such relationships may not be so easy or obvious to inter-
pret what can be inferred or learned. The point to make
is that the relatedness of these cancers may provide valu-
able hints for discovering new information or knowledge
about them. Such knowledge in the present biomedical
ontologies can only be called implicit knowledge.
Implicit knowledge discovery by associating explicit

knowledge is a common practice in medical research.
According to Swanson [44], dietary fish oil is found to
lead to certain blood and vascular changes, and other
related research reported abnormally high blood viscosity
been found in patients with Raynaud’s disease. Associat-
ing these two findings together implies that fish oil might
benefit Raynaud’s disease patients. Years later, results of a
clinical trial supported this earlier hypothesis [45].
Relatednesses between biomedical concepts that proved

to be useful and interesting from a research perspec-
tive are usually domain-specific. MORM computationally
defines concept relatedness in terms of the RN network,
within which the interestingness of relatedness between
the anchor concept and any other concept can be further
evaluated in the context of a specific domain. One advan-
tage ofMORMmodel is that it provides a general platform
and inference mechanism based on which other domain
specific inference strategies or constrains can be designed
and applied as we will discuss in a later section.

Computing the relatedness network
In this section, a formal inference mechanism based on
set-theoretic operations is proposed to compute the relat-
edness network. For the sake of clarity and without losing
its generality, we will describe the method in details using
a two-ontology network first, and then generalize it for
multi-ontology network.
In the two-ontology situation, a MORMmodel contains

Disease ontology and Symptom ontology as an example,
expressed as D and S respectively. Let ontology D con-
tains n concepts, expressed as D = {D1,D2, . . . ,Dn},
while ontology S contains m concepts, expressed as S =
{S1, S2, . . . , Sm}.
The following notations are used:

• Dx and Dy are two concepts in ontology D, the link of
intra-relationship(Rintra) is expressed asD(Dx → Dy).

• Sx and Sy are two concepts in ontology S, the link of
intra-relationship (Rintra) is expressed as S(Sx → Sy).

• The link of inter-relationship (Rinter) of Dx from
ontology D and Sy from ontology S is expressed as
H(Dx → Sy).

D(Dx → Dy) , S(Sx → Sy), H(Dx → Sy) are links of
relatedness indicating explicit knowledge.

We introduce a set theoretic method: General Inference
Mechanism (GIM).
First, we define a set operators as Rintra and Rinter for

the set operations within ontology D or S, and across
ontologies D and S, respectively.
In ontologyD,D′ is defined as a set of concepts in ontol-

ogy D. D(Dx → Dy), denotes the link of intra-relationship
(Rintra) ofDx andDy. Then,D′ ·Rintra means the set of con-
cepts in ontology D that have explicit intra-relationship
with D′, which can be expressed as

D′ · Rintra = {Dy
∣∣D(Dx → Dy) ,Dx ∈ D′,Dy ∈ D} (1)

Similarly, we can define the set operation within ontol-
ogy S, and that across ontologies D and S, respectively, as
follows:

S′ · Rintra = {Sy
∣∣S(Sx → Sy) , Sx ∈ S′, Sy ∈ S} (2)

D′ · Rinter = {Sy
∣∣H(Dx → Sy) ,Dx ∈ D′, Sy ∈ S} (3)

We then generalize the formula for relatedness network:

iDj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i−1Dj ∪ iDj−1 i = j

iDj−1 · Rintra ∪ iDj−1 i < j

i−1Si−1 · Rinter ∪ i−1Dj i > j

(4)

where iSj can be computed in the same way.
iDj is the set of concepts (nodes) collected after j step

expansion through intra-relationship from the anchor
concept, denoted as Danchor (illustrated as the red node
in Fig. 3), and all the concepts collected after the i step
expansion through inter-relationship from Danchor . Please
note, a single ontology is just a special case in our model.
In this case, i = 0, and operation for i < j applies.
Figure 3 illustrates the expansion of relatedness network

step by step. Intuitively, every recursion step can be seen
as the expansion of the related concept set. An initial
related concept set D0 and S0 is defined as follow:
Intuitively D0 is the set of concepts that have explicit

intra-relationship (Rintra) with Danchor , indicated by the
blue node 1 and 2 in ontology D in Fig. 3, D0 = Danchor ·
Rintra = {D1,D2}.
Similarly S0 is defined as the set of concepts that have

explicit inter-relationship (Rinter) with Danchor , indicated
by the blue nodes 1 and 2 in ontology S in Fig. 3, S0 =
Danchor · Rinter = {S1, S2}.
Concepts in sets D0 and S0 are directly connected to

(via both intra- and inter-relationship) Danchor , present-
ing no interesting relatedness between them. We take the
recursion (expansion of RN) one step further collecting
concepts through the intra- or inter-relationship with con-
cepts in sets D0 and S0. Since they are not directly related
to Danchor , thus present somewhat interesting relatedness
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between them. We now carry the expansion process in
steps as follows:

• 0D1 is the set of concepts that have explicit intra-
relationship (Rintra) with D0, plus D0 itself, as shown
in Fig. 3. 0D1 = {D0 · Rintra ∪ D0} = {D1,D2,D3,D4}.

• 1D0 is the set of concepts that have explicit inter-
relationship (Rinter) with S0, plus D0 itself, as shown
in Fig. 3. 1D0 = {S0 · Rinter ∪ D0} = {D1,D2,D9,D10}.

• 1D1 is the set of concepts that have both explicit
intra- and inter-relationship (Rintra and Rinter) with
D0, plus D0 itself, as shown in Fig. 3.
1D1 = {0D1 ∪ 1D0} = {D1,D2,D3,D4,D9,D10}.

1D1 can also be denoted as D1, indicating the first
interesting relatedness step of Danchor .
Expansion of related concepts for ontology S is com-

puted in a similar fashion:
0S1 = {S0 · Rintra ∪ S0} = {S1, S2, S3, S4, S5}
1S0 = {D0 · Rinter ∪ S0} = {S1, S2, S3}
1S1 = {0S1 ∪ 1S0} = {S1, S2, S3, S4, S5}

Based on formula (4), the set of concepts in step 2 can
be recursively computed as follows:

1D2 = {1D1 · Rintra ∪ 1D1}
2D1 = {1S1 · Rinter ∪ 1D1}
2D2 = {1D2 ∪ 2D1}

We see that, 2D2 can be recursively computed until the
recursion reaches D0 and S0, when the whole process
ends.
Figure 3 actually shows an example to illustrate the

inference process for search and expansion of related-
ness concepts for disease ontology and symptom ontology.
Lupus was cited as one of the top 10 misdiagnosed dis-
eases [46]. As shown in Fig. 3, Lupus (Node D0 in red)
has a symptom of painful swollen joint (Node S2), while
Rheumatoid Arthritis (Node D11 in black) has a symp-
tom of joint swelling (Node S3). Painful swollen joint and
joint swelling are similar symptoms, and can be easily
incorrectly expressed by patients. We can inferred that
Rheumatoid Arthritis may be related to Lupus through the
inference process of Lupus→Painful Swollen Joint→Joint
Swelling→Rheumatoid Arthritis.
For multi ontologies Ot ∈ {O1,O2, · · ·On, }, we gen-

eralize the above formalization of computing relatedness
network from two ontologies {D, S} as follows:

iOt
j =

⎧⎪⎪⎨
⎪⎪⎩

i−1Ot
j ∪i Ot

j−1 i = j
iOt

j−1 · Rintra ∪ iOt
j−1 i < j

n⋃
k=1,k �=t

(i−1Ok
i−1 · Rinter) ∪ i−1Ot

j i > j
(5)

iOj
t is the set of concept nodes in ontology Ot which

containing all the concepts collected after the j step expan-
sion through intra-relationship from the anchor concept,
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and all the concepts collected after the i step expansion
through inter-relationship from anchor concept.

Pruning relatedness network
A relatedness network generated using the MORMmodel
enables researchers to explore, within a controllable
search space for potentially interesting implicit related-
ness between an anchor concept and a collection of
related concepts. Some concepts in the collection are not
easily found to be related to the anchor concept using
a single ontology or knowledge repository. However the
space of an RN could still be too large to manage if the
scale of the ontology is very large. In the MORM model,
the inference mechanism also supports the inclusion of
various generic and domain specific pruning strategies
to constrain the scale of the RN. The pruning strategies
can be applied to the ontology networks as a part of the
inference process, or to a generated RN separately. In this
section we will introduce two such pruning strategies or
rules.

Computing RN using inter-relationships only
For a linked ontology network Ot ∈ {O1,O2, · · ·On, },
let Oanchor denote anchor concept in Os. We define a
pruning rule for pruning concepts collected using inter-
relationships: F(i) = Oi

t − 0Oi
t where Oi

t is the set
of all the concepts collected after the i step inter- and
intra-relatedness expansion in relation to anchor concept
Oanchor ; 0Oi

t is the subset containing concepts collected
after the i step intra-relatedness expansion in Ot with in
relation to the anchor concept Oanchor in Os. Thus, by
utilizing the entire ontology network instead of the sin-
gle ontology alone, the search can reach the concepts that
may contain implicit relatedness withOanchor by excluding
0Oi

t from Oi
t .

When we explore concept relatedness in a network of
single ontology, Oanchor is from Ot , i.e. Ot = Os, formula
F(i) = Oi

s − 0Oi
s represents all the concepts collected after

the i step expansion in relation to Oanchor excluding con-
cepts that develop through only intra-relationship within
set Os.
We can then denote the inference strategy in two-

ontology (Disease ontology & Symptom ontology) situa-
tion as: F(i) = Di − 0Di

As shown in the Fig. 3, when i = 2, F(2) = 2D2 − 0D2 =
{D9,D10,D11,D12}
By using this rule, the search found and collected

D9,D10,D11,D12, which are not linked to Danchor in set D
or very far away from Danchor , being a set of concepts of
interesting relatedness.

Pruning RN by linkmasking
InMORM, a RN can be computed using domain indepen-
dent inference rules, which does not distinguish different

types of relationships or links between concepts. To
reduce the RN space, a relationship or link mask can be
implemented to remove part of the network following
unwanted relationships or links in the RN. If the mask is
applied as a part of inference to compute RN, the infer-
ence process will then focus only on selected types of
semantic relationships while ignoring masked relation-
ships, thus potentially improving search efficiency and
accuracy. More formally speaking, the masking operation
is to reject a subset of relationships of type R′, from set
of semantic relationships of type R, i.e. �(e) /∈ R′. The
inference or expansion process can mask a link based
on the values of three properties of the link: relation-
ship type, significance and confidence as we mentioned
earlier. For each relationship type, various masks can be
designed based on these properties. In the experiments
with MORM model, we implemented a set of masks in
the form of a triplet R(t, c, s) using different settings. For
instance, R1(1, 0.25, 0.5) is a pruningmask for relationship
type R1, which means for each link of type R1, if the con-
fidence value is larger than 0.25 and significance value is
larger than 0.5, then the link will be followed by the RN
expansion process. Also, mask R2(0, 0, 0) will block the
expansion process for all links of type R2. For this mask,
if the type value is 0, the choice of values for either confi-
dence factor or significance factor does not really matter.
Other different forms of masks also can be implemented
within our framework depending on the need of specific
applications and users’ preference.

Results and Discussion
In this section, we give an evaluation of our method with
three experiments of example applications.

Experiment 1: discovering interesting relatedness of
possible misdiagnosis
In this experiment, we test the ability of our method to
help discover possible disease misdiagnosis. The result
is evaluated by comparing the found likely misdiagnoses
with “differential diagnoses” listed on medical book [47].

Experimental design
Step 1 Building MORM model For this experiment,
a MORM model is built containing a disease ontology
DO and a symptom ontology SYMP [48], as well as the
inference engine for computing the relatedness network.
All concepts are organized using “is-a” relationship rep-
resenting their intra-relationship, Rintra. The model also
contains has-symptom relationships across both ontol-
ogy systems representing the inter-relationship, Rinter. The
inter-relationship between disease ontology and symptom
ontology is extracted from medical guideline. The model
includes 77,531 relatedness links for diseases, 48,841
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relatedness links for symptoms, and 223,804 relatedness
links between diseases and symptoms.

Step 2 Computing “relatedness network” of possible
misdiagnosis A relatedness network containing possible
misdiagnosis for a specific disease is computed by using
the associated inference rules of set operation.

Step 3 Comparative evaluation We use the “differ-
ential diagnosis” list in book “Current Essentials of
Medicine” [47] as a reference. We check how many “dif-
ferential diagnosis” diseases listed in the reference can be
found in step 2, denoted as N1. We also compute similar
diseases for a specific disease by using DO alone, which
means only intra-relationship within DO is used in com-
parison. Then, we check howmany “differential diagnosis”
diseases listed in the reference can be found in resulted
similar diseases, denoted as N2. Then, we compare N1
and N2. The test repeats for 50 common diseases.

Result analysis
We show the comparison for 6 diseases and give average
performance for all the 50 diseases in Table 1. Ourmethod
found the majority of the differential diagnosis diseases
in the reference (N1), which is more effective than the
approach using DO only (N2).
Taking Type 1 Diabetes as an example, the number of

differential diagnosis of it amounts to 6 according to the
reference (as shown in column 1). 5 out of 6 are found
by our method (or 83.3 % , as shown in column 2 and 3).
As comparison, 3 out of 6 (50 %, as shown in column 4
and 5) are found by comparison approach in step 4. Thus,
our approach is proved to be effective. The obvious better
performance of our method is also shown for the other 5
diseases and for the 50 diseases in Table 1.
We should note that, the Relatedness Network found

by our approach may contain uninteresting relatednesses
also, but it also means that there may exist other mean-
ingful relatednesses besides the misdiagnosis relatedness.
For instance, there are 6 differential diagnosis diseases of

type 1 diabetes in the reference, but our experiment yields
more diseases that have one or more same symptoms.
Diseases in our result but not in any references that are
potentially meaningfully related to Type 1 Diabetes may
have potential to reveal valuable information for clinical
medicine.

Experiment 2: discovering interesting relatednesses for
genetic diseases
The number of diseases reported that can be related to
various genes or their products is growing very rapidly
with the development of new genomics technologies. Dis-
eases related to the same or related genes or gene products
may share common causal factors at the molecular level.
However, these related diseases may not be classified as
similar diseases in the same disease class under the cur-
rent disease classification system ICD-11. In this exper-
iment, we test our method in exposing such potential
molecular-level-relationships between diseases.

Experimental design
Step 1 MORM model building. In the same way, a
MORMmodel is built containing the same Disease Ontol-
ogy (DO) and the Gene Ontology (GO), as shown in Fig. 4.
GO is an ontology of defined terms representing gene
product properties, which covers three domains: cellular
components, molecular function and biological processes.
There are three kinds of intra-relationships (“is-a”, “part
of” and “regulate”), Rintra, in GO. The two ontologies
are linked through direct inter-relationships found using
the Genetic Association Database (GAD), and the bioDB-
net database. In Marwah’s work [10], the relationships
between two ontologies are derived from the literature.
In contrast, our approach is to build relationships from
databases, and evaluate the experimental results by com-
paring with results reported in the literature.
Specifically, we first identify the mapping from disease

terms to gene symbols in GAD, and then find the map-
ping from gene symbols to disease terms in bioDBnet.
We finally create actual linkages (relationships) based on
all the mapped pairs of disease terms and gene symbols

Table 1 Result of discovering misdiagnosis

Differential diagnosis Possible misdiagnosis diseases Similar diseases in DO
diseases (number) (N1) (percentage) (N2) (percentage)

Type 1 diabetes 6 5 83.3 % 3 50.0 %

Acute pancreatitis 6 4 66.7 % 1 16.7 %

Sinusitis 5 4 80.0 % 2 40.0 %

Tuberculous meningitis 5 5 100.0 % 2 40.0 %

Cystitis 8 4 50.0 % 3 37.5 %

Acute tracheobronchitis 5 5 100.0 % 2 40.0 %

Average for 50 common diseases 6.2 4.5 72.6% 2.2 35.5%
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Fig. 4 Flow chart of experimental design in experiment 2

between DO and GO. It should be pointed out that, in
GO, some terms may connect to a great number of gene
symbols, indicating such gene product properties may be
needed for normal biological processes. When building
inter-relationship between DO and GO, we exclude these
kinds of gene product properties from our model.
The resulting linked ontology (linking DO and GO)

contains 2214 inter-relationships between 800 genetic dis-
eases in DO and 935 gene product properties in GO.

Step 2 Inferring similar diseases We now can apply
our set-theoretic inference engine to build the related-
ness network and explore the relatedness of one disease
to other diseases within the network of relatedness at the
gene level. Specifically, to discover related diseases that
are not classified as similar diseases under current clas-
sification system, we compute the set F(2) for “anchor
disease”, denoted as D∗, based on MORM model in step
1 (F(2) = 2D2 − 0D2), and denote the number of discov-
ered similar diseases as N. Then, we link D∗ with each of
its similar diseases and form N “diseases pairs”, as shown
in Fig. 4.

Step 3 Checking with PubMed To evaluate the effec-
tiveness of the proposed model, we use already published
cases and results in PubMed as references. As shown in
Fig. 4, we compare the N “disease pairs” from step 2 with
published cases in PubMed, and check how many of the
“disease pairs” were confirmed by PubMed. This number
is denoted as N1. Then, hit ratio is computed as N1/N
(discovered “disease pairs” that confirmed in the PubMed,
vs. the total discovered “disease pairs”).

Step 4 Comparative evaluation with random method
To make a comparison, we implement a randomly pairing
method. For each disease, we randomly choose N dis-
eases and form N disease pairs accordingly, and see how
many of these “disease pairs” are mentioned in the ref-
erences. This number is denoted as N2. The hit ratio is
N2/N . Then, we compare the two hit ratios for all the 800
genetics diseases.

Result analysis
The comparative evaluation of effectiveness of our
method and the randomly pairing method is plotted in
Fig. 5.
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Fig. 5 Hit ratio curves of the proposed method (a) and the randomly pairing method (b). The two curves are compared in (c)

Figure 5a shows the hit ratio (N1/N) curve (in red) for
all “disease pairs” discovered by our method, while Fig. 5b
shows the hit ration (N1/N) curve (in blue) for all the
“diseases pairs” discovered by randomly paring method,
both in descending order. For example, we find 6 “dis-
ease pairs” of Asthma from the proposed model, 4 of
which are confirmed in PubMed, giving a hit ratio of 0.67
(Fig. 5a), while the randomly pairingmethod only achieves
a hit ratio of 0.17 for the same disease (Fig. 5b). Figure 5c
presents a more intuitive comparison of the two methods
by combining the two plots, which clearly shows the better
performance of the proposed method.

Experiment 3 discovering interesting relatednesses from
BMKN using pruning strategy
We have recognized that within the multiple ontologies
framework of MORM, a computed relatedness network

can be very large often containing a great number of con-
cepts and links, which still presents somewhat a challenge
to review and disseminate the meaningful information
from it. Considering the fact that, in problem-specific
cases, not all relationships are interesting or useful for the
tasks being pursued, we designed and implemented link
(relationship) masks to prune the knowledge networks. In
this experiment, a set of different link masks are applied to
the original BMKN, and RN is computed afterwards. The
effectiveness of pruning is evaluated.

Experimental design
We construct a BMKN, as shown in Fig. 6, from sev-
eral knowledge repositories (DO, GO, CTD, DrugBank,
KEGG, GenBank, STRING). Based on BMKN, we build
a MORM containing concepts of diseases, genes and
drugs (chemicals), as well as inter- and intra-relationships

Gene Ontology

Disease Ontology Chemical Ontology

R1

R2

R3

R5
R4 R6

R7

R8

R9

R10

Fig. 6 Biomedical knowledge network in experiment 3
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Table 2 Semantic relationships of BMKN

R1: “affects” of gene - chemical

R2: “decrease” of gene - chemical

R3: “increase” of gene - chemical

R4: “father to son” of disease ontology

R5: “son to father” of disease ontology

R6: “father to son” of chemical ontology

R7: “son to father” of chemical ontology

R8: “interact” of gene ontology

R9: “affect” of gene - disease

R10: “affect” of disease - chemical

between them. There are total 10 relationships both
within and across ontology systems as shown in Table 2.
To help find potentially interesting chemicals for a par-

ticular disease, link masks are first applied to the original
ontology network, and a relatedness network is then com-
puted for the pruned knowledge network.
For the first part of the experiment, assuming we are

only interested in indirect and implicit relatedness, the
direct relationship between diseases and chemicals (R10)
are to be pruned, represented as F(i) = Oi

t − 0Oi
t . We

also set the number of expansion steps to 2, i.e. i = 2.
“Interesting” chemicals discovered for a specific disease
is represented as F(2), after pruning direct links between
diseases and chemicals. The result is shown in the first line
of Table 3.
After the first step of pruning, the remaining knowledge

network may still be very large. To further constrain the
search space, we use pruning mask strategy described in
section 4.2. As shown in Table 3, we define 12 pruning

masks. Eachmask, as shown in column 2, is a triplet repre-
senting semantic relationships value, confidence value and
significance value. Each link mask is applied to the knowl-
edge network, and the number of links in the pruned
knowledge network is given in Column 3. Finally, we apply
MORM on sub-networks for each disease concept as the
anchor concept, and calculate the average counts of dis-
covered chemicals for all disease concepts in DO, which
are shown in column 4. Then, we compare the average
counts based on the pruned network and average counts
based on non-masking knowledge network, and calculate
the average percentage.

Result analysis
From the results in Table 3 we can see that pruning masks
do a great job on constraining search space. By using
pruning masks, both counts and percentages of interest-
ing chemical candidates are greatly decreased, indicating
the effectiveness of pruning masks. It should be pointed
out that, pruning masks should be set and designed by
users for their own specific tasks or purposes. In this
experiment, we set values of pruning masks on an accept-
able level to extract relatively important links. However,
when users choose their own values of pruning masks,
results may vary under different situations, thus needs
further research for specific field.

Conclusion
In this paper, a novel unified computational framework is
proposed in terms of a network of linked biomedical enti-
ties across multiple knowledge and information sources,
consisting of biomedical ontologies and other biomedical
repositories such as PubMed. This biomedical knowledge

Table 3 Result of pruning strategy

Pruning mask Edges Average count Average percentage

No Mask Rall(1, 0, 0)a 971,585 1054.6 100 %

Mask 1 R1(0, 0, 0), Rrest(1, 0, 0)b 969,001 566 26.78 %

Mask 2 R2(0, 0, 0), Rrest(1, 0, 0) 971,501 460.5 22.77 %

Mask 3 R3(0, 0, 0), Rrest(1, 0, 0) 964,792 90.7 4.22 %

Mask 4 R4(0, 0, 0), Rrest(1, 0, 0) 965,000 124 46.65 %

Mask 5 R5(0, 0, 0), Rrest(1, 0, 0) 965,000 66.6 8.94 %

Mask 6 R6(0, 0, 0), Rrest(1, 0, 0) 810,489 1.5 0.21 %

Mask 7 R7(0, 0, 0), Rrest(1, 0, 0) 810,489 954.6 53.17 %

Mask 8 R9(0, 0, 0), Rrest(1, 0, 0) 965,189 27.9 2.96 %

Mask 9 Rall(1, 0, 0.4) 965,718 753.3 63.01 %

Mask 10 R8(1, 0.4, 0) 382,972 4.5 0.24 %

Mask 11 R1(0, 0, 0), Rrest(1, 0.2, 0.35) 615,921 136.7 19.56 %

Mask 12 R5(0, 0, 0), Rrest(1, 0.2, 0) 615,179 476.5 20.57 %

aRall indicates all types of relationships
bRrest indicates rest of the types of relationships
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network (BMKN) is constructed using inter-relationships
between concepts from different and information sources
(e.g. ontologies, publication repositories). Within BMKN,
a Multi-Ontology Relatedness Model (MORM) is devel-
oped, which includes the formation of multiple related
ontologies, a relatedness network and a formal infer-
ence mechanism based on set-theoretic operations. Based
on MORM, the inference engine computes interesting
relatedness between concepts appeared in ontologies for
which potential valuable relationships (implicit knowl-
edge) may exist. Various problem-specific link masks can
be designed to prune the original knowledge networks
and computed relatedness networks to reduce the search
space. Experimental results with example applications
demonstrate the promising potential of our approach
for discovering implicit knowledge in biomedical knowl-
edge networks. However, we want to emphasize that
the relatedness network computed by our method are
a set of potentially valuable biomedical concepts and
their relationships. They are the candidates or targets for
deeper investigation in the context of specific biomedical
domains. We are currently developing a set of related-
ness network-guided data mining and knowledge discov-
ery algorithms within the same framework. For example,
some concepts in a relatedness network possess an inter-
esting property of high degree of connectivity (i.e. have
direct relationships with many other concepts) like “hub”
nodes. We propose to study whether this type of concepts
play a special role in implicit knowledge discovery.
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