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Abstract

Background: It is now clearly evident that cancer outcome and response to therapy is guided by diverse
immune-cell activity in tumors. Presently, a key challenge is to comprehensively identify networks of distinct
immune-cell signatures present in complex tissue, at higher-resolution and at various stages of differentiation,
activation or function. This is particularly so for closely related immune-cells with diminutive, yet critical, differences.

Results: To predict networks of infiltrated distinct immune-cell phenotypes at higher resolution, we explored an
integrated knowledge-based approach to select immune-cell signature genes integrating not only expression
enrichment across immune-cells, but also an automatic capture of relevant immune-cell signature genes from the
literature. This knowledge-based approach was integrated with resources of immune-cell specific protein networks,
to define signature genes of distinct immune-cell phenotypes. We demonstrate the utility of this approach by
profiling signatures of distinct immune-cells, and networks of immune-cells, from metastatic melanoma patients
who had undergone chemotherapy. The resultant bioinformatics strategy complements immunohistochemistry
from these tumors, and predicts both tumor-killing and immunosuppressive networks of distinct immune-cells in
responders and non-responders, respectively. The approach is also shown to capture differences in the immune-cell
networks of BRAF versus NRAS mutated metastatic melanomas, and the dynamic changes in resistance to targeted

kinase inhibitors in MAPK signalling.

Conclusions: This integrative bioinformatics approach demonstrates that capturing the protein network signatures
and ratios of distinct immune-cell in the tumor microenvironment maybe an important factor in predicting
response to therapy. This may serve as a computational strategy to define network signatures of distinct

immune-cells to guide immuno-pathological discovery.

Keywords: Immune profiling, Cancer, Transcriptomics, Immune informatics, Personalized medicine, Protein

interaction networks, Immune-cell infiltration

Background

It is now established through pioneering studies [1, 2],
using standard assays and more recently with tran-
scriptomics [2—4], that diverse general types of
immune-cells in tumors have differing [5-8] prognostic
values across numerous cancer types [7, 9, 10]. Emerging
evidence is revealing the importance of a relationship be-
tween the clinical response of cancer immunotherapy, and
the pre-existing “network” of immune-cells in a tumor’s
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microenvironment [10-15]. Indeed, it is clear that the
adaptive immune response is key in both fighting against
cancer progression, and conversely, in shaping an immune
resistant microenvironment [5, 14]. Recent success in can-
cer immunotherapy [16] offer tremendous advance and
promise [17]. However, durable responses occur in only a
minority of patients. The ability to deduce a more detailed
and global “network perspective” of immune-cell func-
tions in the microenvironment [18—20], may improve our
understanding of immune resistant phenotypes [21-23].
For example in tumors from non-responders, certain
constellations of distinct immune-cells can disarm ef-
fective antitumor responses, leading to the emergence
of dysfunctional effector cells with diverse immuno-
suppressive phenotypes. Therefore, it may be of great
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benefit to automatically and systematically investigate the
presence of immune-cell networks in tumors with
improved fidelity; i.e. to painstakingly profile a tumor for
diverse, precisely defined, distinct immune-cells (such as
distinct phenotypes of effector CD8" T cells profiled at
high-resolution), rather than general immune-cell types,
or generic associations to immune-cells such as “pro-
tumor” and “antitumor” [22, 24].

To achieve this efficiently, many systems-immunology
challenges need to be overcome; whereby the guidance
of improved computational pipelines are needed [21,
25-27]. In this study, we address two such challenges:
(a) the attempt to select more precise gene signatures
representative of such distinct immune-cell subtypes,
and (b) the inference of cooperating networks of these
distinct immune-cells in the tumor microenvironment.
Here, the term “distinct immune-cells” or DIST, is con-
sidered as an immune-cell subtype purified from clearly
defined cell surface markers, often characterized by
functional status such as naive, effector, central-memory,
and PD1-low, etc. We describe here a novel computa-
tional framework that analyzes transcriptomes from
tumor biopsies and score them for signatures of distinct
immune-cell subtypes (DISTs). This was achieved using
a novel bioinformatics framework which defines the
gene signatures of DISTs, by (a) using semantic relations
of genes to general immune-cell types from the Medline
database, computed by a saturation function. Then (b)
integrating this information using affinity propagation
clustering [28] applied to DIST-specific protein net-
works. The framework attempts to improve general defi-
nitions of immune signatures (such as CD4+ T cells,
CD8+ T cells, NK cells, etc.), and offers the possibility to
query wide ranges of DISTs in their tumor contexts at
multiple stages of differentiation, activation or function.

The selection of immune-cell signature genes for im-
mune profiling in disease has most often relied on differ-
ential gene expression [29, 30], enriched expression of
transcripts in immune-cells [2, 4, 30], applying expres-
sion thresholds across a the immune-cell lineage [31], or
identifying modules of co-expressed mRNA transcripts
[3, 6]. Similarly, immune-cell specific genes have been
identified on the basis of higher gene expression across
all immune-cells compared to a selection of non-
immune tissues [32]. In general, these approaches can be
considered as being primarily centered on the principle
that higher expression in an immune-cell type is likely
to define a cell’s distinct properties. However this is only
one of many features that may be used identify immune
genes [32]. Methods relying on enrichment of gene
expression have proved useful in identifying signatures
of general immune cell types, although it is challenging
to pinpoint signatures for highly specific immune-cell
subsets, especially for highly similar subsets [33, 34].
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Here we propose a knowledge-driven approach, inte-
grated with measures of expression enrichment that
attempts to define detailed DIST signature genes. It
leverages semantic associations of genes to general cell
types, followed by inference of signature genes from
DIST-specific protein networks. The strategy is bench-
marked against transcriptomes of metastatic melanomas
with matching T cell immunohistochemistry as valid-
ation. The approach is demonstrated in cases of thera-
peutic applications, also with metastatic melanomas,
whereby patients have been treated with chemotherapy
and resistance in combined targeted therapy to MAPK
inhibitors. We illustrate the ability of this bioinformatics
approach to infer the tumor killing and the immunosup-
pressive immune-cell networks of therapy response and
non-response, respectively (including that of the check-
point PD1 Low/High CD8+ T cells in tumors prior to
administration to chemotherapy).

With such a framework, the cooperative networks of
DISTs in tumors and their association to therapy and
clinical outcome may be queried systematically and
automatically. This bioinformatics approach may serve
as a system to help define the molecular signatures of
DISTs, which can be used to provide hypotheses to
guide immuno-pathological discovery in cancer.

Results

A bioinformatics pipeline to identify signature genes
from transcriptomes of distinct immune-cells

First, signature genes associated to general immune-cell
types (GIT) were extracted from Medline. In the later
steps, these GIT genes are used to generate an extended
list of genes signifying an association to their corre-
sponding distinct immune-cell phenotypes (DIST). The
complete workflow is depicted in Fig. 1, described in
detail in the Methods section, and summarized briefly
here. In the first step, the signature genes most represen-
tative of the GITs, were captured in an automated man-
ner from approximately 18 million Medline abstracts
and mapped to a text-mining index of all official human
gene symbols [35]. Genes were then scored for GIT rele-
vance by use of a literature saturation function, which
calculated the relevance for a gene to each GIT. The sat-
uration function scores on a range from 0 to 1, and
genes were assigned GIT relevance if they had a value
greater than 0.9 (Fig. 1a, and Methods section “An auto-
mated method to associate general immune-cell types to
human genes”).

The next steps in the pipeline were motivated toward
identifying DIST genes that correspond to their respective
GIT categories. To select the final list of DIST signature
genes, the resultant 235 GIT marker genes from the first
step outlined in Fig. la (see Additional file 1: Table S1)
identified using the literature saturation function were
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(a) Associate General Immune-cell Types (GIT) scores to genes

(b) Distinct Immune-cell Subtypes (DIST) specific network
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Fig. 1 An integrated bioinformatics workflow to capture DIST signatures: a Using Medline gene indexes and the gene association to general
immune-cell keywords, GIT associated genes are extracted in an automated manner from the literature. b Accessing large public resources for
DIST transcriptome repositories, DIST enriched genes are determined and used to build DIST-specific protein networks via the integration of the
human interactome. ¢ Similarity matrices are built using the DIST-specific networks based on similarity in protein interaction partners. The DIST-
specific similarity matrices are then subject to affinity propagation, whereby the resulting clusters are used to identify DIST marker genes
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used to query protein-protein interaction (PPI) network
features from corresponding DIST-specific protein
networks (Fig. 1a and b). The protein interactions were
derived from an integrated database of 69,809 experimen-
tally verified human PPIs, and this resource was integrated
with a repository of DIST gene expression profiles, which
was compiled, processed and profiled from datasets quer-
ied from the GEO database [36] (Fig. 1b and methods
section “Defining immune-cell enriched genes from a
comprehensive transcriptome repository of distinct
immune-cell subtypes”). Each of the 173 DISTs trancrip-
tomes analyzed (see Additional file 1: Table S1) were

independently processed through the bioinformatics
workflow in Fig. 1b (to avoid cross platform/study
issues). DIST-enriched genes were first identified from
each of the transcriptome profiles (Fig. 1b) in order to
limit the generation of the resulting PPI networks to
DIST relevant genes only. Subsequently, these DIST-
enriched genes were used to create 173 separate DIST-
specific PPI networks (see Fig. 1b).

The DIST-specific PPI networks and the clustering
properties of GIT nodes in these networks, were the
foundation upon which the final signature genes for the
DISTs were selected for. DIST-specific networks were



Clancy and Hovig BMC Bioinformatics (2016) 17:263

first generated from the DIST enriched genes (Fig. 1b),
for subsequent DIST signature selection through affinity
propagation algorithm [28] that was applied to the
DIST-specific networks (Fig. 1c). Candidate DIST genes
found in the same affinity propagation clusters as GIT
genes, and having a degree of literature association to
the GIT, were then selected. This resulted in 601 DIST
signature genes across the immune-cell transcriptomes.
This allowed not only for the opportunity to profile the
173 DISTs, but also that of 8451 DIST combinations
(from DIST pairs not of the same general immune type),
in tumor transcriptomes, to capture their network signa-
ture of immune cells (Fig. 1c and Methods section “Net-
work informed selection score of distinct immune-cell
marker genes using affinity propagation”).

The reasoning behind the use of PPI networks as a
resource to select DIST signature genes that correspond
to their GIT genes is that if both the DIST and their
corresponding GIT genes are identified in the same af-
finity propagation clusters; they may also partake in
similar functions, signaling pathways or protein com-
plexes in the immune-cells. Thus, allowing for the selec-
tion of potential signature/marker genes for DISTs, from
clearly defined immune-cell phenotypes in transcriptome
repositories. The source code and required source data
to run the workflow describe in Fig. 1 and in the Methods
section, is freely available for download at the following
location: http://invitro.hpc.uio.no/ImmuneNetScore/.

Signatures of distinct immune-cell phenotypes corres-
pond with immunohistochemistry findings in metastatic
melanomas

In order to establish whether the resulting GIT and
DIST signatures from the bioinformatics pipeline de-
scribed in Fig. la correspond to an accurate immune
pathology when used to profile a tumor transcriptome,
we profiled tumor biopsies where both gene expression
was available, and also some validation was available on
the same matching samples (e.g., immunohistochemis-
try). To this end, using melanoma as a test case, we ana-
lyzed the transcriptomes of 57 metastatic (Stage III and
IV) melanomas [37] (see Fig. 2), which in addition to
transcriptomics had matching immunohistochemistry
performed for the generic T cell surface marker CD3 (a
pathological CD3+ brisk infiltrate). A DIST score for
each tumor was determined by calculating the normal-
ized average of the DIST gene expression values across
the patient cohort. Using the computational approach,
the DIST score for CD8+ positive effective memory T
cells [38] and two similar populations of CD8+ Naive
cytotoxic T cells [38, 39] were significantly different be-
tween CD3 high and CD3 absent patients (Fig. 2a).
When analyzing the complete landscape of all patient
tumors across all immune-cell types, a hierarchical
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clustering corresponding to all the DISTs identified a di-
verse inter-patient heterogeneity and a clear separation
of patients into a dichotomy of immune active and less
active tumors (see heatmap Fig. 2b).

To ascertain how the predicted DISTs correspond
with survival analysis, we performed logrank tests illus-
trated in Kaplan-Meier survival curves (see Fig. 2c) for
patients that were high (the highest quartile for the
DIST score, represented by green lines) and low (the
lowest quartile for the DIST score, represented by black
lines). From the perspective of benchmarking, focusing
on the T cell positive (or a pathological CD3+ brisk in-
filtrate) signatures specifically, T-helper central memory
T cells [40] and naive CD8+ Cytotoxic T cell [41] signa-
tures signify that our in silico method corresponds with
the immunohistochemical T cell infiltrate patterns
identified with favorable outcome [37]. The logrank p
value for the naive CD8+ cytotoxic T cell [41] in Fig. 2¢
was 0.015, compared to a p value of 0.051 when consid-
ering the expression of cell surface marker CD8 alone.
Likewise, for the CD4+ T-helper central memory T cells
in Fig. 2¢, the p value was 0.016 compared to the highly
insignificant value of 0.58 when considering the cell
surface marker CD4 alone. This demonstrated not only
an effective strategy to pinpoint distinct immune-cell
phenotypes at higher resolution possibly infiltrating tu-
mors, but also improved patient stratification for re-
sponders and non-responders when considering these
DIST features.

In addition to confirming the predictive positive T cell
signature with clinical outcome, the analysis identified
signatures of immune-cell infiltrates that correspond
with the emerging knowledge of melanoma immune
pathology. Specifically, we predicted presence of mature
naive Natural Killer (NK) cells [38, 42], which corre-
sponded with improved survival in patients (Fig. 2c), and
signatures of adaptive CD19+ B cells [43, 44]. The NK
cell gene signatures were not reported from these meta-
static melanomas patients previously, but corresponds
well with the emerging knowledge of NK cell interac-
tions with melanomas [45]., The most significant DIST
signature was that of a predicted B cell infiltrate associ-
ated to positive clinical outcome, for a CD19+ B cell
phenotype [43], and corresponds with the emerging
knowledge of the role of regulatory B cells in the im-
mune pathology of a tumor [44]. A complete list of
DISTs that had significant differences (logrank p values)
in the Kaplan Meier curves is listed in Additional file 2:
Table S2, and the contributing marker genes are listed in
Additional file 3: Table S3. Of note, as the patients had
their biopsies taken with transcriptomes profiled prior to
treatment with the chemotherapy doxorubicin; their
immune profiles, as illustrated in Fig. 2a and c, are
suggestive of a specific adaptive immune response being
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(a) DIST signatures correspond with immunohistochemical analysis in metastatic melanoma
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(b) Stratification of metastatic melanoma patient groups across DIST categories
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(See figure on previous page.)

positive outcome

Fig. 2 Benchmarking against the immunopathology of the metastatic melanomas: a p value heatmap and boxplots representing pairwise t —tests for
all clinical features and their patient groups. The darkest shade of blue illustrates p values < 0.05 (the lighter shade of blue represents p values >0.05
and < 0.1). Most notably, for p values < 0.05, there was a significant difference between those patient groups positive for a pathological CD3+ brisk
infiltrate compared to the patients which were absent for CD3+ brisk. A comparison is labeled dark blue if at least one DIST in the patient group
comparison was significant. The three boxplots pointing to that comparison illustrates distinct phenotypes of CD8+ T cells [38, 39], which contribute to
the T cell pathology observed in the brisk-positive group. b Hierarchical clustering and heatmap (rows represent tumor samples and columns DISTs),
across all patients and a comprehensive set of DISTs from several general immune-cell types. The heatmap illustrates clusters of tumor samples that
have elevated immune-cell presence in their tumor, and a cluster of patient that are less active for DIST signatures. ¢ Kaplan-Meier curves illustrating
the three DIST types that correspond to positive outcome in the log-rank difference between the patient groups which were from the highest quartile
(green), and the lowest quartile (black) for the DIST signature score. Patients with the highest quartile signal in their tumors for naive CD8+ T cells [38],
central memory Th1 cells [40], mature inactivated NK cell population of cells [38], and regulatory CD19+ B cells [44] were predictive of

triggered post-chemotherapy and associated to positive
outcome.

The cooperating network of distinct immune-cells: captur-
ing network-associations to PD1-low CD8+ T cells and
positive outcome to chemotherapy

To understand the immune pathology of a tumor more
comprehensively, it is important to not only profile sin-
gle DIST phenotypes and their association to clinical
outcome; but also that of the cooperating network of
distinct immune-cell populations. In other terms, the
“ratio” between different DIST signals, which have a syn-
ergistic relationship with each other in the microenvir-
onment, may be a determinant for survival and therapy
response. With that in mind, we used this computational
procedure to capture the pairwise ratio of each of the
DIST scores calculated for each (the DIST score for the
tumor was normalized average of the DIST gene expres-
sion values across the patient cohort). The DIST score
for each tumor was then integrated with the cytokine
relationships between the DISTs to infer the possible
synergistic network of DISTs in the tumors (seeMethods
section “Constructing a network similarity matrix for
distinct immune-cell subtypes”).

Connections between a pair of different immune-cells
were created if their DIST scores had a log2 ratio greater
than 0.5 and the DIST pair had a cytokine receptor
interaction with each other. Two such exemplary
patient-specific networks applied to the metastatic mel-
anoma patients are illustrated in Fig. 3, in both a
responder patient with overall survival (OS) of 1478 days,
and a non-responder patient with OS of 25 days, to
doxorubicin chemotherapy. The resulting immune-cell
networks were suggestive of distinct immune-cell envi-
ronments being present in the tumor that may deter-
mine outcome and also impact the subsequent adaptive
immune response to chemotherapy in these patients. In
both of the patient-specific immune-cell networks in
Fig. 3, the nodes illustrate a GIT associated to one or
more corresponding DISTs captured by the immune-

cell network analysis. A line connecting two nodes rep-
resents a log2 ratio > 0.5 between at least one pair of
DISTs. In the case of the responder, a CD+ T-helper 1
cell signature [46] higher than that of the CD4 + T-
helper 2 effector memory signature [38] was highly
predictive of improved clinical outcome as illustrated
by the Kaplan-Meier curves of the responder in Fig. 3.
All relationships between DISTs that were significant
in the survival analysis for the whole patient cohort are
captured in Additional file 4: Table S4 (significant log-
rank p values, for all pairwise log2 ratio scores). The
only other network relationship of immune-cell ratios
in the same responder patient was a greater CD8+
cytotoxic immune-cell signature compared to the CD4
+ T helper cells (Fig. 3). Overall, the responder patient-
specific network was suggestive of a classical Thl
driven tumor-killing adaptive immune response with a
clear Thl immune cell phenotype compared to that of
a Th2 driven response [38]. In the case of the non-
responder, a clear immunosuppressive network of
DISTs was inferred by our approach, in addition to
other predicted immune-cell ratio relationships (Fig. 3).
Two such exemplary DIST relationships are illustrated
for the non-responder in Fig. 3. Firstly, it was notable
to observe a ratio depicting a higher proportion of
CD15+ neutrophils (GSE58173) compared to IL-2
stimulated NK cells [47], which also had a highly
significant separation in the Kaplan Meier curves over
the whole cohort (Fig. 3). Additionally, as an example
of a classically known ratio of an immunosuppressive
DIST interaction in melanoma biology [48]; a higher
ratio of metastatic associated regulatory T cells [49]
compared to CD8+ cytotoxic T cells was observed in
the non-responder (Fig. 3). Interestingly, these specific
CD8+ T cells were of an effector cell type characterized
as “low” for the checkpoint inhibitor PD-1 [39]. Given
that CD8+ T cells with high PD-1 expression lose the
ability to eliminate cancer due to the checkpoint inhib-
ition, the higher level of signatures of PD-1-low
effector CD8+ T cells in patients with positive outcome
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Networks of distinct immune-cell subtypes in tumors and association to survival
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Fig. 3 Patient-specific networks of cooperating DISTs in the tumor microenvironment of metastatic melanomas: Edges are included in the
network only if the log2 ratio of the DIST pair is greater than 0.5. Nodes are labeled (e.g. Th2) according the corresponding GIT for the DIST being
represented. A Kaplan Meier plot for the ratio between the immune cell pair underlies each edge in the networks, but only two Kaplan Meiers
are shown for illustration purposes. Green nodes represent the numerator in the log2 ratio calculation and red nodes in the networks represent
the denominator, i.e. that the green immune cell type is present in the patient to a greater degree relative to the red immune cell. An example
of a responder patient (OS, 1478 days) is shown, top left. The survival analysis for the whole patient cohort (57 patients), illustrated in the figure
reveals a classical Th1 driven tumor-killing microenvironment. The highest quartile (green lines) and the lowest quartile (black lines) of the log2
ratio of the DIST pair are illustrated in the Kaplan-Meier curves. The predicted Th1 cell phenotype [85] is present to a greater extent than Th2 cell
phenotype [38] in the network. In addition the responder revealed a greater proportion of cytotoxic CD8+ T cells compared to Th2, revealing a
tumor-killing microenvironment network. Conversely, an example of a non-responder patient-specific network (OS, 25 days) is shown (bottom right).
Notably, this non-responder hosted a CD8+ cytotoxic T cell subset, low for the checkpoint inhibitor PD-1 [39], to a lesser degree proportional to a
T-regulatory cell population DIST [49]. This suggests the presence of a classical immunosuppressive microenvironment in this patient’s tumor. Notably
also from the perspective of an immunosuppressive environment is the predicted presence of a higher proportion of a neutrophil DIST population of
cells (GSE58173), compared to activated IL.2 stimulated NK cells [47]

to chemotherapy is once again suggestive of a down-
stream adaptive immune response in these patients
post chemotherapy administration.

Overall, the summary observations from the patient spe-
cific DIST networks in Fig. 3, are indicative of the ability
of our approach to capture informative networks of co-
operating DISTs for both immunosuppressive and tumor
killing responses in metastatic melanoma patients.

Mutated MAPK signaling and the immunopathology in
metastatic melanomas

We next investigated the utility of this framework to
capture relationships between oncogenic signaling net-
works in tumor cells, and the corresponding DIST net-
works in the tumor. The grade III and IV metastatic
melanomas under study [37] had also being genotyped
for BRAFV600 and NRASV12 mutations, and therefore
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allowed us to profile for the network of cooperating dis-
tinct immune-cells that may differ between the two most
often perturbed MAPK signaling systems in melanomas.
As depicted in both networks in Fig. 4a, we detected a
dichotomy in the inferred immune-network pathology
between BRAFV600 and NRAS metastatic melanomas.
Each node in the networks in Fig. 4a corresponds to a
GIT, which, as in Fig. 3, represents one or more DIST
scored in more than one patient (i.e. the average of the
patient groups is illustrated if Fig. 4, and this average
corresponds to the node size). Each patient group ana-
lyzed in both networks was labeled as harboring either a
BRAFV600 or NRAS mutation. An edge is connected
between to nodes in the network if (a) the log2 ratio
between two of their underlying DIST score is greater
than 0.5, in more than 10 % of the patients in the entire
cohort, and (b) there exists cytokine receptor interaction
between the immune-cell pair. The size of the nodes in
the BRAFV600 and NRAS network is proportional to
the average GIT signature among all the analyzed
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patient’s samples for the two different mutation types.
Most notably, there is a contrasting pattern observed
between the CD8+ cytotoxic T cell and Thl cell
responses between BRAFV600 and NRAS melanoma
patients. In addition to a dichotomy between the CD8/
Treg ratios in comparing both networks, there were
altered ratios between macrophages and CD8+ T cells,
and between mast cells and CD8+ T cells and Th 1 cells
(Fig. 4a). The larger presence of CD8+ cytotoxic T cells
and Thl cells in BRAFV600 metastatic melanomas once
again suggests the presence of a potential tumor-killing
environment, recruited to the tumor as a result of the
BRAF oncogenic insult, but suppressed due to many
possible immune-escape mechanisms including that of
the high T-helper 2 ratio dominant in the BRAFV600
patient network, as opposed to the low CD8+ and T-
helper 1 positive cells in the NRAS patients (Fig. 4a).

In addition, the framework was used to analyze meta-
static melanoma patients in a study of perturbed MAPK
signaling systems, which have become resistant to

to chemotherapy
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Fig. 4 Patient networks (depicting averages over patient groups) of altered immune network landscapes in perturbed MAPK signaling of
metastatic melanomas. Nodes are labeled as a GIT which corresponds to at least one DIST. Edges are included in the networks only if the log2
ratio of the DIST pair is greater than 0.5 and their exists a cytokine to cytokine-receptor relationships between the DIST pairs. Both networks in
the left and right panels are identical, except for the sides of the nodes, which are scaled proportional to the average GIT immune-cell score for
all the patients in the group. a As in pre-treated chemotherapy metastatic melanoma patients, there is high CD8 and Th1 immune-cell scores,
accompanied by immunosuppressive cells. Possibly indicating a tumor-killing potential pre-therapy with co-occurring immune suppressive

barriers. b The average size of the immune-cell scores has been visibly altered by the chemotherapy, as visible between pre-treated and resistant
patients (naturally, also their respective ratios with each other in the networks). This was most notable for Th1 and CD8+ T cells between both networks
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combined MAPK inhibitor (MAPKi) drugs [50]. Net-
works capturing the immunopathology of these patient
groups are illustrated for both pre-treated and treatment-
resistant BRAFV600-mutant melanomas (see Fig. 4b).
These patients consisted of progressing (acquired resist-
ant) and matched pre-treatment melanoma tumor sam-
ples [50] treated with combined dabrafenib (BRAF
inhibitor) and trametinib (MEK inhibitor). Both of the
networks from this MAPK drug resistance study in Fig. 4b
were constructed in the same manner as the chemother-
apy study in Fig. 4a above: the size of the nodes corre-
sponds to the GIT scores averaged over the patient groups
(pre-treated and treatment-resistant). Likewise, there is at
least one DIST underlying the GIT labeled nodes, and at
least one significant log2 ratio between at least one pair of
DIST in the networks.

There are notable differences in the properties of the
immune-cell networks between pre-treated and treatment-
resistant patient’s tumors. Although averaged over all
patients in the group, an altered immune-cell network was
detectable between the patient groups. In that regard, there
was a difference between CD8+ T cells and Thl cells, once
again indicative of a switch from a “potential” tumor-
reactive microenvironment (co-occurring with some
immune suppressive factors), to an immune resistant
phenotype in the MAPKi treatment resistant patients. In
the same regard, differences are visible between ratios of
CD8/Treg and CD4/Treg between the two patient groups
in Fig. 4b. In this case of targeted MAPKi therapy, it was
again suggestive of a transition to an immune suppressive
environment in resistant patients with poor outcome, with
the therapy resistant network depicting higher signals for
diminished ratios of CD8/Treg and Th1/Treg compared to
the pretreated cases (Fig. 4b). Additionally, the network
analysis reveals interesting trends in an increase of macro-
phage and dendritic cell signals in treatment resistant
patients compared to the pre-treated patients. This is
suggestive of an increased immunosuppressive microenvir-
onment contributed by regulatory phenotypes of macro-
phages and dendritic cells [51] in the MAPKi treatment
resistance [52].

Discussion

We are entering an era where diverse and global
immune profiling will routinely guide clinical decision-
making and predict response to immunotherapy in
disease [53—-55]. Transcriptome analysis of distinct
immune-cell subsets will have an important contribution
toward this effort. As for example, in a recent review,
the concept of exploiting the network characteristics of
immune cells (based on transcriptional network mod-
ules) has been suggested as an important path forward
to address the challenges of accurately applying systems
immunology in the clinic [21]. Indeed, transcriptional
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modules have proven to enable systems scale analysis,
demonstrating that immune-cell transcriptomics is a
powerful source of information on immune-cellular
states during health and disease [46, 56, 57]. However, a
worthwhile addition to gene expression network analysis
to delineate DIST signatures is the immune-cell’s unique
spectrum of functional signaling networks [58], and the
differential PPI networks between distinct cell subsets
[59], as applied in this study. Our exploitation of the
unique features of DIST-specific PPI networks may allow
for a more precise selection of marker genes represent-
ing a DIST that may be used in immune profiling at
higher resolution. In principle such a strategy is scalable
to identify novel signatures from DISTs, which are
isolated, phenotyped and characterized for function from
large compendiums of transcriptomes, accumulating in
public repositories [36, 38, 60].

One advantage in capturing signals of general
immune-cell types from Medline is that we allowed for
association to cell types in an automated fashion [61],
without reliance on manual curation on the specific cat-
egories of immune-cells. In order to achieve a balance of
accuracy and automated association to the immune-cell
type, there was a strict requirement on the saturation
function for genes to have a large amount of co-citations
in Medline to be scored positive (which may result in
missing some relevant GIT hits for some genes). How-
ever, when we map the saturated immune genes to
corresponding DIST-specific PPI networks; we allow for
an additional layer of capture of DIST-specific marker
genes, not dependent on a large coverage in the litera-
ture, yet likely to be jointly associated to DIST-specific
functions in the cell.

From the perspective of the immune profiling of com-
plex tissue, as in a tumor biopsy, it is a difficult chal-
lenge to efficiently and comprehensively capture not
only DISTs but also the synergistic network of DISTs in
the microenvironment [15]. We have demonstrated that
an integrative bioinformatics pipeline can be used to
probe systematically and automatically to query for the
presence of cooperating DIST networks. Although we
will soon have at our disposal powerful technologies to
analyze transcriptomes individually at the single cell
level [62], it is currently impossible to comprehensively
and precisely validate at high-resolution the precise def-
inition of a distinct cell type and its signature/marker
genes. However, when analyzed on transcriptomes in
metastatic melanomas with accompanying low-resolution
validation of immunohistochemistry (IHC) of CD3+ T
cells: the approach described here corresponded to IHC
findings and recapitulated the role of effector T cells in
metastatic melanoma [63, 64]. In particular, this bioinfor-
matics method points toward distinct naive and memory
subsets of CD8 + T cells associated to positive outcome, in
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addition to immune surveillance by NK cells and regula-
tory B Cells in tumors of patients with a positive outcome.

Given that biopsies were taken prior to the chemother-
apy treatment cycle, such observations allude to the pos-
sibility that these tumors undergo an immunogenic cell
death through the chemotherapeutic drug (doxorubicin),
followed by adaptive immune responses toward exposed
antigenic material [65, 66]. This possibility is supported
further when we observe T cells low for the PD1 were
predictive of positive outcome, and indeed the synergis-
tic (or network) outcome of the PD1-low cells relative to
immunosuppressive T regulatory cells revealed a highly
predictive response to the chemotherapy: suggestive that
the tumor infiltrating CD8+ T cells were not subject to
PD1-PDL1 inhibitory signals, in patients with positive
outcome, and therefore may have the capacity to mount
an immune attack. Interestingly, CD8"/Treg ratios have
been verified to increase upon combination checkpoint
therapy in melanoma, improving survival in melanoma
[67], and the CD8"/Treg ratio is associated to improved
survival in ovarian [68] and gastrointestinal [69] cancers,
among other tumor types.

The ratios of diverse DISTs in a tumor and their syner-
gistic effects are important to understand response to
therapy. In metastatic melanoma, for example, the
cooperation of CD8+ T cells and Natural Killer cells are
necessary to mediate anti-tumor activity during combin-
ation therapy with IL2 and anti-CTLA [70], and for the
use of BRAF inhibitors in metastatic melanoma [71].
Notably, the gene signatures scores for NK and CD8+
immune-cells in this analysis were lower relative to
many immunosuppressive cells in the non-responder
melanoma patient highlighted in this analysis. The precise
network of DISTs in a tumor is likely to be orchestrated
by multiple dynamic processes, ranging from its stage in
the immunoediting phenotype [72] to the tumor cell type
and its perturbed genetic landscape. Therefore, an accur-
ate and comprehensive characterization of the cooperating
DIST network in tumors is very difficult. This computa-
tional approach may lessen this difficulty and may serve as
a guide to expedite the discovery process of the precise
immune-cell landscape in a tumor.

From the point of view of melanoma and targeted ther-
apy, via inhibitors of the MAPK pathway, such profiling of
the networked landscape of immune-cells may be of great
importance, due to the burgeoning evidence of the role of
immune modulation in MAPKi therapy [73-75]. The
computational approach here detected notable differences
in the immune-cell networks between BRAF and NRAS
mutated metastatic melanomas, in addition to BRAF
mutated melanomas that have acquired resistance after
combined MAPKi therapy. The approach illustrated that,
on average, pretreatment tumors harboring a BRAF muta-
tion have higher signals for distinct CD8+ T cells and Th1l
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cell signatures, signifying a tumor-killing environment.
Given that BRAF and NRAS mutated tumors, lacking
immune-related gene expression signatures, have poor
outcome [76]; it is may be of value to apply this computa-
tional query system to systematically probe and score for
the possible immune landscape in tumors before the
administration of therapy.

It is important to consider that the density, distribu-
tion and precise location of distinct immune cells within
the tumor are factors not analyzed by this this computa-
tional approach. These are important prognostic and
diagnostic elements not considered by our approach.
However, these are features of critical importance, as
indeed evidenced in melanoma [77, 78] and as first
highlighted in colorectal cancer [1]. To accurately profile
these spatial and temporal dynamics, we must continue
to rely on classical immune profiling methods (IHC, flow
cytometry, etc.), especially those which apply a systems-
biology perspective [2], and also integrate novel methods
in the emerging field of single-cell technologies [79]. In
the near future we will have the opportunity to analyze a
plethora of DISTs profiled at the single-cell level. How-
ever, to interpret such data, bioinformatics strategies to
help define signatures genes of such DISTs as attempted
here may be necessary. This is particularly the case when
considering the advent of improved methods to algorith-
mically deconvolute the quantity of rare cellular popula-
tions from the transcriptomes of complex tissue [33, 34].

Conclusions

Many previously reported and emerging deconvolution
algorithms require precisely defined marker genes or ex-
pression profiles prior to implementation [33]. There-
fore, new integrative bioinformatics approaches such
that as proposed here may be useful to define signatures
marker genes. This may especially be the case for small
yet highly similar functionally important populations of
DISTs profiled at the resolution of the single-cell. In par-
ticular for cancer, strategies that incorporate such
methods, may guide us in defining the network of func-
tionally important DISTs to discover predictive bio-
markers for therapeutic response, and support the
discovery of mechanisms that undermine the interplay
between a tumor and the network of immune cells in its
microenvironment.

Methods

An automated method to associate general immune-cell
types to human genes

The general immune-cell types (GIT) we chose to
analyze were macrophages, dendritic cells, CD8+ T
cells, CD+ Thl cells, CD4+ Th2 cells, CD4+ regulatory T
cells, natural killer cells, B cells granulocytes (both eosino-
phils and neutrophils), myeloid derived suppressor cells
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(MDSCs), and mast cells. For each GIT, the most relevant
Medical Subject Headings (MeSH) term-codes represent-
ing that general cell type were selected manually. The
index of these MeSH terms to Medline abstracts from the
National Library of Medicine’s (NLM) annotations of
MeSH terms to articles was then retrieved. Next, all offi-
cial gene symbols from the Human Genome Organization
(HUGO) were retrieved from a text-mining index of Med-
line abstracts using a natural language processing (NLP)
database [35]. The MeSH term-code index and this gene
text-mining index were then cross-referenced and their
co-citations in Medline enumerated. For each gene i, a
general immune-cell type relevance score Sz, which ranges
between Ss, (0) =0 and S3, (e0) = 1, was calculated for each
GIT using the following saturation function:

1 , b

Sg=———
3 1—|—x,e*yx

This relevance score S; was modeled as a non-linear
saturation curve (logistic function) where the constant a
is the total number of co-citations among the immune-
cell type’s MeSH term-codes in Medline, and the vari-
able b is the total number of co-citations with these
MeSH terms for gene i. The behavior of the function
above that calculates the relevance score was designed
such that y controls for a strict degree of steepness of
the logistic curve. Thus, the saturation score behaves
such that the greater the degree of co-citation of a gene
with the relevant immune-cell MeSH terms in Medline;
the increased likelihood there is that the gene will reach
the steep saturation point set to ensure the immune-cell
relevance. In other terms, for a gene to reach saturation
point, it is necessary to have a large number of co-
citations with the immune cell's MeSH terms relative to
the total number of citations of the MeSH terms.
Because of the necessity in having a relatively high co-
citation value, this relevance score S as calculated repre-
sents an automated association of gene i to the general
immune-cell types, while simultaneously correcting for
possible literature bias through demanding a steep satur-
ation curve for relevance in the biomedical literature
(see saturation curves, demonstrated for cytotoxic T cells
and Mast cells in Fig 1a).

A very small number of well-known signature genes of
immune-cells were reserved for association to specific
GIT categories. If any of these genes were captured by
the saturation function for their corresponding well-
known GIT, they were then reserved for that cell type,
and therefore not considered if captured by the literature
saturation function for the other GITs. This step
addressed the inherent noise in the text mining indexes
of Medline abstracts, while also allowing the saturation
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function to score most human genes to general
immune-cells types, in an automated manner.

Defining immune-cell enriched genes from a comprehen-
sive transcriptome repository of distinct immune-cell
subtypes

A large and detailed repository of Distinct Immune-cell
Subtypes (DIST) transcriptome datasets was compiled
from the Gene Expression Omnibus (GEO) database
[36]. The DIST repository consisted of 551 transcrip-
tomes from a total of 173 distinct profiles of immune-
cells, characterized in 28 human single-cell datasets
(Additional file 1: Table S1). Each of the datasets
involved the purification of the single-cells from the
immune system, followed by gene expression profiling.
The set of immune-cell enriched genes for each DIST
where determined separately for each transcriptome
dataset processed in the repository. Firstly, each individ-
ual dataset was separately normalized using quantile
normalization [80]. Then, the mean value X, for the
target DIST was calculated among its replicates. Subse-
quently, the ratio of y to the mean value for each
remaining DISTs in the dataset was calculated, summed
and averaged as follows:

z
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Where, for example, y; is the mean of one of the
remaining DIST profiles i€ (1 — N), and N is the total
number of distinct single immune-cells in the dataset.
The resulting gene values were then sorted in ascending
rank-order with a lower value representing higher
expression in the target DIST. The top 10 % ranked
genes were assumed as being enriched for the target
DIST, and later selected for in the protein network
informed procedures to identify it's DIST marker genes
(see Methods below). The DIST enriched genes were
defined separately in this manner on a per dataset basis
across the repository (see Additional file 1: Table S1) in
order avoid the many possible error prone complexities
of dealing with cross- platform, —laboratory and -experi-
mental sources of bias between the different studies in
the DIST transcriptome repository.

Construction of distinct immune-cell specific networks

Networks of the protein products of human genes were
sourced from 10 integrated protein-protein interaction
(PPI) databases, structured by the iRefIndex [81]. The
PPI databases were downloaded from the binary and
physical protein associations through the iRefWeb
service [82, 83]. The interactions are integrated in this
resource by mapping identifiers across the databases with
systematic backtracking to establish the non-redundant
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identity of interacting partners. A strict filtering process
for each PPI was applied, whereby only physical binary
protein interactions that satisfied all of the following cri-
teria were selected: (a) experimentally verified; (b) both
interactors originate in human; (c) at least one supporting
publication in Medline, and (d) physically binding PPIs.
For each of the DIST profiles, their immune-cell enriched
genes (a strict threshold of the top 10 % ranked genes,
described above), were mapped to the integrated PPI net-
work to create their DIST-networks. These top 10 %
single-cell enriched genes in a DIST were then used as
seed genes to query the integrated PPI network and
connections were only allowed to be formed in the result-
ing network if an interaction partner was among a certain
top percentage enriched genes (30 % in these studies
profiled here, but configurable by the pipeline); creating
DIST-specific networks across the whole dataset, and
subsequently the DIST repository.

Constructing a network similarity matrix for distinct
immune-cell subtypes

For each DIST-specific network, a similarity matrix was
built by calculating a similarity metric for all protein
pairs in the network. For a protein pair A and B, shared
interactions between the pair in the DIST-network were
calculated as (|N(A) nN(B)|) in relation to the connect-
ivity, or degree centrality, of N(A) and N(B) in the entire
DIST-specific network. The Simpson index was then
used as the similarity metric, calculated as the propor-
tion of shared interactions between the protein pair rela-
tive to the degree of the least-connected protein of the
pair in the network.

|IN(A)nN(B)|
min(|N(A)|, [N (B)])

For each of these similarity metrics, a real-valued
matrix S was then formulated, in which a pairwise com-
parison S,p, corresponded to a value representative of
the similarity of protein A to protein B in the DIST-
specific network.

Network informed selection score of distinct immune-cell
marker genes using affinity propagation

The goal of this component was to expand the GIT
marker genes identified above and use the molecular
network of single-cells (the DIST-specific networks) to
inform the selection of DIST-specific marker genes. To
that end, the real valued similarity matrices (described
above) were used as input into a specialized clustering
algorithm, Affinity propagation (AP), to identify exem-
plifying clusters [28] of genes holding similar interaction
partners in the DIST-specific network. Briefly explained,
the AP clustering algorithm operates by passing bi-
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directional messages of similarity values between all
pairs of data points in the similarity matrix until a set of
exemplifying clusters emerge as the algorithm iterates.
For a gene pair A and B, there are two different types of
messages exchanged, resulting in two different matrices
where operations are carried out: the “availabilities”
matrix (a(A, B)) and “responsibilities” matrix (r(A, B)).
The “availability”, sent from candidate exemplar gene B
to A, is a query of how gene B is suitable to be available
for gene A to become an exemplar cluster. The “respon-
sibility”, sent from gene A to gene B, is a query of how
gene A in the message passaging system is suitable to
serve as exemplar in B. The values in both matrices are
computed as log likelihood ratios and the availability is
fixed initially at zero. The responsibility matrix is then
updated while the availability matrix updates and accu-
mulates scores from all possible genes as to their likeli-
hood of being optimal exemplar clusters (computed as
the sum of the responsibilities (r(A, B)). More extensive
details of the affinity propagation algorithm, its update
functions, and its approximations are available by Frey
and Dueck [28], describing its source development. The
affinity propagation clustering algorithm holds the
advantage over classical clustering procedures to identify
DIST-specific markers in that it considers, simultan-
eously and unbiased, all proteins in the DIST-specific
network as potential members of the exemplifying clus-
ter. Additionally, the algorithm generates deterministic
results, and robust DIST-specific markers can be effi-
ciently produced for each analysis. The overall DIST
score for the resultant signature marker genes, and their
pairwise ratio scores, for each DIST identified using this
approach, are profiled in a tumor transcriptome mixture
by the normalized average across the patient cohort in
the analyzed metastatic melanoma study (see below).

Constructing a template and tumor-specific networks of
distinct immune-cell interactions

The cytokine relationships between two DISTs were
constructed in a similar manner to the immune body
cytokine network [84], whereby the soluble factors which
link immune cells together are integrated. Cytokine-
receptor interactions were complied from two main
databases: the Cytokines Online Pathfinder Encyclopedia
(COPE) and the Cytokine Reference Online Database, as
reported previously [84]. Based on these cytokine-
receptor relationships between immune-cells, a template
immune cell network was formed. In this template net-
work, immune-cells were represented as nodes and cyto-
kine interactions between any pair of immune-cells were
represented as edges. The template network consisted of
the nodes of each GIT and their 29 possible edges
(whereby each edge represented one of the main cyto-
kine interactions among immune cells). The network
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construction, based on a specific tumor biopsy analysis,
allowed cytokines to connect two or more cells if one of
the cells is known to release cytokines to which the
other responds through a cytokine-receptor interaction
(i.e., present in the template network). Additionally,
edges were pruned from this template immune cell
network if the log2 ratio of at least of one pair of DIST
underlying their corresponding GIT nodes was less than
a conservative value of 0.5.
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