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Abstract

Background: The inference of gene regulatory networks (GRNs) from transcriptional expression profiles is
challenging, predominantly due to its underdetermined nature. One important consequence of underdetermination
is the existence of many possible solutions to this inference. Our previously proposed ensemble inference algorithm
TRaCE addressed this issue by inferring an ensemble of network directed graphs (digraphs) using differential gene
expressions from gene knock-out (KO) experiments. However, TRaCE could not deal with the mode of the
transcriptional regulations (activation or repression), an important feature of GRNs.

Results: In this work, we developed a new algorithm called TRaCE+ for the inference of an ensemble of signed
GRN digraphs from transcriptional expression data of gene KO experiments. The sign of the edges indicates
whether the regulation is an activation (positive) or a repression (negative). TRaCE+ generates the upper and lower
bounds of the ensemble, which define uncertain regulatory interactions that could not be verified by the data. As
demonstrated in the case studies using Escherichia coli GRN and 100-gene gold-standard GRNs from DREAM 4
network inference challenge, by accounting for regulatory signs, TRaCE+ could extract more information from the
KO data than TRaCE, leading to fewer uncertain edges. Importantly, iterating TRaCE+ with an optimal design of
gene KOs could resolve the underdetermined issue of GRN inference in much fewer KO experiments than using

TRaCE.

Conclusions: TRaCE+ expands the applications of ensemble GRN inference strategy by accounting for the mode
of the gene regulatory interactions. In comparison to TRaCE, TRaCE+ enables a better utilization of gene KO data,
thereby reducing the cost of tackling underdetermined GRN inference. TRaCE+ subroutines for MATLAB are freely
available at the following website: http://www.cabsel.ethz.ch/tools/trace.html.
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reduction

Background

The central dogma of molecular biology describes the
process by which genetic information flows linearly from
deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to
proteins through the process of transcription and transla-
tion [1]. This dogma has guided research on the causes of
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cellular phenotype and diseases since its inception in
1956. However, such reductionist view has been continu-
ally challenged in the post-genomic era, during which we
also saw the rise of systems biology and the use of net-
works to understand biology at all levels. One prominent
example of such networks is a gene regulatory network
(GRN), which describes how the protein product(s) of one
gene activates or inhibits the transcription of other genes.
The knowledge of this network and its pathological
alterations could lead to, among other things, a better
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understanding of how cell phenotype arise from the inter-
actions among cell constituents, and to novel treatments
and drugs for genetic diseases such as cancer [2].

The inference of GRN has received great attention from
the systems biology community, especially with the ubi-
quity of gene transcriptional profiling using DNA micro-
array chip and RNA sequencing. A multitude of network
inference methods now exist in the literature for the iden-
tification of GRN structure from gene transcriptional ex-
pression data [3—-9]. These methods adapted concepts and
techniques from multiple disciplines such as information
theory, statistics, machine learning and systems theory.
The large number of methods called for the establishment
of gold standard data for a fair and objective assessment.
The DREAM (Dialogue for Reverse Engineering, Assess-
ment and Methods) project materialized as an answer
[10], and the GRN inference became a topic in several
community-wide challenges within this project.

The results of several GRN inference challenges signi-
fied a fundamental issue in this inference. For example,
many of the algorithms employed by participants in
DREAM 4 in silico network inference challenge did not
perform well in inferring small to moderately-sized GRNs
(10-100 genes). This poor performance was observed des-
pite the availability of transcriptional expression data of all
genes from the complete set of single-gene knock-out
(KO) experiments, i.e. deleting each and every gene, one
at a time [8, 9, 11]. The network inference challenge
further showed that distinguishing direct and indirect reg-
ulations was one of the common weaknesses among the
participating methods. As we demonstrated recently [12],
these difficulties arose because the above GRN inference
problems were underdetermined, i.e. the GRNs were not
inferable and there could in fact exist an ensemble of
GRN structures that agreed with the gene KO data.

We previously developed TRaCE (Transitive Reduction
and Closure Ensemble) for constructing an ensemble of
GRN structures that are consistent with the input tran-
scriptional expression data of all genes in the network
from gene KO experiments [12]. This ensemble repre-
sented the uncertainty in the GRN inference. In devel-
oping TRaCE, we employed directed graphs to model
the GRNs, where nodes in such graphs describe the
genes and directed edges describes the gene regula-
tions. Following the GRN inference formulation in
DREAM challenges, we previously ignored the signs of
the edges and sought only to establish the existence of
gene regulations. Nevertheless, the edge signs in a GRN
digraph are often of great interest and significance as
they indicate the modes of the gene regulations. Here, a
positive edge reflects an activation, while a negative
edge describes a repression. Several notable network
inference algorithms such as TRANSitive reduction for
WeEighted Signed Digraphs (TRANSWESD) [13] and

Page 2 of 14

Local Transitive Reduction (LTR) [14] previously con-
sidered the inference of GRN digraph with signed (and
weighted) edges. However, these algorithms were not
designed for inferring an ensemble of GRN structures.

In this work, we addressed the aforementioned draw-
back of TRaCE by developing a new ensemble inference
method, called TRaCE+. The new method uses a signed
digraph model of the GRN, i.e. the edges have signs. Like
TRaCE, TRaCE+ generates the upper and lower bounds
of the ensemble, but in the form of signed digraphs. The
ensemble bounds from TRaCE+ are also compatible
with our recent optimal design of gene KO strategy
called REDUCE [15]. We demonstrated the advantages
of TRaCE+ over TRaCE in the ensemble inference of
Escherichia coli GRN and in the iterative inference of
100-gene gold standard GRNs from DREAM 4 in silico
network inference challenge.

Methods

Definitions

In this section we provide basic concepts of graph the-
ory that are relevant to the development of TRaCE+.
A graph G is defined by the pair (V(G),E(G)) where
V(G) denotes the set of vertices or nodes and E(G) €
V(G) x V(G) denotes the set of edges. The number of
nodes 7(G) and edges m(G) are called the order and
size of the graph, respectively. In a directed graph, an
edge is defined by an ordered pair of nodes (i,j) denot-
ing the edge direction, pointing from node i to node j.
Here, node i is called a parent of node j, while node j
is called a child of node i. The edge (i,)) is also said to
be incident to nodes i and j. Finally, a signed digraph
G' = (V(G"), E(G"), S(G")) is the digraph (V(G"), E(G"))
with an edge mapping S: E — {+,—} that assigns a posi-
tive or negative sign to each edge.

A directed path in a digraph G is a sequence of nodes
Vi, V9, Vs, ...V, such that (vi,vs), Vo, V3), ... (V,_1,V,) €
E(G). The number of edges in a directed path is called
the path length. The first node of a directed path is
called the start node, and the last node is called the end
node. A directed cycle is a directed path where the
start node and the end node are the same. A directed
acyclic graph (DAG) is a digraph which does not con-
tain any directed cycle. A node v is said to be accessible
from another node u if there exist a directed path from
node u to node v. In this case, node u is an ancestor of
node v, and node v is a descendant of node u. The ad-
jacency matrix of a digraph G is a n(G) x n(G) matrix
where the (4,v)-th element is 1 if there exists a directed
edge from node u to node v in G, and 0 otherwise.
Meanwhile, the accessibility matrix of a digraph G is a
1n(G) x n(G) matrix where the (u#,v)-th element is 1 if
there exists a directed path from node u to node v in G,
and 0 otherwise. Multiple digraphs can have the same
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accessibility matrix, among which the digraph with the
fewest edges is called the transitive reduction.

In the following sections, we focus on the inference
of GRN structure in the form of a signed digraph. We
denote the GRN of interest as GJ;, which is also re-
ferred to as the wild-type GRN. In such a graph, the
nodes represent the genes, and the signed directed
edges indicate the gene regulations. A positive (nega-
tive) edge pointing from gene i to gene j implies that
the products of gene i upregulates (represses) the ex-
pression of gene j. Figure la gives an example of a
signed digraph of a GRN with 5 genes (#(G) =5) and 7
gene regulatory edges (m(G)=7). Three of the gene
regulations are negative (repressions), while four are
positive (upregulations). Here, gene C is a parent of
genes D and E, while gene D is a child of genes C, B
and E. Meanwhile, gene A is an ancestor of the genes
C, D and E, while gene E is a descendant of the genes
A, B, C and D. We further denote the GRN corre-
sponding to knocking-out (deleting) a set of genes
VkocV(Gg) by Gy, . Figure 1b illustrates the network

G, where all edges incident to gene D have been deleted
from the GRN G, in Fig. 1a.

TRaCE+

An important consequence of the underdetermined
nature of GRN inference is the existence of multiple
solutions to the inference problem. In order to deal
with this consequence, we previously developed an en-
semble inference algorithm called TRaCE [12]. In the
development of TRaCE and TRaCE+, we recognized a
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fundamental limitation in using steady state transcrip-
tional expression data of gene KO experiments for GRN
inference. This limitation relates to the inability to differ-
entiate direct and indirect gene regulations from such
expression data. For example, we expect that knocking
out a transcription factor (TF) gene u would lead to
steady-state differential expressions among genes that
directly regulated by that TF, as well as genes that are
indirectly regulated by u through the involvement of
other TFs. Following the definitions above, genes which
show differential expression upon knocking out gene u
thus correspond to all nodes that are accessible from
node u. Given steady state transcriptional expression
data from the complete set of single-gene KOs, one
could obtain at most the accessibility relationship
(matrix) among the genes.

In TRaCE, we seek to identify the ensemble (family)
of GRN digraphs that are consistent with steady state
differential gene expressions in KO experiments. The
true GRN is thus expected to belong to this ensemble.
More specifically, TRaCE generates two digraphs: the
ensemble upper bound GY and the ensemble lower
bound G, which compactly represent the entire ensem-
ble. The upper bound G represents the largest digraph in
the ensemble, i.e. one with the most gene regulations or
edges. Edges in G may include both direct and indirect
gene regulations. Meanwhile, the lower bound G" is con-
structed from GY by removing all edges which can be ex-
plained by an indirect gene regulation. Therefore, any
GRN in the ensemble must contain all edges in the lower
bound G" and may include some or all the edges in the
upper bound GY. The set of gene regulatory edges that

(@)

Fig. 1 lllustration of signed digraph GRNs. a Example of a signed digraph GJ;. The pointed black arrows indicate positive regulations while the
flathead red arrows represent negative regulations. b The network G?D} in which gene D has been deleted

(b)
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belong to the upper bound GY but are missing from the
lower bound G”, denoted by E,, are appropriately called
uncertain edges. These edges are uncertain since their ex-
istence could not be verified by the available data. Further-
more, the number of uncertain edges reflects the degree
of uncertainty in the GRN inference. Importantly, by
knowing which edges are uncertain, we could optimize
KO experiments in order to maximize the number of edge
verifications [15].

One of the biggest drawbacks of TRaCE is its disre-
gard of the signs (modes) of the regulatory edges. For
this reason, we have developed TRaCE+. Like TRaCE,
TRaCE+ generates the upper and lower bounds of the
ensemble, but with signed edges (i.e., these bounds are
signed digraphs). TRaCE+ comprises two main algo-
rithms for (1) constructing the ensemble upper and
lower bounds using data from the complete set of
single-gene KOs, and (2) updating the ensemble
bounds using additional gene KO data. Below, we pro-
vide more details of the two algorithms.

Construction of upper bound from single-gene KOs

In constructing the upper and lower bounds of the en-
semble for TRaCE+, we start by putting together the
accessibility matrix using steady state transcriptional
expression data from the complete set of single-gene
KOs. As mentioned above, the accessibility matrix in-
cludes both direct and indirect gene regulations, and
thus provides an upper bound for the GRNSs in the en-
semble. Here, we follow the same procedure as that in
TRaCE [12]. Briefly, for each technical replicate, we
obtain the sample mean //t],- and standard deviation s} of
the expression of gene j. Subsequently, we calculate
the corrected sample mean y; and standard deviation s;
by excluding the expression data of gene j, g;; that dif-
fer from //t} by more than zcumffs;. Using p; and s;, we
then compute the z-scores z(i,j) :g""'s—/__”" which indi-
cates the differential expression of gene j in the KO of
gene i Finally, we average the z-scores over the tech-
nical replicates to give the overall z-score matrix Z(ij),
based on which we obtain the accessibility matrix by
the following criteria:

. 1 if
actif) = {5

In this study, we use the accessibility matrix from the
single-gene KO data as the initial ensemble upper bound
GY, which will later be refined by incorporating steady
state gene expression data from optimally designed KO
experiments. In the case studies, we employed z 5= 3
and  Zyeshoia =2 following the recommendations in
TRaCE [12]. In contrast to TRaCE, we also set a sign for

|Z(l7])| > Zthreshold
|Z(l7/)|S Zthreshold
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each edge (non-zero element in Acc) in the upper bound
GY as follows:

sip{t i Zijpso

DZ1- it Z3i)) >0

Construction of initial lower bound

In TRaCE, the lower bound of the ensemble G* came
from applying ConTREx (condensation, transitive re-
duction, and expansion) to the upper bound GY above
without considering the signs [12]. Briefly, the upper
bound GY was first condensed by lumping nodes in di-
rected cycles, to give a DAG of strongly connected
components. The subsequent transitive reduction in-
volved removing from this DAG, any edge (ij) for
which there exist a directed path from node i to node j
not involving this edge. Finally, in order to get the
lower bound G*, we expanded the strongly connected
components of directed cycles, during which any edges
incident to cycles were removed, except those between
nodes in a two-node cycle. Consequently, except when
G" is a DAG, G" may no longer share the same accessi-
bility matrix as GY. However, the set of uncertain edges
defined by the resulting G and G" appropriately in-
clude edges in cycles with more than two nodes, as
there exist ambiguity in either the existence or the dir-
ection of these edges.

Extending the transitive reduction procedure to a
signed digraph means that we should remove any edge
(i,7) for which there exist a directed path from node i to
node j not involving the edge (i,j) and the cumulative
product of the edge signs on this path is equal to the
sign of the edge (ij). This simple procedure may not
work when GY contains a negative cycle (a directed
cycle with an odd number of negative edges), since the
cumulative sign of such a cycle alternates depending on
how many times one traverses through it. A recent
study comparing different ways to obtain the transitive
reduction of a signed GRN digraph (with and without
cycles) recommended a simple procedure called Local
Transitive Reduction (LTR) [14]. In the following, we
have adapted LTR to generate the lower bound signed
digraph G* for TRaCE+.

In LTR, an edge (i) representing the regulation of
gene j by gene i, is removed when the effect of gene i
on gene j can be explained by an indirect regulation in-
volving at least one other gene. Such indirect regulation
should explain not only the mode of the gene regula-
tion (i.e. the sign of (ij)) but also the strength of the
regulation. Here, the strength of gene regulations is
quantified by the weighting factor W(ij) (for each edge
(ij) in GY), which equals to the magnitude of the cor-
relation coefficient between gene j and gene i, averaged
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over the technical replicates. In the calculation of W(ij),
we exclude data from gene j KO experiment since the dif-
ferential expression of gene j in this experiment may not
reflect the effect of gene i on gene ;.

Adapting the LTR procedure, we first equate the two
bounds (G"=GY), and subsequently remove any edge
(i,j) in G* for which there exists a path of length 2 in GY
explaining the edge (i,j), or more precisely there exists a
node k with (i, ), (i, k), (k, )) € GY and k¢ {i, 7}, such that

a. the directed path ik is sign consistent with (i), i.e.
S, j) = S(, K)S(k, )).

b. the weight of the edge (i) satisfies w,,,W(i, ) <
Wi, kW(k, j), where w,,, € [0,1] is a cutoff ratio.

The first condition requires the overall sign of the in-
direct regulation to equal to the sign of the gene regula-
tion (i,j). Meanwhile, the second condition requires the
overall strength of the indirect regulation, which is as-
sumed to accrue multiplicatively, to exceed a prescribed
cutoff fraction of the strength of the edge (ij). Note
that by setting w,,, = 0, we effectively ignore the contri-
bution of the edge weights. By considering only di-
rected paths of length 2, the procedure above avoids
the problem associated with negative cycles since any
path going through a cycle more than once would ne-
cessarily have a length longer than 2. In addition, LTR
does not require condensation and expansion steps as
in TRaCE’s ConTREx. Unlike the original version of
LTR, here we do not check whether a removal of an
edge would change the outcome of previous edge re-
movals, and as a result, G* may not have the same ac-
cessibility relationships as GY. While implementing the
check would lead to fewer uncertain edges, it would
also cause more false positive errors that could neither
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be corrected by additional data nor new experiments
(see Discussion).

Figure 2 illustrates the computations of the lower bound
G* in TRaCE and in TRaCE+ (using w,,, of 0.3) for the
wild-type GRN G/ in Fig. 1a. The comparison showed
that accounting for signs and weights of the edges could
lead to a higher retention of true edges in G*, and thus to
fewer uncertain edges. This difference demonstrated that
some information could be lost by disregarding edge signs
in the GRN inference, as done in TRaCE.

Ensemble bounds update

The ensemble bounds update algorithm allows the in-
corporation of transcriptional expression data from gene
KO experiments beyond single-gene KOs. The update
follows an iterative procedure involving (1) evaluation of
separatoids for uncertain edges, (2) determination of
verifiable uncertain edges, and (3) refinement of the en-
semble bounds. We previously introduced the concept
of separatoid based on a simple premise, as illustrated
below. Consider the ensemble upper and lower bounds
in Fig. 2c and d, which define three uncertain edges (A,
D), (A, E) and (C, E). Here, the verification of the uncer-
tain edge (A, D) will be simple if we delete gene C from
the network. More specifically, in the background of
gene C KO, we can verify the existence and sign of the
edge (A, D) based on whether a perturbation to gene A
causes a differential expression of gene D in the appro-
priate direction. In this case, gene C is a separatoid of
the uncertain edge (A, D).

More generally, we define a separatoid of an uncertain
edge (i,) € E, denoted by Sep(i, /), as the set of nodes
whose removal would eliminate any directed path of
length 2 or longer from node i to node j [15]. The

(@) (b)

Fig. 2 Comparison of ensemble upper and lower bounds obtained from single-gene KO data by (a and b) TRaCE and (c and d) TRaCE+ (with randomly
assigned weights). The true GRN is shown in Fig. Ta. (@ and ¢) Ensemble upper bound G. (b and d) Ensemble lower bound G". Note that the lower
bound from TRaCE is not the transitive reduction of the upper bound due to the existence of a cycle between D and E

() (d)
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deletion of genes in Sep(i,j) would therefore give the
GRN Ggp(;jy where the only remaining directed path
from gene i to gene j is the edge (i,j) itself. Conse-
quently, we can verify the existence of the uncertain edge
(4,)) by assessing whether gene j is differentially expressed
upon perturbing gene i in the background of Sep(i, j) gene
deletions. Returning to the ensemble bound in Fig. 2c and
d, we can find the separatoids of the uncertain edge (A,
E), which are gene C, gene D and the combination of
genes C and D; as well as the separatoid of the uncer-
tain edge (C, E), which is gene D.

As illustrated above, an uncertain edge may have more
than one separatoid, while several uncertain edges may
share a separatoid. Following our previous work [15], in
the first step, we compute three separatoids for each un-
certain edge (i,)) € E:

(1)Sep1(i, j) = children of i in GY N ancestors of j in
GU,O

(2)Seps (i, j) = descendants of i in GY°% n parents of j
in GY

(3)Seps(i, j) = descendants of i in G"% N ancestors of j
in G¥°

where G is the most updated upper bound and G*° is
the initial upper bound from single-gene KO data. The
separatoids above are not the only separatoids for the
uncertain edge (i, ). We limit our analysis only to these
separatoids because they are easy to compute. Finding
all separatoids for a given edge constitutes finding the
longest path between two nodes, which is a NP-hard
problem [16]. In the illustration above, the three
separatoids for the uncertain edge (A, E) are given by
Sep (A,E) = {C}, Sepx(AE) = {D}, and Seps(A,E) = {C,Dj}.

In the second step we identify among the set of input
gene KOs Vko (including single-gene KOs), pairs of
KO experiments whose data would allow the verifica-
tion of the edge (i,j). More precisely, for each (i) €E;
we search for the pair of KO experiments (Vko,, Vo,V
i)EVKO X VKO such that Sepl(i,j)CV](Ok for any l= 1, 2,
3, and i, j¢Vo,. Following the definition of a separatoid
above, if gene j is differentially expressed between any
of such pairs of KO experiments, then we have evi-
dence supporting for the existence of the uncertain
edge (i,)).

In the third step, for each uncertain edge (i,j), we per-
form a (two-tailed) two-sample ¢-test with a = 0.01 to de-
termine whether the expression of gene j is significantly
different between the KO of Vo, Ui in comparison to the
KO of Vko,. In the case that we only find one pair of such
experiments for an uncertain edge (i,j), we remove this
edge from the upper bound G upon a failure to reject
the null hypothesis in the t-test above. Otherwise, we add
the edge (i,j) to the lower bound G". Further, if the average
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expression of gene j in the KO of Vg, Ui is lower (higher)
than that in the KO of Vq,, we assign a positive (nega-
tive) sign to this edge.

In some cases, we may find more than one pair of KO
experiments for an uncertain edge (i,j). For each of these
KO pairs, we again employ a two-sample ¢-test with a =
0.01. The result of each ¢-test counts as a vote for the
existence of the edge (ij) in the case of rejection of the
null hypothesis, or a vote against the existence of this
edge in the case of failure to reject the null hypothesis. If
the votes against the edge exceed those for the edge,
then we remove this edge from the upper bound GY.
Otherwise, we add the edge (i,)) to the lower bound G~
In case of a tie, we do not change the bounds, ie. the
edge (i,j) remains uncertain. We also determine the edge
sign by voting. Specifically, we set a positive (negative)
sign when the average expression of gene j in the KO of
Vko.ui is more frequently lower (higher) than that in
the KO of Vg, , among the KO pairs giving confirma-
tory votes for the edge. When a tie occurs, we keep the
original sign of the edge (i,j) from G

Once the ensemble bounds are updated, we recalculate
the separatoids to reflect the changes brought by the addi-
tions and removals of edges to and from the bounds. We
repeat the steps described above until we cannot find any
suitable pairs of KO experiments for the remaining uncer-
tain edges.

Iterative gene regulatory network inference

Recently, we proposed an iterative GRN inference pro-
cedure which combines TRaCE and an optimal design
of gene KO experiments, called REDUCE (REDuction
of UnCertain Edges) [15]. We demonstrated that this it-
erative procedure could resolve the underdetermined
issue of the GRN inference, producing a unique GRN.
TRaCE+ can substitute TRaCE in this iterative inference
to enable the inference of a signed digraph model of GRN.
As shown in Fig. 3, the iteration starts with the construc-
tion of signed digraphs of the ensemble bounds using
single-gene KO data. Based on these bounds, we optimize
the next set of gene KO experiments using REDUCE.
Briefly, REDUCE employs the edge separatoids and a
constrained optimization to obtain the optimal set of
gene KOs that would enable the verification of the
maximum number of uncertain edges. The next step in
the iteration is to carry out the optimized gene KOs ex-
periments and obtain new transcriptional expression
data. Subsequently, we feed the data back to TRaCE+
to update the ensemble bounds following the procedure
described in the previous section. We repeat these steps
until the ensemble bounds converge or do not improve
further, or until a given quota on the number of KO
experiments has been reached.
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Fig. 3 lterative GRN inference procedure. The procedure was adapted from [15]. Dashed arrows indicate the procedure for using multiplexing assay

If desired, one can also perform REDUCE multiple
times in a given iteration to generate a large list of gene
KO experiments (see Fig. 3, dashed arrows). This imple-
mentation is particularly suitable for using multiplexing
assay technology. Here, at the end of one REDUCE
optimization, we remove the set of verifiable uncertain
edges from subsequent runs. We perform REDUCE until
all uncertain edges become verifiable or until we hit con-
straint(s) on the optimization. When only a subset of
these KO experiments could be performed, one should
select gene KOs from the list above in the order that
they are generated (since earlier runs of REDUCE are
associated with more verifiable uncertain edges).

Results

Case studies and performance evaluation

In order to evaluate the performance of TRaCE+, we ap-
plied the algorithms to the ensemble inference of Escher-
ichia coli GRN from single-gene KO experiments, and
to the iterative inference of 100-gene gold-standard
GRNs from DREAM 4 in silico network inference chal-
lenge [17, 18]. For each KO experiment, we generated
10 replicates of in silico (simulated) gene KO data using
the benchmark GRN data generator GeneNetWeaver
with the default parameters [17]. GeneNetWeaver uses a
thermodynamic-based model of transcription and trans-
lation under independent and/or synergistic regulations
[19]. The model consists of a system of stochastic differ-
ential equations (chemical Langevin equations), where
the rates of change of concentrations for mRNA and
protein are described by

dxi
FR(x,9) = = if ()2

F™(x,y) = % = rixi‘/lipmt)’i

where, x; and y; are the mRNA and protein concentra-
tions for gene i, respectively, ¢ is time, m; is the

maximum transcription rate, r; is the translation rate
constant, AXM* and 1] are the RNA and protein deg-
radation rate constants, respectively. The function fi(y)
describes the regulations of the transcription of gene i
by different TF proteins. For example, the activation
(positive regulation) of gene k expression by the protein
product of TF gene j is described by a function fi(y),
whose value increases with increasing value of y;. Fur-
ther, in GeneNetWeaver, both the production and deg-
radation of RNA and proteins are subjected to intrinsic
stochastic noise, modeled as a random Wiener process
[17]. Additionally, log-normal measurement noise is
added to the simulated expression data [20]. In the case
studies below, the KO of a gene i is simulated by setting
the maximum transcription rate m; to zero.

The quality of the ensemble bounds was assessed by
using true positive rate, total distance and Jaccard distance
with respect to the reference GRNs. The true positive rate
(TPR) was calculated as the ratio between the number of
edges in the reference GRN that were correctly identified
in the lower bound G" and the total number of edges in
the reference network G, or more precisely:

N
TPR =

where N(E( Gg)) denotes the cardinality of the set E( Gg).
Meanwhile, the total distance between the ensemble
bounds and the reference GRN was computed as follows:

N(E(GY)VE(G)VE(Gg))-N (E(G")nE(G")nE(Gp))

= N(E(Gy)

A higher TD value indicates larger uncertainty in the
GRN inference (i.e. worse inferability). Finally, the Jac-
card distance (JD) was evaluated using the following
formula:
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N(E(G1)VE(G,))-N(E(G1)nE(G2))

JD(G,Gy) = N(E(G1)UE(G»))

The JD gives a measure of similarity between two
digraphs G; and G,. A JD of 1 indicates that the two
digraphs have no common edges and a JD of 0 implies
that the two digraphs share the same set of edges. In the
case studies, we evaluated the JDs between G and Gg,
as well as between G* and GJ;. When dealing with en-
semble bounds in the form of signed digraphs such as
those generated by TRaCE+, the intersections among
the sets of edges in the evaluations of TPR, TD and JD
were done by respecting the sign of the edges (i.e. edges
of unequal signs were not counted).

Ensemble inference of E. Coli GRN

In this case study, we used the signed digraph of E. coli
GRN from GeneNetWeaver, containing 1565 genes and
3758 regulatory interactions [17]. We generated in silico
data for the complete set of single-gene KOs as de-
scribed in Methods. Using this dataset, we constructed
unsigned digraph ensemble bounds using TRaCE [12]
and signed digraph bounds using TRaCE+. For TRaCE+,
we also studied how the ensemble bounds, particularly
G*, depend on w,,, by varying this parameter between 0
and 1 (at 0.1 increments). We compared the perform-
ance of TRaCE and TRaCE+ according to the TPRs,
TDs and JDs of the resulting bounds as described in
Methods. The comparison in Fig. 4 shows that TRaCE+
could provide ensemble bounds with higher TPRs and
lower JDs and TDs (of the GY and G* from G;j) than
TRaCE. These trends demonstrated TRaCE+’s ability to
extract information contained in the gene regulatory
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signs that were disregarded by TRaCE. The TDs of the
bounds from TRaCE+ generally improved with higher
values of w,,,, but the improvements reached a plateau
after w,,, of 0.4. However, the lower bounds from
TRaCE+ slightly worsened with increasing w,,,. The JDs
between the upper bound and the reference network dif-
fered little between TRaCE+ and TRaCE due to the con-
sideration of edge signs in computing JDs for the upper
bounds from TRaCE+. As expected, the upper bound
from TRaCE+ did not vary with w,,,.

Iterative GRN inference of DREAM4 100-gene networks

In this case study, we applied the iterative GRN infer-
ence using either TRaCE or TRaCE+ to the five signed
digraph gold-standard networks from DREAM 4 100-
gene in silico network inference challenge [17, 18]. At
the start of the iterative procedure, we simulated the
complete set of single-gene KO data as described in
Methods. Figure 5a and b show respectively the TPRs
and TDs of the ensemble bounds. According to the TDs
and TPRs, the ensemble bounds from TRaCE+ consist-
ently outperformed those from TRaCE regardless of the
parameter w,,,. Here, TDs and TPRs improved slightly
with increasing w,,,. Figure 5c¢ and d provide the JDs of
the ensemble bounds from TRaCE and from TRaCE+
with different w,,, values. Like in the E. coli case study,
the JDs of the ensemble upper bounds did not differ sig-
nificantly between TRaCE and TRaCE+, nor did they
depend on w,, The JDs of the lower bounds from
TRaCE+ were mostly better than those from TRaCE,
where the best JDs corresponded to w,,; values between
0.2 and 0.4. In the following, we compared the perform-
ance of the iterative inference using TRaCE and using
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Fig. 4 Ensemble bounds from TRaCE and TRaCE+ for £. coli GRN: True positive rate (TPR), total distance (TD) and Jaccard distance (JD)




Ud-Dean et al. BMC Bioinformatics (2016) 17:252 Page 9 of 14
L (a) ) (b)
A ' o '/ gooo ;, 0o
®ooo
038} 15!
+ + + + + * : v + Net1
+ + + + * A szvvvvvvvvoNtz
0.6F + N ot e] . 42 aaaa8aaa e
& an#é%ggoooo E1° ++++++++,++ANet3
Toa, "0 ° ©oooso| v Neta
poo® o Net5
o oooo 0.5}
0.2t
0 0
TRaCE 0.0 0.2 04 06 03 1.0 TRaCE 00 0.2 04 06 038 1.0
TRaCE+ with w TRaCE+ with w
cut cut
(c) (d)
1 1Ff T 1 7 f T
038 o ooooooooooo 0.8-9 G000y gp000°
_— -4 ¥ ¥ Y Y ¥ ¥ Y Y ¥ ¥V —
+ Q + & ‘ -1 g X
L 0 0 00 00 0 0 0 0 O 1
:Qo-sg + + + + + + + + + + + _IQO.G eegzgxsgogg
O O
= 04 5 04 * *
+
- - * + + + + + ¥
0.2¢ 0.2
0 - : : : : . 0 - : . . ) :
TRacE 0.0 0.2 04 06 038 1.0 TRaCE 0.0 0.2 04 0.6 038 1.0
TRaCE+ with w TRaCE+ with w
cut cut
Fig. 5 Ensemble bounds from TRaCE and TRaCE+ using single-gene KOs for DREAM 4 100-gene GRNs: a True positive rate (TPR), b total distance
(TD), ¢ Jaccard distance (JD) between GV and reference network, and d Jaccard distance (JD) between G' and reference network

TRaCE+ with a w,,, of O (i.e. ignoring edge weights) and
an intermediate w,,, of 0.3.

In the implementation of REDUCE, we put a constraint
on the maximum number of genes in the optimal KO ex-
periments. We started with a maximum of 2 genes, and
incremented this constraint by 1 when the optimization
within REDUCE could not produce any feasible solution.
We again employed GeneNetWeaver to generate in silico
data for the optimal KO experiments. We performed the
iterative procedure until the ensemble bounds converged.

For all of the five gold-standard GRNS, the iterations
terminated in the convergence of the ensemble bounds,
ie. we obtained a unique GRN. Figure 6 shows the
TPRs, TDs and JDs of the inferred GRNSs, as well as the
total number of KO experiments required (excluding
single-gene KOs). The iterations using TRaCE+ (w,,, =0
and w,,, =0.3) produced slightly better GRNs than
TRaCE in terms of TPRs and JDs. Of course, the edges
in the GRNs from TRaCE+ had signs, while those from
TRaCE did not. More importantly, the iterations using

TRaCE+ required much fewer KO experiments to reach
convergence than TRaCE (p = 0.013 w,,, =0 and p = 0.027
for w.,,=0.3), by as much as 19 %. This trend signified
the ability of TRaCE+ to extract more information from
the data. Table 1 further compares the number of itera-
tions and the highest number of genes involved the KO
experiments. The numbers of iterations using TRaCE+
were generally lower than using TRaCE.

As a further comparison, we also generated in silico data
for the complete set of double-gene KOs, a total of 4,950
KO experiments. We used this dataset to update the en-
semble bounds initially constructed using single-gene
KOs. As shown in Table 2, only a small fraction of the
double-gene KO experiments were useful for verifying un-
certain edges, and a number of uncertain edges still
remained after the ensemble bound update. Figure 7 gives
the TPRs, TDs and JDs of the ensemble bounds. Com-
pared to TRaCE, the bounds update considering edge
signs in TRaCE+ led to better TPRs (p = 0.02 for w,,, =0,
and p=0.016 for w,, =0.3). However, the differences in
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the TDs and JDs between TRaCE and TRaCE+ were not
significant.

Finally, we performed the iterative procedure using
TRaCE and using TRaCE+ with w,, =0 and w,,=0.3,
where we implemented multiplexed REDUCE to generate
a large number of KO experiments. We again fixed the
maximum number of genes in the KO experiments at
each iteration, beginning with 2 and incrementing this
limit by 1 when multiplexed REDUCE could not generate
any feasible KO experiments. For all gold-standard net-
works, the iterations generated a unique GRN (ie. the

Table 1 Iterative inference of DREAM4 100-gene gold-standard
GRN using TRaCE and TRaCE+ (W ;=0 and w_,, = 0.3): Number
of iterations and maximum number of genes in KO experiments

Gold- TRaCE TRaCE+ Weye=0)  TRaCE+ Wy =0.3)
standard Iterations Max KO Iterations Max KO Iterations Max KO
Network

1 34 3 31 3 27 4

2 21 2 18 2 17 2

3 55 3 49 3 51 3

4 80 3 70 3 68 4

5 54 3 56 3 54 3

ensemble bounds converged). Fig. 8 summarizes the
quality of the ensemble bounds according to TPRs, TDs
and JDs. The results closely resembled those from the
iterations without multiplexing. Again, employing
TRaCE+ led to fewer total KO experiments than using
TRaCE (p=0.011 w,,;=0 and p =0.006 for w,,, =0.3).
In comparison to the results without multiplexing in
Table 1, Table 3 shows that multiplexing could reduce
the number of iterations tremendously.

Discussion

In this work, we developed a new ensemble inference al-
gorithm called TRaCE+ for the identification of GRN
structures in the form of a signed digraph. Unlike the
traditional GRN inference, TRaCE+ produces upper and
lower bounds of an ensemble of signed digraphs, de-
scribing the family of GRNs that are consistent with the
gene accessibility relationships established by the input
transcriptional expression profiles. Specifically, these
bounds define the set of uncertain gene regulatory edges
that could not be verified by the available data. The out-
puts of TRaCE+ are directly compatible with our recent
optimal design of gene KO experiments called REDUCE
and the accompanying iterative GRN procedure [15]. As
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Table 2 Ensemble bound update using double-gene KOs in TRaCE
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and TRaCE+ (w ., =0 and w,,, = 0.3): Number of informative

double-gene KOs for verifying uncertain edges and number of remaining uncertain edges after ensemble bound update

Network — TRaCE TRaCE+ (W, =0) TRaCE+ (W, =0.3)
Informative experiments  Uncertain edges  Informative experiments ~ Uncertain edges  Informative experiments  Uncertain edges
1 36 15 24 20 20 21
2 27 1 24 1 22 1
3 61 37 52 30 50 27
4 49 81 43 67 27 92
5 46 37 44 37 44 37

shown in the case study using 100-gene gold-standard
GRNs from DREAM 4 in silico network inference chal-
lenge, by iterating TRaCE+, REDUCE and performing
optimized gene KO experiments, one can overcome the
underdetermined issue of GRN inference and obtain a
unique GRN in a relatively small number of iterations
(especially when using multiplexing assay). Like TRaCE,
a drawback of TRaCE+ is that the procedure requires
at the minimum the complete set of single-gene KO
data, which could become prohibitive for large-scale
GRNs. If the TFs are known, then the requirement re-
duces to single-gene KOs of the TF genes. Nevertheless,

we expect that accelerating progress in high-throughput
gene editing technology (e.g., CRISPR-Cas9) and RNA se-
quencing will soon make this requirement non-limiting.
The consideration of regulatory signs in TRaCE+
represents a significant advance over TRaCE, as the mode
of the gene regulations (activation/repression) is very often
an important aspect in the applications of GRN. For
example, when the inferred GRN is used in finding treat-
ment of diseases or in drug discovery, the precise know-
ledge on the modes of the gene regulations matters
tremendously. At the same time, the computational chal-
lenge arising from accounting the signs of the regulatory
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Fig. 7 Comparison of ensemble bounds updates using the complete double-gene KO data in TRaCE and TRaCE+ (w,, =0 and w,,,=0.3). a True
Positive Rate (TPR), b Total Distance (TD), ¢ Jaccard distance (JD) between GV and reference network, and d Jaccard distance (JD) between G' and
reference network
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edges in the GRN digraph was not trivial. The issue of sign
consistency could severely complicate performing transi-
tive reduction [13], a key step in TRaCE+. Here, we
adapted LTR to get around the issue in obtaining transi-
tive reductions for GRNs with negative cycles. As demon-
strated in the case studies, by taking the edge signs into
account, TRaCE+ can extract more information from the
data than TRaCE. As a result, the numbers of uncertain
edges in the ensemble from TRaCE+ were consistently
lower than those from TRaCE using the same set of KO

Table 3 Iterative inference of DREAM4 100-gene gold-standard
GRNs with multiplexing assay using TRaCE and using TRaCE+
(Weye =0 and w,; = 0.3): Number of iterations and maximum
number of genes in KO experiments

Net  TRaCE TRaCE+ TRaCE+(w)
[terations  Max KO Iterations Max KO Iterations  Max KO

1 7 3 5 3 6 4

2 5 2 4 2 4 2

3 10 3 1" 3 12 3

4 14 3 15 3 14 3

5 " 3 12 4 13 4

data (single-gene KOs). Furthermore, in the iterative infer-
ence, employing TRaCE+ led to significantly fewer total
gene KO experiments to reach convergence than using
TRaCE. While we used edge weights only for constructing
the ensemble lower bound from the initial upper bound,
these weights could also serve as a measure of confidence
(likelihood) for the existence of an edge (as done in a pre-
vious method called TRANSWESD [13]).

There exist many reasons for errors to happen during
the ensemble bounds construction and updates, includ-
ing noise and bias in expression data as well as (type-I
and type-II) errors in the statistical tests. Three types of
errors can appear in the ensemble bounds from
TRaCE+. False negative (EN) errors involve regulatory
edges in the reference GRN that do not appear in the
upper bound GY. Meanwhile, false positive (FP) errors
pertain to regulatory edges in the lower bound G*
that do not belong to the true network. Finally, incor-
rect sign (IS) errors refer to edges in the reference
GRN that have the opposite signs in the upper bound.
Among the three types of errors, our experience from the
case studies showed that FNs were the most common
errors while IS errors were the least common, typically
affecting less than 1 % of the edges in the reference
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networks. We further noted that the majority (>80 %) of
EN errors in the case studies were associated with fan-in
motifs, where several genes regulated a common target
gene. Here, knocking-out only one of the regulators might
not cause any differential expression of the target gene
due to compensation by the other regulator(s).

Once occurred, FP and EN errors could not be cor-
rected during the iterative GRN inference since these
errors affected edges that were not uncertain. In the
second case study, the large majority of the errors in
the inferred GRN were already present in the initial en-
semble bounds constructed using single-gene KO data.
Nevertheless, new FP and FN errors could also appear
and accumulate over the iterations. By modifying the
parameters in TRaCE+, including Zeutoffy Zithresholdr Weut
and a, we can adjust the frequency of FPs and FNs.
Lowering Zc,iop and Zyyesnoia has the effect of reducing
EN errors, but comes at the cost of higher FP errors
and uncertain edges. We previously showed that z;,.qs
=3 and Zyyesnoia =2 provide a good balance among
ENs, FPs and uncertain edges [12]. Meanwhile, increas-
ing w,,, could reduce the number of uncertain edges,
but also cause more FPs. On the other hand, lowering
the parameter «a in the ensemble bound update should
reduce FPs at the trade-off of increasing FNs. In the en-
semble bounds of E. coli and DREAM 4 GRNs from
single-gene KO data, the frequency of FNs ranged be-
tween 24 and 56 % (E. coli: 44 %), while the frequency
of FPs varied between 2.8 and 13 % (E. coli: 8.1 %) when
using w,,, =0. These frequencies were reported as a
fraction of the number of edges in the reference GRN.
Increasing w,,, to 0.3 led to more FPs, especially for E.
coli GRN (from 8.1 to 26 %). The increase in FPs by
using w,,, = 0.3 among DREAM 4 GRNs was however
more modest (2.9 %—14.5 %).

In this study, we focused specifically on transcrip-
tional expression data from gene KO experiments when
creating the ensemble of GRNs. Nevertheless, other
types of information, such as transcription factor bind-
ing sites (TFBS) from chromatin immunoprecipitation-
sequencing (ChIP-seq), ChIP-chip, and/or cap analysis
gene expression (CAGE) data, could also be used to re-
fine the ensemble bounds. For example, we could verify
uncertain edges emanating from a TF based on the ex-
istence or absence of its binding site in the promoter
region of a target gene. In addition, TEBS could also be
used to identify and correct FPs and FNs. However, the
identification of the target genes of a TF based on
ChIP-seq, ChIP-chip and CAGE data is not error-free.
Thus, some care has to be taken to avoid accumulating
different sources of errors. An integrative analysis of
different types of data for ensemble GRN inference is
out of the scope of this work, but is a topic of particular
interest in our groups.
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Conclusion

The inference of an ensemble of networks, rather than a
single network, provides an avenue to cope with the
underdetermined nature of the GRN inference from
transcriptional expression data. In this work, we devel-
oped TRaCE+ for the generation of upper and lower
bound signed digraphs of GRN ensemble from gene KO
data. TRaCE+ significantly expanded the capability of
our previous method TRaCE, enabling the inference of
the mode of the gene regulations by considering the
signs of the regulatory edges. As demonstrated in the
case studies, TRaCE+ could extract more information
from gene KO data than TRaCE, and as a result, reduce
the number of uncertain edges. When employed within
an iterative inference procedure, TRaCE+ required much
fewer KO experiments to identify a unique GRN than
TRaCE, and slightly improved the quality of the recon-
structed networks.
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