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Abstract

Background: The Gene Ontology (GO) is a dynamic, controlled vocabulary that describes the cellular function
of genes and proteins according to tree major categories: biological process, molecular function and cellular
component. It has become widely used in many bioinformatics applications for annotating genes and measuring
their semantic similarity, rather than their sequence similarity. Generally speaking, semantic similarity measures
involve the GO tree topology, information content of GO terms, or a combination of both.

Results: Here we present a new semantic similarity measure called TopoICSim (Topological Information Content
Similarity) which uses information on the specific paths between GO terms based on the topology of the GO tree,
and the distribution of information content along these paths. The TopoICSim algorithm was evaluated on two
human benchmark datasets based on KEGG pathways and Pfam domains grouped as clans, using GO terms from
either the biological process or molecular function. The performance of the TopoICSim measure compared
favorably to five existing methods. Furthermore, the TopoICSim similarity was also tested on gene/protein sets
defined by correlated gene expression, using three human datasets, and showed improved performance compared
to two previously published similarity measures. Finally we used an online benchmarking resource which evaluates
any similarity measure against a set of 11 similarity measures in three tests, using gene/protein sets based on
sequence similarity, Pfam domains, and enzyme classifications. The results for TopoICSim showed improved
performance relative to most of the measures included in the benchmarking, and in particular a very robust
performance throughout the different tests.

Conclusions: The TopoICSim similarity measure provides a competitive method with robust performance for
quantification of semantic similarity between genes and proteins based on GO annotations. An R script for
TopoICSim is available at http://bigr.medisin.ntnu.no/tools/TopoICSim.R.
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Background
Gene ontology
The Gene Ontology (GO) is a useful resource in bio-
informatics that provides structured and controlled vo-
cabularies to describe protein function and localization
according to three general categories: biological process
(BP), molecular function (MF), and cellular component
(CC) [1, 2]. Each of these three annotation categories is
structured as its own rooted Directed Acyclic Graph
(rDAG). An rDAG is a treelike data structure with a

unique root node, the relationships between nodes are
directed (oriented), and the structure is non-recursive,
i.e. without cycles.
The GO consortium updates on a regular basis a GO

Annotation (GOA) [3] database with new GO terms that
are linked to genes and gene products by relevant studies.
GO is widely used in several bioinformatics applications,
including gene functional analysis of DNA microarray
data [4], gene clustering [5], disease similarity [6], and
prediction and validation of protein-protein interac-
tions [7].
Each GO annotation is assigned together with an evi-

dence code (EC) that refers to the process used to assign
the specific GO term to a given gene [8]. All ECs are
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reviewed by a curator, except ECs assigned with the
Inferred from Electronic Annotation (IEA) code.

Semantic similarity
Measuring similarity between objects that share some
attributes is a central issue in many research areas such
as psychology, information retrieval, biomedicine, and
artificial intelligence [9, 10]. Such similarity measures
can be based on comparing features that describe the
objects, and a semantic similarity measure uses the rela-
tionships which exist between the features of the items
being compared [11]. Blanchard et al. have established a
general model for comparing semantic similarity measures
based on a subsumption hierarchy [12]. They divide tree-
based similarities into two categories: those based only on
the hierarchical relationships between the terms [13], and
those combining additional statistics such as term fre-
quency in a corpus [14].
In a biological perspective, the functional similarity

term was proposed to describe the similarity of genes or
gene products as the similarity between their GO anno-
tation terms. To establish a suitable functional similarity
between genes has become an important aspect of many
biological studies. For example have previous studies
shown that there is a correlation between gene expres-
sion and GO semantic similarity [15].
Since GO terms are organized as an rDAG, the func-

tional similarity can be estimated by a semantic similar-
ity. Pesquita et al. have proposed a general definition of
semantic similarity between genes or gene products [16].
Here a semantic similarity is a function which, given two
sets of terms annotating two biological entities, returns a
numerical value presenting the closeness in meaning
between them. This similarity measure is based on com-
paring all possible pairs of the two sets of GO terms, or
selective subsets of them.

Comparing terms
In general measuring the similarity between two terms
can be divided into three main categories: edge-based,
node-based and hybrid methods. The edge-based ap-
proaches are based on counting the number of edges in
the specific path between two terms. In most edge-based
measures, a distance function is defined on the shortest
path (SP) or on the average of all paths [17, 18]. This
distance can easily be converted into a similarity meas-
ure. Such approaches rely on two assumptions which are
seldom true in biological reality. First that nodes and
edges are uniformly distributed, and second that edges
at the same level in the GO graph correspond to identi-
cal distances between terms. Node-based measures are
based on the information content (IC) of the terms in-
volved. The IC value gives a measure of how specific
and informative a term is. The IC is relying on the

probability of terms occurring in a corpus, and Resnik
[19] used the negative logarithm of the likelihood of a
term to quantify its IC.

IC tð Þ ¼ −logp tð Þ ð1Þ

This definition leads to higher IC for terms with lower
frequency. Obviously, IC values increase as a function of
depth in the GO graph (this is illustrated in the presen-
tation of TopoICSim, in Results). Resnik used the max-
imal value among all common ancestors between two
terms as a similarity measure, i.e., the IC of the lowest
common ancestor (LCA) [19]. Since the similarity value
of Resnik’s measure is not limited to one (1.0), Lin [14]
and Jiang [20] proposed their methods to normalize the
similarity value between 0.0 and 1.0. Most node-based
methods are based on Resnik’s measure which only con-
siders the IC of a single common ancestor and ignores
the information on paths in subgraphs composed from
common ancestors and pairs GO terms. So, hybrid
methods have been proposed to account for both nodes
and edges in the subgraph. For example Wang et al. in-
troduced a similarity measure combining the structure
of the GO graph with the IC values, integrating the con-
tribution of all terms in a GO subgraph, including all the
ancestors [21].

Comparing genes or gene products
Genes are normally annotated using several terms within
a particular GO category (MF, BP or CC). Thus, with an
available measure function to compute similarity of
terms, it is necessary to define an aggregated similarity
measure to compare sets of terms. Generally these mea-
sures can be divided into two categories: pairwise and
groupwise methods [16].
Pairwise approaches measure similarity between two

genes by combining the similarities between their terms.
Some approaches apply all possible pairwise combination
of terms from the two sets, whereas others consider only
the best-matching pair for each term. The final similarity
between two genes is then defined by combining these
pairwise similarities, mostly by the average, the maximum,
or the sum [3, 19].
Groupwise methods are not based on combing similar-

ities between individual terms, but rather compute gene
similarities by one of three main approaches: set, graph,
or vector. In set approaches the similarity is computed
by set techniques on the annotations. Graph-based simi-
larity measures calculate similarity between genes using
graph matching techniques where each gene is presented
as subgraphs of GO terms. And finally, in vector ap-
proaches each gene is represented in vector space with
each term corresponding to a dimension. Similarity can
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be estimated using vector-based similarity measures,
mostly cosine similarity [22].

Existing measures
For presentation of some existing methods we introduce
the following definitions. Suppose g1 and g2 are two
given genes or gene products annotated by two sets of
GO terms {t11, t12,…, t1n} and {t21, t12,…, t2m}. The first
measure we will introduce is IntelliGO [22], which is a
vector-based method. Each gene is represented as a vector
g = ∑iαiei where αi =w(g, ti)IFA(ti), and where w(g, ti) re-
presents the weight assigned to the evidence code between
g and ti, and IFA(ti) is the invers annotation frequency of
the term ti. Here ei is the i-th basis vector corresponding
to the annotation term ti. The dot product between two
gene vectors is defined as in (2) and (3).

g1 � g2 ¼
X

i;j
αiβjei � ej ð2Þ

ei � ej ¼ 2Depth LCAð Þ
MinSPL t1i; t2j

� �þ 2Depth LCAð Þ ð3Þ

Here Depth(LCA) is the depth of the deepest common
ancestor for t1i, t2j and MinSPL(t1i, t2j) is the length of
the shortest path between t1i, t2j which passes through
LCA. The similarity measure for two genes vectors g1
and g2 is then defined using the cosine formula (4).

SIMIntelliGO g1; g2ð Þ ¼ g1 � g2ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 � g1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � g2

p ð4Þ

The second measure presented here was introduced
by Wang et al. [21]. They considered for the different
contributions that terms are related by is_a and part_of.
The semantic contribution that ancestor terms make to
a child term is estimated by (5).

SV tð Þ ¼
X

x∈Anc tð Þ

St xð Þ ð5Þ

Here St(t) = 1 and St(x) = max{we * St(ti)|ti ∈ children
of(x)}, where we ∈ [0, 1] is a value that corresponds to the
semantic contribution factor for edge e, and childrenof(x)
returns the immediate children of x that are ancestors of

t and St tið Þ ¼
Y

x∈P t;ti−1ð Þmax wk where P(t, ti − 1) is the

path between t and ti − 1. They used the weights wis_a =
0.8 and wpart_of = 0.6. Then they defined the similarity of
two terms as in (6).

S t1i; t2j
� � ¼

X
x∈ComAnc t1i;t2jð ÞSt1i xð Þ þ St2j xð Þ

SV t1ið Þ þ SV t2j
� � ð6Þ

Finally the Wang measure uses a best-matched ap-
proach (BMA) to calculate similarity between two genes
according to (7).

SIMWang g1; g2ð Þ ¼
Pn

i¼1maxjS t1i; t2j
� �þPm

j¼1maxiS t1i; t2j
� �

nþm

ð7Þ
The third measure is Lord’s measure [3], which is

based on Resnik’s similarity. The Resnik similarity is
defined as in (8).

SIMResnik t1i; t2j
� � ¼ IC LCA t1i; t2j

� �� � ð8Þ
The Lord measure is estimated as the average of the

Resnik similarity over all t1i and t2j.

SIMLord g1; g2ð Þ ¼
Pn

i¼1

Pm
j¼1SIMResnik t1i; t2j

� �
n�m

ð9Þ

The next measure was introduced by Al-Mubaid et al.
[23]. First they calculate the length of all shortest paths
(PLs) for all (t1i, t2j) pairs. Then the average on the PLs de-
fines the distance between two genes g1 and g2 as in (10).

PL g1; g2ð Þ ¼
Pn

i¼1

Pm
j¼1PL t1i; t2j

� �
n�m

ð10Þ

Finally they use function (11) to convert the distance
to a similarity value.

SIMMubaid g1; g2ð Þ ¼ e−0:2�PL g1;g2ð Þ ð11Þ
The last measure presented here is SimGIC [24],

which also is called the Weighted Jaccard measure. Let
G1 and G2 be the GO terms and their ancestors for two
genes g1 and g2, respectively. The SimGIC is defined as
the ratio between the sum of the ICs of terms in the
intersection and the sum of the ICs of terms in the
union (12).

SimGIC g1; g2ð Þ ¼
X

t∈G1∩G2
IC tð ÞX

t∈G1∪G2
IC tð Þ ð12Þ

We will now describe the implementation and testing
of a new method, TopoICSim, and compare it to the
measures introduced above using several different test
data sets. In this measure we have tried to decrease any
bias induced by irregularity of the rDAG. In particular,
TopoICSim examines all common ancestors for a pair of
GO terms, and not only the last (or deepest) common
ancestor, which is the case for the measures introduced
above. Details regarding the evaluation measures, the
datasets and approaches that were used for benchmark-
ing and the actual implementation are given in Methods.

Methods
IntraSet similarity and discriminating power
To evaluate TopoICSim relative to existing methods we
first used two different benchmarks based on the GO
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properties studied by Benabderrahmane et al. [22]. For
the KEGG benchmark they used a diverse set of 13
human KEGG pathways. The assumption when testing
the KEGG dataset is that genes belonging to a specific
pathway share a similar biological process, so the esti-
mated similarity was based on BP annotations (Table 1).
They also defined a Pfam benchmark, using data from
the Sanger Pfam database [25] for 10 different Pfam
human clans. The assumption when testing Pfam clans
is that genes belonging to a specific clan share a similar
molecular function, so the estimated similarity was based
on MF annotations (Table 1).
They used two measures, IntraSet Similarity and

Discriminating Power on the benchmark datasets to
evaluate their method. Let S be a collection of genes
where S = {S1, S2,…, Sp} (each Sk can be e.g. a Pfam clan
or a KEGG pathway). For each Sk, let {gk1, gk2,…, gkn} be
the set of n genes in Sk. IntraSet similarity is a measure to
calculate the average similarity over all pairwise com-
parisons within a set of genes (13).

IntraSetSim Skð Þ ¼
Pn

i¼1

Pn
j¼1Sim gki; gkj

� �
n2

ð13Þ

InterSet similarity can be estimated for two sets of
genes Sk and Sl composed of n and m genes, respectively,
as the average of all similarities between pairs of genes
from each of the two sets Sk and Sl (14).

InterSetSim Sk ; Slð Þ ¼
Pn

i¼1

Pm
j¼1Sim gki; glj

� �
n�m

ð14Þ

The ratio of the IntraSet and InterSet average gene
similarities can be defined as the discriminating power
(DP) (15).

DPSim Skð Þ ¼ p−1ð ÞIntraSetSim Skð ÞPp
i¼1;i≠kInterSetSim Sk ; Sið Þ ð15Þ

It is important to have high IntraSet similarity and
at the same time high Discriminating Power for a
measure. Therefore we decided to define a new measure,
IntraSet Discriminating Power (IDP), using the following
formula (16).

IDPSim Skð Þ ¼ IntraSetSim Skð Þ � DPSim Skð Þ ð16Þ

The IDP value estimates the ability to identify similarity
between gene sets in a dataset, and at the same time dis-
criminate these sets from other genes in the dataset.
We compared the results obtained with our TopoIC-

Sim method with the five existing state-of-the-art simi-
larity measures described in the introduction. For the
benchmark datasets, IntraSet, DP, and IDP values were
calculated by our method and compared to those esti-
mated using the other measures.

Expression similarity
Many recent studies have shown that genes that are bio-
logically and functionally related often maintain this
similarity both in their expression profiles as well as in
their GO annotations [15]. To test this assumption we
selected three sets of genes from the Hallmark datasets,
which is a collection of 50 gene sets representing specific
well-defined biological processes [26]. These three gene

Table 1 List of human KEGG pathways and Pfam clans used for benchmarking

KEGG Pfam

Pathway Name #genes Accession Name #genes

hsa00040 Pentose and glucuronate interconversions 26 CL0099.10 ALDH-like 18

hsa00920 Sulfur metabolism 13 CL0106.10 6PGD_C 8

hsa00140 C21-Steroid homone metabolism 17 CL0417.1 BIR-like 9

hsa00290 Valine, leucine and isoleucine biosynthesis 11 CL0165.8 Cache 5

hsa00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 23 CL0149.9 CoA-acyltrans 7

hsa00670 One carbon pool by folate 16 CL0085.11 FAD_DHS 12

hsa00232 Caffeine metabolism 7 CL0076.9 FAD_Lum_binding 18

hsa03022 Basal transcription factors 38 CL0289.3 FBD 6

hsa03020 RNA polymerase 29 CL0119.10 Flavokinase 7

hsa04130 SNARE interactions in vesicular transport 38 CL0042.9 Flavoprotein 10

hsa03450 Non-homologous end-joining 14

hsa03430 Mismatch repair 23

hsa04950 Maturity onset diabetes of the young 25

Total #genes 280 100

These datasets were obtained directly from [22]
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sets are labeled as G2M_CHECKPOINT, DNA_REPAIR,
and IL6_JAK_STAT3_SIGNALING, with 200, 151, and
87 genes respectively. The expression values for the
genes across multiple cell types and experiments have
been obtained from FANTOM5 [27] using the “CAGE
peak based expression table (RLE normalized) of robust
CAGE peaks for human samples with annotation” file.
The expression values were listed according to clusters
of transcriptional start sites, therefore some genes were
initially assigned multiple expression values, correspond-
ing to unique clusters of start sites. We combined ex-
pression values for each gene and then transformed the
total expression by log2. Each gene could then be repre-
sented as a vector with 1829 expression values.
We used three expression similarities (Pearson correl-

ation, Spearman correlation, and Distance correlation
(DC)), against the three annotation similarities (TopoIC-
Sim, IntelliGO, and Wang) that showed the best per-
formance during initial testing (see Results).
Previous studies have shown that in most cases there

is no meaningful correlation when pairs of individual
genes are used to estimate correlation between expres-
sion and annotation similarities, but that this can be
improved by grouping methods, comparing groups or
clusters of genes [15]. In these methods, the gene pairs
are split into groups of equal intervals according to the
annotation (or expression) similarity values between the
gene pairs. Then correlation between expression and an-
notation similarities is defined as correlation between
the average of these similarities on the splits [28, 29].
There are many reasons for poor correlation when inter-
actions between individual genes are considered. For ex-
ample, genes may be involved in multiple and different
processes across a dataset. Comparison of individual
genes will underestimate similarity due to these differ-
ences, whereas grouping methods can highlight shared
properties within groups. We therefore decided to group
results by using a Self-Organizing Map (SOM) algorithm
on (r, s) pairs, where r and s are one of the expression and
annotation similarities respectively. A SOM is a topology-
preserving mapping of high-dimensional data based on
artificial neural networks. It consists of a geometry of
nodes mapped into a k-dimensional space, initially at ran-
dom, which is iteratively adjusted. In each iteration the
nodes move in the direction of selected data points, where
the movement depends upon the distances to the data
points, so that data points located close to a given node
have a larger influence than data points located far away.
Thereby, neighboring points in the initial topology tend
to be mapped to close or identical nodes in the k-
dimensional space [30]. We calculated correlation be-
tween expression and annotation similarities for all
clusters and then identified clusters showing good correl-
ation. Final correlation is reported as average correlation

of individual expression and annotation similarities within
these clusters. This approach was applied to all possible
combination of (r, s) values, i.e., 9 combinations in total.

Distance correlation
Distance Correlation (DC) as introduced by Székely and
Bakirov [31] is a method to estimate the dependency
between two random variables. It measures the discrep-
ancy between the joint function and the product of its
marginal functions in a specific weighting scheme in L2
space. More strictly, let (X, Y) be a pair of random
variables with joint function f(X, Y) and marginal functions
fX and fY. The distance covariance can be defined as the
root of the following Eq. (17).

dcov2 X; Yð Þ ¼
Z

f X; Yð Þ t; sð Þ−f X tð Þf Y sð Þ
��� ���2w t; sð Þdtds

ð17Þ
This is on Rp + q where p and q are the dimension of X

and Y respectively and w(t, s) is the weight function.
Now, the DC can be defined by distance covariance as
in (18).

dcor X; Yð Þ ¼ dcov X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcov X; Xð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dcov Y ; Yð Þp ð18Þ

It has been shown that the empirical DC for an iid
sample {(x1, y1), (x2, y2), …, (xn, yn)} can be estimated as in
(19–22).

DC X;Yð Þ ¼ S1 þ S2−2S3 ð19Þ

S1 ¼ 1
n2

Xn
k;l¼1

xk−xlj jp yk−yl
�� ��

q ð20Þ

S2 ¼ 1
n2

Xn
k;l¼1

xk−xlj jp
1
n2

Xn
k;l¼1

yk−yl
�� ��

q ð21Þ

S3 ¼ 1
n3

Xn
k¼1

Xn
l;m¼1

xk−xlj jp yk−ym
�� ��

q ð22Þ

Some previous studies have applied DC on the expres-
sion level of gene sets [32, 33].

Evaluation by CESSM
Collaborative Evaluation of GO-based Semantic Similar-
ity Measures (CESSM) is an online tool [34] that enables
the comparison of a given measure against 11 previously
published measures based on their correlation with
sequence, Pfam, and Enzyme Classification (ECC) simi-
larities [35]. It uses a dataset of 13,430 protein pairs
involving 1,039 unique proteins from various species.
Protein pairs (from multiple species), GO (dated August
2010), and UniProt GO annotations (dated August 2008)
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were downloaded from CESSM. The similarities for the
13,430 proteins pairs were calculated with TopoICSim
and returned to CESSM for evaluation.

Implementation
The R programming language (version 3.2.2) was used
for developing and running all programs. We used all
the EC codes as annotation terms. The ppiPre (version
1.9), GeneSemSim (version 1.28.2), and csbl.go (version
1.4.1) packages were used to calculate IntelliGO, Wang,
and SimGIC measures [36–38]. The DC values were es-
timated using the energy (version 1.6.2) package [39].
The SOM algorithm was performed with the SOMbrero
(version 1.1) package [40]. All these packages are avail-
able within R Bioconductor [41].

Results
The TopoICSim measure
Here we introduce a new similarity measure which
accounts for the distribution of IC on both shortest path
between two terms and longest path from their common
ancestor to root. A weighting scheme in terms of length
of the paths is used to provide a more informative simi-
larity measure. In the current version we do not use any
weight scheme on the ECs codes. We use definitions of
relevant concepts as follows.
A GO tree can be described as a triplet Λ = (G, Σ, R),

where G is the set of GO terms, Σ is the set of hierarch-
ical relations between GO terms (mostly defined as is_a
or part_of ) [22], and R is a triplet (ti, tj, ξ), where ti, tj ∈ G
and ξ ∈ R and tiξtj. The ξ relationship is an oriented
child–parent relation. Top level node of the GO rDAG
is the Root, which is a direct parent of the MF, BP, and
CC nodes. These nodes are called aspect-specific roots
and we refer to them as root in following.
A path P of length n between two terms ti, tj can be

defined as in (23).

P : G � G→G � G⋯� G ¼ Gnþ1;

Pðti; tjÞ ¼ ðti; tiþ1;…; tjÞ
ð23Þ

Here ∀ s, i ≤ s < j, ∃ ξs ∈ Σ, ∃ τs ∈ R, τs = (ts, ts + 1, ξs).
Because G is an rDAG, there might be multiple paths
between two terms, so we represent all paths between
two terms ti, tj according to (24).

A ti; tj
� � ¼ ∪

P
P ti; tj
� � ð24Þ

We use Inverse Information Content (IIC) values to
define shortest and longest paths for two given terms
ti, tj as shown in (25–27).

SP ti; tj
� � ¼ argmin

P∈Α ti ;tjð Þ
IIC Pð Þ ð25Þ

LP ti; tj
� � ¼ argmax

P∈A ti ;tjð Þ
IIC Pð Þ ð26Þ

IIC Pð Þ ¼
X
t∈P

1
IC tð Þ ð27Þ

We used a standard definition to calculate IC(t) as
shown in (28)

IC tð Þ ¼ − log
Gt

GTot
ð28Þ

Here Gt is the number of genes annotated by the term
t and GTot is the total number of genes. The distribution
of IC is not uniform in the rDAG, so it is possible to
have two paths with different lengths but with same IICs.
To overcome this problem we weight paths by their
lengths, so the definitions in (25) and (26) can be updated
according to (29) and (30).

wSP ti; tj
� � ¼ SP ti; tj

� �� len Pð Þ ð29Þ

wLP ti; tj
� � ¼ LP ti; tj

� �� len Pð Þ ð30Þ
Now let ComAnc(ti, tj) be the set of all common

ancestors for two given terms ti, tj. First we define the
disjunctive common ancestors as a subset of ComAnc(ti, tj)
as in (31).

DisComAnc ti; tj
� � ¼ x∈ComAnc ti; tj

� � j P x; rootð Þ∩C xð Þ ¼ ∅
� 	

ð31Þ
Here P(x, root) is the path between x and root and C(x)

is set of all immediate children for x.
For each disjunctive common ancestor x in DisCo-

mAnc(ti, tj), we define the distance between ti, tj as the
ratio of the weighted shortest path between ti, tj which
passes from x to the weighted longest path between x
and root, as in (32–33).

D ti; tj; x
� � ¼ wSP ti; tj; x

� �
wLP x; rootð Þ ð32Þ

wSP ti; tj; x
� � ¼ wSP ti; xð Þ þ wSP tj; x

� � ð33Þ
Now the distance for two terms ti, tj can be defined

according to (34).

D ti; tj
� � ¼ min

x∈DisComAnc ti ;tjð Þ
D ti; tj; x
� � ð34Þ

We convert distance values by the Arctan :ð Þ
π

2=
function,

and the measure for two GO terms ti and tj can be
defined as in (35).
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S ti; tj
� � ¼ 1−

Arctan D ti; tj
� �� �

π=2
ð35Þ

Note that root refers to one of three first levels in the
rDAG. So if DisComAnc(ti, tj) = {root} then D(ti, tj) =∞ and
S(ti, tj) = 0. Also if ti = tj then D(ti, tj) = 0 and S(ti, tj) = 1.
Finally let S = [sij]n ×m be a similarity matrix for two

given genes or gene products g1, g2 with GO terms {t11,
t12,…, t1n} and {t21, t12,…, t2m}, where sij is the similarity
between the GO terms t1i and t2j. We use a rcmax
method to calculate similarity between g1, g2, as defined
in (36).

TopoICSim g1; g2ð Þ ¼ rcmax Sð Þ

¼ max

Pn
i¼1 max

j
sij

n
;

Pm
j¼1 max

i
sij

m

!0
@

ð36Þ
We also tested other methods on the similarity matrix,

in particular average and BMA, but in general rcmax gave
the best performance for TopoICSim (data not shown).

The TopoICSim algorithm
The TopoICSim algorithm was implemented to estimate
the similarity between two genes, taking their gene ID
(currently Entrez ID) as input, together with parameters:
a GO annotation type (MF, BP, and CC), a species, and
an EC specification (default is NULL, which means using
all ECs). The output is the similarity between the two
genes. Pseudocode for the TopoICSim algorithm is pre-
sented in Fig. 1.
The ICs used to weigh the GO terms were calculated

using the GOSim package (version 1.8.0) [42]. For each
disjunctive the shortest path between the two GO terms
was calculated by the Dijkstra algorithm in the RBGL
package (version 1.46.0) [43] according to (25). Also the
longest path between the disjunctive and root was

calculated by the topology sorting algorithm [44] according
to (26).

A simple example
To exemplify how TopoICSim computes the similarity
between two given GO terms, we will illustrate the
similarity between the two GO terms GO:0044260 and
GO:0006139 as shown in Fig. 2, using the BP ontology
of GO. According to (32), these GO terms have two
disjunctive ancestors: GO:0071704 and GO:0044237. For
GO:0071704 there are unique paths from GO:0071704
to root and from GO:0044260 and GO:0006139 to
GO:0071704 (L1 and P1 in Fig. 2 respectively). There-
fore, according to (32) the distance between these GO
terms will be:

DðGO:0044260;GO:0006139;GO:0071704Þ
¼

1
2:158 þ 1

2:086 þ 1
1:255 þ 1

1:479 þ 1
1:617

� �� 4
1

1:255 þ 1
1:098

� �� 2
¼ 2:75

For GO:0044237 there are two paths from GO:0044237
to root (L21 and L22) and two paths from GO:0044260
and GO:0006139 to GO:0044237 (P21 and P22). Accord-
ing to (25) and (26) and the IC values in Fig. 2 L22 and
P22 are longest path and shortest path respectively, so
distance for this case will be:

DðGO:0044260;GO:0006139;GO:0044237Þ
¼

1
2:158 þ 1

1:999 þ 1
1:329 þ 1

1:617

� �� 3
1

1:329 þ 1
0:407

� �� 2
¼ 1:076

Obviously the second value is the minimum, so the
similarity between GO:0044260 and GO:0006139 accord-
ing to (35) will be:

Fig. 1 Pseudocode for the TopoICSim algorithm
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SðGO:0044260;GO:0006139Þ

¼ 1 −
Arctanð1:076Þ

π=2
¼ 0:477

Benchmarking of TopoICSim
With the growing number of similarity measures, an
important issue is comparison of their performance. For
this, in particular the five similarity measures presented
in the introduction were considered for comparison with
TopoICSim in several tests.

IntraSet similarity
The IntraSet similarity is the average similarity over
all pairwise comparisons within a set of genes. The
IntraSet values were calculated with TopoICSim and
five other algorithms, namely IntelliGO, Wang, Lord-
normalized, Al-Mubaid, and SimGIC, using data sets

defined by Pfam clans and KEGG pathways. The per-
formance results obtained with the Pfam clans using
MF annotations are shown in Fig. 3. For 7 out of 10
Pfam clans, the TopoICSim measure showed generally
higher IntraSet similarity compared to the other mea-
sures, and only for the CL0289.3 case did it show
lower performance. The results for the KEGG pathway
datasets based on BP annotations were very similar (Fig. 4).
Again the TopoICSim measure had in general higher per-
formance compared to the other measures (11 out of 13).

Discriminating power
The Discriminating Power (DP) is defined as the ratio of
the IntraSet and InterSet average gene similarities, where
InterSet similarities are between gene sets, rather than
within. The calculated DP values for all methods on the
two benchmark datasets used for IntraSet similarity are
plotted in Figs. 5 and 6. For the Pfam Clans and MF
annotations TopoICSim measure was superior compared

Fig. 2 Sample GO structure illustrating the main computations used in TopoICSim
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to the other methods. The minimum and maximum DP
values generated by the TopoICSim were 1.4 for
CL0042.9 and 4.2 for CL0165.8, respectively. For the
KEGG pathway dataset the Wang measure provide bet-
ter performance compared to IntelliGO and TopoICSim,
which came second and third.

IntraSet discriminating power
IntraSet Discriminating Power (IDP) represents a com-
bination of the InstraSet similarity and DP, as both
should be high for an optimal measure. The IDP values
were estimated for all measures in the study using
formula (16). The results are plotted in Figs. 7 and 8 for
MF and BP annotations respectively. For the MF annota-
tions for Pfam clan data TopoICSim shows a generally
better performance compared to the other measures.
For the BP annotations for KEGG pathway data the best
performance was seen for the TopoICSim, IntelliGO,
and Wang measures. The TopoICSim had best perform-
ance (unique or shared best) for 10 out of 13 cases. It
therefore shows a very good and robust performance in
this part of the evaluation.

Evaluation versus expression similarity
For evaluation of TopoICSim with respect to annotation
similarity associated with expression similarity we used
three subsets of human genes from [45], namely G2M,
DNA_REPAIR, and STAT3. For each subset both ex-
pression and annotation similarities were calculated
using Pearson and Spearman correlations and DC for
expression similarity based on CAGE data (see Methods)
(r values), and TopoICSim, IntelliGO, and Wang for se-
mantic similarity (s values). The Self-Organizing Map
(SOM) algorithm was used to cluster all interactions into
three subsets based on (r, s) values. A 6 × 6 square top-
ology was selected to set up the SOM computation. The
correlation was computed for each cluster and the clus-
ters with r > =0.5 were used to estimate final correlation
between expression and annotation similarities as an
average on the correlation values within these selected
clusters. Table 2 presents the correlation values for each
of the three subsets and the considered (r, s) pairs. For
the three sets of genes that were tested the maximum
correlation was seen when we used the DC correlation
and TopoICSim measures for the expression and
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Fig. 3 IntraSet similarities for the Pfam clan dataset using MF annotations. The IntraSet similarity is estimated for all pairs of genes within in each
clan using MF annotations over all considered similarity measures
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Fig. 4 IntraSet similarities for KEGG pathways dataset using BP annotations. The IntraSet similarity is estimated for all pair genes within each KEGG
pathway using BP annotations for all considered similarity measures
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annotation similarities (0.943, 0.921, and 0.890 for G2M,
DNA_REPAIR, and STAT3 respectively). Also, the calcu-
lated correlations with the TopoICSim measure were
higher than the correlation values calculated by the two
other measures for all cases except the DNA_REPAIR
set when using the Spearman and IntelliGO combin-
ation (0.89).

Evaluation by CESSM
The TopoICSim measure was used to calculate similar-
ities for the benchmark set of protein pairs downloaded
from the CESSM website [34]. The benchmark set
represents three different types of similarities, based on
sequence similarity (SeqSim), enzyme classification (ECC),
and protein domains (Pfam). The results obtained (correl-
ation coefficients) are presented in Table 3. When we used
the MF annotations, the correlation coefficients range
from 0.55 for the SeqSim dataset to 0.75 for the ECC
dataset. The TopoICSim correlation coefficient for the
ECC dataset is higher than all other methods. For the
Pfam dataset TopoICSim is at a similar level as SimGIC

(0.62 vs. 0.63). For the SeqSim dataset the value obtained
with TopoICSim is beaten by four other methods (Sim-
GIC, SimUI, RB, LB).
For the BP annotations, the performance was generally

higher than for MF annotations. For the ECC and Pfam
datasets the TopoICSim correlation coefficients are
higher than for any of the other measures. For the Seq-
Sim dataset the score obtained by TopoICSim is beaten
by three other measures (SimGIC, SimUI, and RB).

Annotation length bias
Annotations are not uniformly distributed among the
genes or gene products within an annotation corpus,
and some studies have indicated a clear correlation be-
tween semantic scores and the number of annotations
[46]. Wang et al. [47] used randomly selected pairs of
term groups to evaluate the increase in protein semantic
similarity score that resulted only from the increased an-
notation length, regardless of other biological factors.
First, they randomly selected 10,000 pairs of term groups
with the same sizes (corresponding to the annotation
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Fig. 5 Comparison of the discriminating power of six similarity measures using Pfam clan and MF annotations. The discriminating power values
estimated using all considered similarity measures are plotted for all Pfam clans
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Fig. 6 Comparison of the discriminating power of six similarity measures using KEGG pathway and BP annotations. The discriminating power
values estimated with all considered similarity measures are plotted for all KEGG pathways
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lengths of proteins) ranging from 1 to 10. Then, using
each of 14 semantic similarity scores, they calculated the
semantic similarity scores for random term group pairs,
and analyzed whether these scores increased as the
group size increased using the Spearman rank correl-
ation coefficient. All the 14 semantic similarity methods
tested by Wang et al. showed a perfect or close to per-
fect Spearman correlation (r from 0.99 to 1.00, p-value
from 9.31e-08 to <2.20e-16). We used their approach
and got a Spearman correlation of r = 0.70 with p-value =
0.02. Although there still is a significant correlation, it is
smaller than all reported correlations in Wang et al.

The shallow annotation problem
Genes that are annotated at only very shallow levels (for
example “binding”) can lead to very high semantic simi-
larities [46]. For example, consider the two human genes
Akap1 (A-kinase anchor protein 1 – ID:8165) and Bbs9
(Bardet-Bieddl syndrome 9 – ID:27241). The first gene is
a trans-membrane protein that has 10 GO terms associ-
ated with the MF ontology. The second gene is poorly
understood and has only two GO terms, including
GO:0005515 (protein binding), which it happens to
share with Akap1. Despite this weak link, some node

based methods like Lin and Jiang not only predict high
similarity, but actually return a maximum score (1.0).
The similarity of these genes according to IntelliGO and
Wang is 0.763 and 0.643, respectively, whereas TopoIC-
Sim generates a more appropriate low similarity of 0.5.

Running time
Table 4 shows the running times for TopoICSim com-
pared to IntelliGO and Wang, using calculation of the
similarity values of all gene pairs in three gene sets that
were used for benchmarking. It is not surprising that the
Wang method has very short running times compared
to TopoICSim and IntelliGO, as Wang does not spend
time on finding longest and shortest paths. However, the
results also show that TopoICSim actually has shorter
running time than IntelliGO in each of the tree cases.

Discussion
Semantic similarity measures rely upon the quality and
completeness of their assigned ontology and annotation
corpus. The irregular nature of GO annotation data, for
example variable edge lengths (edges at the same level can
have different semantic measure), variable depth (terms at
the same level can have different level of detail), and

4.0

3.0

2.0

1.0

0.0

ID
P

Pfam clan

TopoICSim IntelliGO Wang

LordNormalized Al-Mubaid SimGIC

Fig. 7 Comparison of the IDP values of six similarity measures using Pfam clan and MF annotations
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Fig. 8 Comparison of the IDP values of six similarity measures using KEGG pathways and BP annotations
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variable node density (some areas of the ontology have a
larger density of terms than others) should be taken into
account by semantic similarity measures.
Most existing methods use in the first step the last

(deepest) common ancestor to define similarity between
two GO terms, which does not guarantee the shortest
path between terms that pass from this common ances-
tor (i.e. a common ancestor located at a higher level
leads to a shorter path between the terms). To overcome
this issue TopoICSim measures similarity between two
GO terms for all disjunctive common ancestors with the
described criteria, and the final similarity measure is
returned as the best among them according to (34). Al-
though there are other studies that use disjunctive com-
mon ancestors [48], they are node based methods that
only use shared information on the disjunctive common
ancestors and they do not deal with optimal paths in a
subgraph of nodes. Another advantage of the TopoICSim
measure is the weighting scheme, which is used according
to (29, 30). It leads to a better ability to distinguish
between terms with the same semantic similarity but at
different levels.
Various strategies have been applied to test the validity

of semantic similarity measures [16]. For example, in a
gene product interaction network, a functional module
is a set of interacting gene products that share a biological
process or pathway [46]. Based on this they should display
similar MF or BP annotations. This hypothesis was tested
by Lord et al. by estimating the correlation between gene
annotation (MF annotation) and sequence similarity in set
of human proteins [3], since sequence similarity often is

associated with functional similarity. Also Guo et al. per-
formed an analysis on all pairs of proteins belonging to
the same pathway, which showed higher similarity scores
than expected when using BP annotation [49].
For evaluation of the TopoICSim similarity measure in

this paper, two benchmarking datasets based on KEGG
pathways and Pfam clans were used. These datasets have
been obtained directly from [22]. The IntraSet similarity,
Discriminating Power, and IntraSet Discriminating Power
values were used for the evaluation. For all quality mea-
sures used to evaluate the estimated semantic similarity
for these two benchmarking data sets TopoICSim had the
best result, except for DP values for the KEGG dataset
where the Wang method had best performance.
Another common scenario for testing the validity of

semantic similarity measures is by testing their correl-
ation with gene expression data. Two gene products
with similar function are more likely to have similar ex-
pression profile and share same or similar GO terms.
Therefore a correlation between gene expressions of two
gene products versus the semantic similarity measures
can be used as a performance test. Wang et al. [50] com-
pared semantic similarity to expression profile correl-
ation for pairs of genes from the Eisen dataset [51].
They showed that for all the considered measures, high
semantic similarity is associated with high expression
correlation. Also Sevilla et al. showed correlation be-
tween semantic similarity and expression profile, but
they dramatically improved it by using grouped data
[15]. We took this one step further by applying a SOM
algorithm to clustering of gene products by expression

Table 2 Correlation between expression and annotation similarities

G2M DNA_REPAIR STAT3

TopoICSim IntelliGO Wang TopoICSim IntelliGO Wang TopoICSim IntelliGO Wang

Pearson 0.932 0.572 0.849 0.890 0.879 0.867 0.833 0.795 0.824

Spearman 0.914 0.548 0.871 0.876 0.890 0.813 0.872 0.766 0.793

DC 0.943 0.594 0.885 0.921 0.887 0.863 0.890 0.801 0.827

Numbers in bold indicate the best correlation for each subset when comparing TopoICSim, IntelliGO and Wang

Table 3 Results obtained with the CESSM benchmarking tool

Metrics Methods

SimGIC SimUI RA RM RB LA LM LB JA JM JB TopoICSim

MF ECC 0.62 0.63 0.39 0.45 0.60 0.42 0.45 0.64 0.34 0.36 0.56 0.75

Pfam 0.63 0.61 0.44 0.18 0.57 0.44 0.18 0.56 0.33 0.12 0.49 0.62

SeqSim 0.71 0.59 0.50 0.12 0.66 0.46 0.12 0.60 0.29 0.10 0.54 0.55

BP ECC 0.39 0.40 0.30 0.30 0.44 0.30 0.31 0.43 0.19 0.25 0.37 0.46

Pfam 0.45 0.45 0.32 0.26 0.45 0.28 0.20 0.37 0.17 0.16 0.33 0.51

SeqSim 0.77 0.73 0.40 0.30 0.73 0.34 0.25 0.63 0.21 0.23 0.58 0.68

Pearson correlation coefficients are shown for the ECC, Pfam, and SeqSim datasets. The MF and BP annotations are used. Numbers in bold show the best
correlation for each dataset. The column headings represent the following methods: SimGIC Similarity Graph Information Content, SimUI Union Intersection
similarity, RA Resnick Average, RM Resnick Max, RB Resnick Best match, LA Lord Average, LM Lord Max, LB Lord Best match, JA Jaccard Average, JM Jaccard Max, JB
Jaccard Best match
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and semantic similarities to select clusters with high cor-
relation. The TopoICSim was superior on the three
tested datasets compared to all other similarity measures.
Finally, the evaluation with CESSM showed that the
TopoICSim is a competitive measure relative to SimGIC,
which is superior to all other similarity measures in the
CESSM test. However, in the other tests SimGIC had a
more variable and sometimes very low performance, which
means that TopoICSim in general is a more robust similar-
ity measure with a very good overall performance.
The robust performance was confirmed when we tested

for annotation length bias, which has been identified as a
potential problem for semantic similarity methods [46].
The analysis showed that although the score still showed
some dependency on the number of annotations, the de-
pendency in TopoICSim was clearly lower than for other
semantic similarity methods that have been tested. Another
potential problem is related to shallow annotation, where
high-level GO terms may lead to an overestimation of the
similarity between genes. Here TopoICSim should be more
robust to such bias than most other methods, due to its
design. We have illustrated this with a simple example. Fi-
nally, a benchmarking of running time for TopoICSim
showed good performance compared to IntelliGO.

Conclusions
In this study we present an improved method for seman-
tic similarity which counts distribution of IC on the
shortest paths between GO terms and longest path from
root to the common ancestors, weighted by their
lengths. Several strategies were applied to evaluate the
TopoICSim similarity measure. Our results show that
the TopoICSim similarity measure is robust, in particu-
lar since it was among best similarity measures in all
benchmarking tests performed here.
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