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Abstract

Background: A standard procedure in many areas of bioinformatics is to use a multiple sequence alignment (MSA)
as the basis for various types of homology-based inference. Applications include 3D structure modelling, protein
functional annotation, prediction of molecular interactions, etc. These applications, however sophisticated, are
generally highly sensitive to the alignment used, and neglecting non-homologous or uncertain regions in the
alignment can lead to significant bias in the subsequent inferences.

Results: Here, we present a new method, LEON-BIS, which uses a robust Bayesian framework to estimate the
homologous relations between sequences in a protein multiple alignment. Sequences are clustered into
sub-families and relations are predicted at different levels, including ‘core blocks’, ‘regions’ and full-length
proteins. The accuracy and reliability of the predictions are demonstrated in large-scale comparisons using
well annotated alignment databases, where the homologous sequence segments are detected with very high
sensitivity and specificity.

Conclusions: LEON-BIS uses robust Bayesian statistics to distinguish the portions of multiple sequence
alignments that are conserved either across the whole family or within subfamilies. LEON-BIS should thus be
useful for automatic, high-throughput genome annotations, 2D/3D structure predictions, protein-protein
interaction predictions etc.
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Background
Multiple alignments of protein sequences are a fundamen-
tal tool in many areas of molecular biology, including
phylogenetic studies, prediction of 2D/3D structure, or
propagation of structural/functional information from an-
notated to non-annotated sequences. All of these applica-
tions rely on the identification of the conserved regions in
the alignments, suggesting potential homologous relations
between the sequences. However, downstream results may
be highly sensitive to the alignment used, and ignoring er-
rors or uncertainty in the alignment can lead to significant
bias in the subsequent inferences [1]. For example, in evo-
lutionary studies, it has been shown that the accuracy of

phylogenetic trees inherently depends on the accuracy of
the underlying sequence alignment [2]. Similarly, the
CASP comparative modelling experiments [3] have regu-
larly demonstrated that the quality of sequence alignments
is a key factor in comparative modelling of protein 3D
structures. Furthermore, many functional predictions are
made on the basis of homology with remotely related se-
quences or structures. In this case, if functional predic-
tions are to be made with confidence, information on the
reliability of the alignment at the different sites is critical.
As a consequence, protein MSA is an exceptionally ac-

tive field of research, and one of the latest developments
has been a gradual shift away from the development of
more accurate aligners towards the estimation of the re-
liable regions of an alignment. For example, numerous
column scores have been defined that attempt to distin-
guish the positions that are conserved in all the se-
quences from the unreliable positions, e.g. [4, 5].
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Typically, the unreliable positions are then filtered in the
subsequent inference methods, or the methods can be
used to identify interesting alignment blocks for phylo-
genetic studies, e.g. [6, 7]. In [8], the authors compared
8 state of the art methods of alignment trimming for
phylogenetic studies, and used the annotated ‘core
blocks’ from the BAliBASE benchmark [9] as the gold
standard definition of reliable positions. However, it has
been shown recently that the trees obtained from these
filtered MSAs may be worse than those obtained from
unfiltered MSAs in some cases [2].
An alternative approach involves the detection of con-

served regions in the aligned sequences, for example
using consensus sequences to define conserved align-
ment blocks [10 11]. More recently, DivA [12] used four
divergence-based parameters and their outlier values to
identify very divergent segments in MSAs. The method
was used to identify badly annotated introns/exons in
sets of orthologous proteins generated by a large-scale
avian phylogenomics project. Another recent method,
OD-seq [13], is designed to find outlier sequences by
examining the average distance of each sequence to the
rest and represents a useful, fast method for checking
very large alignments containing thousands of
sequences.
In general, these methods work well for multiple align-

ments of proteins that are homologous over their full
lengths and allow the accurate detection of regions that
are conserved in all members of a sequence family.
However, large multi-domain proteins are becoming
more and more prevalent in the sequence databases,
with the arrival of numerous new genome sequences, in
particular from eukaryotic organisms. In addition, badly
predicted sequences mean that there are numerous frag-
ments, spurious insertions/deletions and ‘incoherent’
segments in any set of sequences retrieved from the gen-
eralist databases [1]. In the face of these highly complex
proteins, new methods are needed to detect local hom-
ology corresponding to structural/functional domains or
motifs, and in particular those that explain the specific-
ities of certain subfamilies. For example, for detection of
binding on different substrates or cofactors and distinct
binding affinities [14], or for residue-level genotype-
phenotype correlation studies [15].
We previously developed LEON [16] to predict hom-

ologous regions in MSAs with respect to a user-defined
reference or “query” sequence, and to identify non-
homologous or outlier sequences. LEON incorporated
sequence clustering [17] and calculated amino acid fre-
quency profiles [18] in order to identify locally con-
served motifs or ‘core blocks’ within the subfamilies.
The conserved blocks for each subfamily were then
chained together to form contiguous regions. In large-
scale tests, where the conserved regions detected by

LEON were compared to known structural or functional
domains, the specificity of LEON was shown to be very
high (>99 %), although at the expense of some loss of
sensitivity (76 %) which meant that some divergent se-
quences were removed from the alignments even though
they were actually related.
Here we introduce a new version of LEON, called

LEON-BIS, that replaces the original amino acid fre-
quency profiles by more robust Bayesian statistics based
on BILD scores [19]. Bayesian methods provide a natural
and principled way of combining prior information with
data, within a solid decision theoretical framework. Past
information about a parameter can be incorporated to
form a prior distribution for future analysis. When new
observations become available, the previous posterior
distribution can be used as a prior. All inferences logic-
ally follow from Bayes’ theorem and they are robust to
errors and missing data. When the sample size is large,
Bayesian inference often provides results that are very
similar to the results produced by frequentist methods.
However, because Bayesian analyses do not assume large
samples, smaller data sets can be analyzed without los-
ing power but retaining precision. A Bayesian approach
has been used previously to construct local pairwise
alignments [20] or to perform a joint analysis of multiple
sequence alignments and evolutionary trees [21], for ex-
ample. We have also incorporated a similar Bayesian
framework in the SIBIS method [22] to detect inconsist-
ent sequence segments, often corresponding to badly
predicted intron/exon structures in protein sequences.
The accuracy of the LEON-BIS method for the detec-

tion of conserved sequence segments is evaluated in a
large-scale test, using more than 200 multiple sequence
alignment from the latest version of the BAliBASE
benchmark [23]. These alignments contain examples of
many problems encountered in high-throughput pro-
jects, including complex multi-domain proteins, with lo-
cally conserved regions/core blocks, transmembrane
proteins, fragments and badly predicted sequences, etc.
In the final LEON-BIS alignment, the sequences that are
predicted to be related to the user’s query sequence are
ranked according to their similarity to the query se-
quence. Unrelated sequences containing no conserved
regions are filtered from the alignment. More import-
antly, the conserved regions within the related sequences
are delimited and can be thus used for reliable function
annotation, fold classification, 2D/3D structure predic-
tions, domain determination etc.

Methods
Training and test sets
To test the performance of the program, we used the
most recent test set (Reference 10) in the BAliBASE
benchmark suite [23], composed of 218 reference
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alignments and containing a total of 17,892 protein se-
quences. These reference alignments are designed to re-
flect some of the problems specific to aligning large sets
of complex sequences. For example, many of the protein
families have multi-domain architectures and their
members often share only a single domain. In addition,
the alignments have a high proportion of sequences with
‘discrepancies’ (unexpected or discordant extensions, in-
sertions or deletions) that may correspond to naturally
occurring variants or may be the result of artifacts, in-
cluding proteins translated from partially sequenced ge-
nomes or ESTs, or badly predicted protein sequences.
Taken together, this means that only a small proportion
(18 %) of the conserved ‘core blocks’ in the alignments
are present in most (>90 %) of the aligned sequences,
while most of the blocks are only conserved within spe-
cific sub-families. These ‘rare’ segments or patterns are
often characteristic of context-specific functions, e.g.
substrate binding sites, protein-protein interactions or
post-translational modification sites.
To create a suitable test set for the LEON-BIS evalu-

ation experiments, we used the unaligned sequence sets
corresponding to each reference alignment in BAliBASE
Reference 10. The first sequence of each set was arbi-
trarily defined as the query sequence. For each set, we
then added up to four sequences which were considered

to be “unrelated” to the query sequence, by selecting se-
quences from the other reference alignments with two
criteria: (i) the selected sequence shared less than 50 %
percent residue identity with the query sequence and (ii)
no shared domains were identified in the PFAM protein
family database [24]. Finally, we aligned each of the ref-
erence sets containing both related and unrelated se-
quences using the MAFFT version 7 multiple alignment
program [25].

Algorithm overview
Given a multiple sequence alignment, LEON-BIS pre-
dicts, for each sequence in the alignment, the regions
that are homologous to a specified query sequence. The
algorithm uses a similar workflow to LEON [16] and
consists of five major steps, as outlined in Fig. 1. In the
first step, the protein sequences are clustered into sub-
families using the Secator program [17] and any highly
divergent or 'orphan’ sequences in the alignment are
identified and excluded from the subfamily clustering. In
the second step, locally conserved segments or ‘core
blocks’ are defined for each subfamily, based on Bayesian
column scores and a sliding window analysis. At this
stage, the SIBIS algorithm [22] is used to identify any ‘in-
consistent’ sequence segments that may represent badly
predicted sequences. In the third step, we estimate the

Fig. 1 Schematic diagram of the steps involved in the LEON-BIS method
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relatedness of each core block in each subfamily with
the core blocks in the query subfamily. In the fourth
step, the identified orphan sequences are compared with
the query subfamily, again using the SIBIS algorithm.
The fifth and final step is the same as in the LEON pro-
gram: conserved blocks that match the query sequence
are chained together to form ‘regions’ and any sequences
with no conserved regions are removed from the
alignment.

Identification of subfamily core blocks
For each subfamily within a multiple alignment, we use
the approach described in [19] to calculate Bayesian In-
tegral Log-odds (BILD) scores for each column in the
subfamily. BILD scores represent the ratio of the prob-
abilities of observing the amino acids in the alignment
column under the assumption of relatedness, and under
the assumption of non-relatedness. BILD scores are de-
fined as:

S →
x

� �
¼ log

Q →xð Þ
P →xð Þ ¼

XM

k¼1
log

Prob xk jθk−1ð Þ
pxk

where the vector →x of length M represents the data as-
sociated with the column and θk is the posterior distri-
bution after observation of xk. They can be understood
simply as the sum of log-odds scores for the individual
letters observed in a column, with the “target frequency”
for each letter xk calculated based upon the prior distri-
bution θ0 and the “previously observed” letters x1
through xk-1.
In our method, the prior probability distributions of

the amino acids are described by Dirichlet distributions
or Dirichlet mixtures. To our knowledge, the only
Dirichlet mixture prior parameters for protein sequence
alignments have been derived by the team who first pro-
posed such mixtures [26] and these have been made
available at compbio.soe.ucsc.edu/dirichlets/index.html.
In these tests, we used a 20 component Dirichlet mix-
ture (recode3.20comp), which was derived from analyses
of large numbers of alignments of related protein se-
quences, and has a relative entropy of 0.61, roughly
equivalent to that of the PAM-175 matrix.
A sliding window analysis of the BILD column scores

for each subfamily is then performed. As BILD column
scores are expressed as probabilities with values ranging
between 0 and 1, we can define a threshold above which
columns are considered to have significant scores. Here,
core blocks are defined as segments with mean BILD
score above 0.05.

Estimation of relatedness between core blocks
Given two core blocks in different subfamilies that over-
lap in the multiple alignment, we estimate their

relatedness using a Bayesian framework. Briefly, for two
alignment columns, Altschul [19] defined substitution
scores R for aligning two different columns of amino
acids. Specifically, letting →xy be the concatenation of
the vectors →x and →y, define:

R →
x
;→

y

� �
¼ S →

xy

� �
−S →

x

� �
−S →

y

� �

¼ log
Q →xy
� �

Q →xð ÞQ →y
� �

where S is the BILD column score as defined above, and
Q is the probability of observing the data under the as-
sumption of relatedness.
We extend this to the case of aligning two core blocks

by calculating the sum of the substitution scores for each
of the aligned pairs of columns. The core blocks are as-
sumed to be related if the sum of the column-column
alignment scores is > 0.

Estimation of relatedness between sequence segments
and core blocks
In order to avoid including badly predicted or ‘inconsist-
ent’ sequence segments in the predicted regions, the al-
gorithm used in SIBIS [22] is implemented in LEON-BIS
in order to calculate a score for the alignment of a single
sequence segment to a core block. Briefly, the posterior
distributions ΘM after observing the alignment column
x1 to xM are used to calculate the probability of observ-
ing a new residue xM+1, under the assumption of related-
ness. Then, the score for a segment of length N aligning
to the core block (under the simplifying assumption that
each position in the protein is generated independently)
is equal to the product of the probabilities of aligning
each residue to the corresponding column in the core
block. In order to estimate the probability of observing a
sequence segment under the assumption of unrelated-
ness, we calculate the score of a random sequence equal
to the length of the core block with background amino
acid frequencies equal to 1/L. Finally, sequence segments
with a score less than that obtained by the random se-
quence are flagged as inconsistent sequences.

Definition of regions and removal of unrelated sequences
Once the conserved core blocks are defined for all the
sequences in the alignment, we chain these core blocks
into larger ‘regions’, using the chain_blocks program im-
plemented in the original LEON method. Then, the
score for a conserved region is defined as the sum of the
scores for the core blocks within the region. Sequences
with no regions having a score higher than the cutoff
value are removed from the alignment. For comparison
purposes, the maximum distance between core blocks
and the minimum length of a region are set to 40 and
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21 respectively, the same as for the original LEON
algorithm.

Results
Sequence-level homology analysis
To evaluate the accuracy of LEON-BIS for the detection
of related and unrelated sequences, we constructed a
large scale test set, based on the latest multiple align-
ments in the BAliBASE benchmark suite [23]. These
alignments represent large complex protein families and
include multi-domain proteins, transmembrane proteins,
fragments, badly predicted sequences, etc. For the pur-
pose of these experiments, we then added to each pro-
tein family a number of sequences known to be
unrelated. Finally, the resulting sequence sets, containing
both divergent sequences and unrelated sequences, were
re-aligned using the MAFFT multiple alignment pro-
gram [25]. Given a specific query sequence, LEON-BIS
was used to predict the related and unrelated sequences
in each alignment, and we estimated the accuracy of our
approach in terms of sensitivity (=true positives/(true
positives + false negatives)) and specificity (=true nega-
tives/(true negatives + false positives)), shown in Table 1.
We also compared the performance of our Bayesian-
based method with two previously published algorithms,
namely LEON [16] and OD-seq [13].
LEON-BIS predicted slightly more related sequences

(15,552 of all 18,682 sequences) compared to LEON
(15,227), with higher sensitivity (0.89 versus 0.87), and
higher specificity (0.83 versus 0.81). Thus, more se-
quences with hypothetical relationships are retained in
the alignments, although some potential false positives
are also included. However, it should be noted that the
sequences in these test alignments were aligned using an
automatic method, namely MAFFT, and so some of the
sequences may be misaligned. Therefore, some of the
false negative predictions are in fact true negatives, since
the sequences do not contain any regions that are cor-
rectly aligned with the query sequence. OD-seq was less
successful in these tests, but the authors themselves
stated that the method was optimized for very large
alignments and was not intended for small, very diver-
gent families [13]. Consequently, the computation time
required for the analysis of the 218 multiple alignments
was significantly faster for OD-seq (27 s) compared to

LEON or LEONII which required 1266 s and 2567 s
respectively.
An example of a distant sequence relationship de-

tected by LEON-BIS, which was not identified by the
original LEON algorithm, is shown in Fig. 2. The align-
ment (BBA0010 in the BAliBASE benchmark) contains
two subfamilies, corresponding to prokaryotic 50S L15
ribosomal proteins and eukaryotic 60S L27A ribosomal
proteins. The selected query sequence is from the bac-
teria Aquifex aeolicus (Uniprot:O67561), and LEON-BIS
successfully identified the C-terminal region that is con-
served between this prokaryotic protein and the higher
eukaryotic ribosomal 60S L27A (for example, the human
sequence Uniprot:P46776). The predicted region is con-
firmed by the presence of the Prosite [27] pattern
PS00475 in both prokaryotic and eukaryotic sequences.

Detection of conserved regions and comparison with
PFAM domains
To further evaluate the quality of the conserved regions
predicted by LEON-BIS, we extracted the known struc-
tural or functional domains from the PFAM database
[24] for all the sequence sets used in the previous evalu-
ation. We then compared the related regions identified
by LEON-BIS and by LEON with these PFAM domains,
as shown in Fig. 3.
The precision (true positives/(true positives + false posi-

tives)) and recall (true positives/(true positives + false nega-
tives)) of the two algorithms were then calculated (Table 2).
Precision is defined as the fraction of retrieved instances
that are relevant, i.e. the fraction of predicted regions that
overlap with PFAM domains with respect to the total num-
ber of regions predicted by the method. Recall is defined as
the fraction of relevant instances that are retrieved, i.e. the
fraction of PFAM domains that were retrieved by the algo-
rithms. These two measures were then combined as their
harmonic mean to yield an aggregate F-measure = 2*
(Precision * Recall)/(Precision + Recall), assessing the over-
all accuracy of the methods.
Overall the precision and recall statistics are similar

for LEON and LEON-BIS, however, we observed that
LEON failed to retrieve 2303 PFAM domains (out of a
total of 22,857), while LEON-BIS only missed 2046 do-
mains. To further characterize their relative perfor-
mances, we investigated the ability of the two methods

Table 1 Accuracy of three methods for the detection of related and unrelated sequences

LEON related LEON non-related OD-seq related OD-seq non-related LEON-BIS related LEON-BIS non-related

Related sequences 15,227 2304 17,298 513 15,552 1999

Non-related sequences 221 930 540 331 187 944

Total 15,448 3234 17,838 844 15,739 2943

Sensitivity 0.87 0.97 0.89

Specificity 0.81 0.38 0.83
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Fig. 2 Part of an example alignment from the BAliBASE benchmark suite, aligned using MAFFT. The query sequence is from the bacteria Aquifex
aeolicus (Uniprot:O67561) and the alignment includes both related and unrelated sequences. Conserved regions detected by LEON-BIS are
outlined in red

Fig. 3 a Number of known domains from the PFAM protein family database successfully retrieved by the different methods tested. b Number of
regions predicted by the different methods that overlap with known PFAM domains
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to retrieve PFAM domains with different levels of se-
quence conservation and different lengths. The results
are shown in Fig. 4). A small effect of sequence length
was observed for both LEON and LEON-BIS with their
recall power decreasing for shorter domains, especially
for domains with less than 50 amino acids. As might be
expected, the effect of sequence conservation is stronger,
with a significant loss of recall power for both LEON
and LEON-BIS for domains sharing less than 20 % resi-
due identity. In these cases, LEON-BIS is more success-
ful in identifying very divergent sequences, retrieving 16
out of 57 domains with less than 10 % identity, com-
pared to 8 out of 57 for LEON.
The precision of the LEON-BIS predictions in com-

parison to known PFAM family domains is 0.92, i.e. of
the 22,857 conserved regions predicted by LEON-BIS,
1746 regions were not supported by a PFAM domain.
An example of such an uncharacterized region is shown
in Fig. 5. The multiple alignment (BBA0123 in the

BAliBASE benchmark) contains CDK-activating kinase
(CAK) assembly factor MAT1/Tfb3 sequences from
metazoan, plants and fungi. MAT1/Tfb3 is a component
of the general transcription and DNA repair factor IIH
(TFIIH), and contains two conserved domains from the
PFAM database, including the C3HC4 RING finger
domain in the N-terminal region and the MAT1 do-
main, corresponding to a central coiled-coil domain
with a long helical fibrinogen-like structure. Although
the C-terminal region (positions 250–309 in the hu-
man sequence, Uniprot:P51948) does not have any
PFAM annotation, LEON-BIS identified a core block
that is conserved in all the metazoan, plant and fungi
sequences. This block corresponds to part of the
hydrophobic C-terminal domain (amino acids 229–309),
identified in structural studies [28] and shown to be
required to assemble and activate CAK. In yeast,
truncation of the 22 C-terminal amino acids of Tfb3/
Rig2 (MAT1 counterpart) was shown to be lethal
[29]. Furthermore, in myeloid leukemia cells, retinoic
acid (RA)-induced MAT1 fragmentation at amino acid
229 suppresses CAK phosphorylation and leads to cell
cycle arrest, suggesting a novel therapeutic potential
of the C-terminal protein fragment against different
subtypes of myeloid leukemia [30].
The above example clearly demonstrates the value of

LEON-BIS for the detection of conserved blocks or

Table 2 Precision and recall statistics for the identification of
known PFAM domains by LEON and LEON-BIS

LEON LEON-BIS

Recall 0.91 0.92

Precision 0.93 0.92

F-measure 0.92 0.92

Fig. 4 Retrieval of PFAM domains depending on a) domain length and b) percent sequence identity
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regions that may represent important new structural or
functional features.

Discussion
The determination of homology is a crucial problem for
a wide range of homology-based applications, and poses
particular problems in automatic, high-throughput gen-
ome analysis and annotation projects. A number of
methods exist that estimate homology based on a mul-
tiple sequence alignment, but these methods generally
look for features shared amongst all or most of the se-
quences. Alternatively, methods such as OD-seq have
been developed to identify outlier sequences and remove
them completely from the alignment. Nevertheless, to-
day’s complex alignments require a more precise defin-
ition of conserved sequence segments.
Here, we have updated our original method that mea-

sured the evolutionary conservation of a set of related
sequences using a frequentist approach, based on the
observed amino acids in multiple alignment columns.
Nevertheless, there are a number of shortcomings in es-
timating scores for amino acids based only on their ob-
served frequencies, especially when the number of
observed sequences is small. First, unseen amino acids
are assigned scores based on an amino acid substitution
matrix that is generally chosen arbitrarily. Second, an ar-
bitrary threshold for profile scores must be defined to
distinguish related from unrelated or erroneous se-
quences. Therefore, the profile scoring scheme, origin-
ally developed in the context of the ClustalW multiple
alignment program [18], has been replaced by a Bayesian
statistical framework. This allows the definition of con-
servation based on background knowledge (amino acid

frequencies extracted from alignments and represented
by Dirichlet mixture models), combined with observed
amino acids in alignment columns. The Bayesian statis-
tics are more robust than the original profiles based on
observed amino acid frequencies only, as shown in the
tests performed here. The Bayesian framework also
means that no parameters need to be fixed by the user.
The only parameters in LEON-BIS concern the chaining
of blocks to form a region, i.e. the maximum distance
between blocks and the minimum length of a region. In
these tests, we used the same parameters as LEON for
comparison purposes. Modifying these parameters
would allow the user to increase either the recall or the
precision, as required.
The LEON-BIS method incorporates the SIBIS algo-

rithm, which also uses a Bayesian framework, in order to
detect inconsistent or badly predicted sequences. This is
an important issue when analyzing eukaryotic genome
data, since recent analyses have shown that the complete
exon/intron structure is correctly predicted for only
about 50-60 % of genes [31]. The situation is further
complicated by widespread alternative splicing events,
which affect more than 92–94 % of multi-exon human
genes [32]. In the presence of these inconsistent or erro-
neous sequences, the assumptions about amino acid dis-
tributions in the Dirichlet mixture models may not be
valid. If not addressed, the estimates of amino acid prob-
abilities would be biased, and the true unrelated se-
quences may not be detected as a result. By delineating
the consistent sequence segments from the badly pre-
dicted sections, we can avoid excluding too many se-
quences. The incorporation of SIBIS also means that
LEON-BIS is more robust to local misalignments. In the

Fig. 5 Part of the alignment constructed by MAFFT of Cdk-activating kinase assembly factor MAT1/Tfb3 sequences, showing the conserved
C-terminal region
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experiments performed here, we used multiple align-
ments constructed automatically with the MAFFT algo-
rithm, rather than the high quality, manually refined
reference alignments, to make the tests more realistic.
In a first large-scale evaluation, the ability of LEON-

BIS to distinguish between related and unrelated se-
quences was compared to existing methods, including
the original LEON method and a recent algorithm, OD-
seq, for the detection of outlier sequences in multiple
alignments. The sensitivity and specificity of LEON-BIS
were shown to be slightly higher than LEON. OD-seq
had very high sensitivity and detected most of the re-
lated sequences, but the specificity was low, meaning
that a large number of unrelated sequences were
retained in the alignments. It should be noted that OD-
seq is designed specifically for very large alignments
containing thousands of sequences and it therefore rep-
resents a complementary approach to the method devel-
oped here. Then, in a second experiment, the regions
predicted by LEON-BIS were compared to known do-
mains from the PFAM database and both the precision
and recall of LEON-BIS were shown to be about 92 %.
Compared to LEON, a significant difference was ob-
served in the prediction of functional domains sharing
low percent identity (<30 %). Furthermore, additional
conserved regions were also identified in the alignments
that were not covered by the existing PFAM annota-
tions. The LEON-BIS homology predictions in combin-
ation with known structural/functional information,
should therefore provide a powerful tool for the charac-
terisation of new or unknown proteins.

Conclusions
LEON-BIS is a fully automatic method that reliably de-
tects conserved regions in multiple sequence alignments.
It can be applied to a wide variety of alignments, includ-
ing difficult cases such as distantly related sequences,
multi-domain sequences, or transmembrane sequences.
Incorporating LEON-BIS should therefore improve
downstream applications, including phylogenetic studies
(although most current methods for phylogenetic tree
reconstruction cannot take into account uncertainty
within alignment columns) and comparative modeling,
as well as detection of sub-family specific regions repre-
senting potential specificity-determining motifs. In the
future, the reliable blocks detected by LEON-BIS could
provide the basis for a multi-level comparative genomics
strategy, with homology analysis ranging from complete
proteins to the core block level.
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alignment file to MSF or FASTA formats, if required. The positions of the
conserved core blocks and conserved regions are also output to a formatted
text file.
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