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Prediction of FAD binding sites in electron
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radial basis function networks and
significant amino acid pairs
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Abstract

Background: Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the
most efficient process through which cells harvest energy from consumed food. When cells undergo cellular
respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to
oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical
gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical
energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of
cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital
molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport
chain is vital for helping biologists understand the electron transport chain process and energy production in cells.

Results: We used an independent data set to evaluate the performance of the proposed method, which had an
accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered
electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and
Raghava and determined that the accuracy of the proposed method improved by 9–45 % and its Matthew’s
correlation coefficient was 0.14–0.5. Furthermore, the proposed method enabled reducing the number of false
positives significantly and can provide useful information for biologists.

Conclusions: We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding
sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement
after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed
method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help
biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also
developed a web server which identifies FAD binding sites in electron transporters available for academics.
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Background
Cellular respiration is the process for producing adeno-
sine triphosphate (ATP) and enables cells to obtain en-
ergy from foods. During cellular respiration, cells break
down food molecules, such as sugar, and release energy.
The objective of cellular respiration is to harvest elec-
trons from organic compounds to create ATP, which is
used to provide energy for most cellular reactions.
Figure 1 shows the architecture of the cellular respir-
ation process.
As cells undergo cellular respiration, they require a

pathway to store and transport electrons (i.e., the elec-
tron transport chain). The electron transport chain com-
ponents are organized into four complexes (Complex I,
Complex II, Complex III, and Complex IV) and ATP
synthase (which can be called Complex V). The process
of electron transport chain starts from the mitochondrial
inner membrane, which electrons transfer from Com-
plex I with nicotinamide adenine dinucleotide (NADH)
and succinate (Complex II) to oxygen. In the next step,
a carrier (coenzyme Q) that embeds in the cell mem-
brane receives electrons from complex I and pass to
Complex III (cytochrome b, c1 complex). Electrons
bypass Complex II, the succinate dehydrogenase com-
plex, which is an independent starting stage and is not a
component of the NADH pathway. The pathway from
Complex III leads to cytochrome c then moves to Com-
plex IV (cytochrome oxidase complex). In the final step,
ATP synthase is active by the proton electrochemical to
utilize the flow of H+ to generate ATP, which provides
energy in numerous cellular processes.
Flavin adenine dinucleotide is one of the most vital

molecules in the electron transport chain. It is
mainly in Complex II, which is an enzyme complex
bound to the inner mitochondrial membrane of

mammalian mitochondria and many bacterial cells.
Regarding the reaction mechanism of Complex II,
succinate is bound and a hydride is transferred to
FAD to generate FADH2. After the electrons are de-
rived from succinate oxidation through FAD, they
tunnel along the [Fe-S] relay to the [3Fe-4S] cluster.
These electrons are subsequently transferred to an
awaiting ubiquinone molecule within the active site.
The fundamental role of Complex II in the electron
transfer chain of mitochondria renders it vital in
most organisms, and removing Complex II from the
genome has been shown to be lethal at the embry-
onic stage in mice.
Predicting FAD binding sites in electron transporters is

vital for helping biologists clearly understand the operat-
ing mechanisms of the electron transport chain and Com-
plex II. In this study, we developed a method that is based
on position specific scoring matrix (PSSM) profiles and
significant amino acid pairs (SAAPs) for identifying FAD
binding residues in electron transport proteins.
FAD binding sites have attracted the interest of

numerous researchers because of their relevance in elec-
tron transport chains. Prominent studies conducted on
FAD binding sites include those by Mishra and Raghava
[1] and Fang [2]. Mishra and Raghava [1] used support
vector machines to predict FAD binding residues. They
also developed a free web server for identifying FAD
binding residues in specific sequences. Moreover, Fang
[2] used evolutionary information to improve the predic-
tion performance.
Numerous studies have also been conducted on

transport proteins. For example, Saier [3] provided a
web database containing the sequence, classification,
structural, and evolutionary information of transport
systems from various living organisms. Furthermore,

Fig. 1 Cellular respiration process
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Ren [4] presented transportDB, which is a compre-
hensive database of transporters and outer membrane
channels. Chen [5] divided electron transport targets
into four types of transport proteins to conduct pre-
diction and analysis. After the prediction and analysis,
Chen classified the transport proteins and determined
the functions of each protein type in the transport
protein. Ou [6] attempted to discriminate metal-
binding sites in electron transport by using radial
basis function networks (RBFNs).
The current study proposes an approach based on

PSSM profiles and SAAPs for identifying FAD binding
sites in electron transport proteins. We used a set of
55 FAD binding proteins as the training data set and
six FAD binding proteins in electron transport pro-
teins as an independent data set. We applied the in-
dependent data set to evaluate the performance of
the proposed method, which demonstrated an accur-
acy of 69.84 %. Compared with the general FAD
binding predictor developed by Mishra and Raghava,
the proposed method exhibited a 9 %–45 % improve-
ment in accuracy and Matthew’s correlation coeffi-
cient (MCC) of 0.14–0.5 when applied to two newly
discovered electron transport protein sequences. The
proposed method also reduces the number of false
positives significantly and offers useful information
for biologists. The proposed method can serve as an
effective tool for predicting FAD binding sites in elec-
tron transport proteins and can help biologists under-
stand electron transport chain functions, particularly
those of FAD binding sites.

Methods
This study focused on identifying FAD binding sites
in electron transport proteins. Figure 2 illustrates a
flowchart of the study, which included three subpro-
cesses in each phase: data collection, feature set
generation, and model evaluation. According to this
flowchart, we developed a novel approach that is
based on PSSM profiles and SAAPs for predicting
FAD binding sites in electron transport proteins. The
details of the proposed approach are described as
follows.

Data set
First, we collected data about transport proteins and
electron transport proteins from the UniProt [7] data-
base. Subsequently, we removed sequences without the
annotation “evidence at protein level” or “complete.”
After this exclusion, 6694 transport proteins and 889
electron transport proteins remained and were surveyed.
Next, we retrieved all FAD binding sites in the electron
transport proteins. We collected data on only nine FAD
binding proteins. However, creating a precise model

requires using a higher number of proteins; thus, we col-
lected data on additional general FAD binding proteins
from other sources. We retrieved data from the Gene
Ontology (GO) [8] and Protein Data Bank (PDB) [9, 10]
databases by using the molecular function of FAD bind-
ing. In the GO database, we applied three molecular
functions of FAD binding: GO:0050660 (FAD binding),
GO:0071949 (FAD binding), and GO:0071950 (FADH2

binding). From these three molecular functions, we
obtained data on a total of 42 FAD binding proteins. We
applied the same approach to the PDB database and
obtained data on a total of 72 FAD binding proteins. We
removed duplicated proteins and 81 general FAD bind-
ing proteins remained. Next, BLAST [11] was applied to
exclude sequences with a sequence identity of more than
40 % from the data set. Finally, 61 FAD binding proteins
were used in this study (Table 1).
We divided the collected protein sequences into

two data sets: training and independent test data
sets. In this phase, the training data set was used for
identifying FAD binding sites, and the independent
test data set was used for evaluating the perform-
ance of the proposed method. We used all six FAD
binding proteins in the electron transport chain as
the independent data set; thus, the training data set
comprised 55 general FAD proteins (containing 863
FAD binding sites and 24408 non-FAD binding
sites). Table 2 lists the details of all data sets.

Sequence information
Sequence information is one of the first features set in
predicting the secondary structure of proteins [12, 13].
In this feature, each amino acid sequence is represented
by a number 0 or 1, creating a binary matrix. From the
binary matrix, the value for each amino acid can be cal-
culated. For example, if the sequence of amino acids is
ARNDCQEGHILKMFPSWYV and the value for amino
acid N must be calculated, the third position is set to 1
and the others are set to 0. In this study, we also used
two types of advance sequence information, namely
PAM250 and BLOSUM62.

PAM250
A percent accepted mutation (PAM) [14] matrix repre-
sents the elements involved in the conversion of amino
acids into amino acids within a variable probability of
evolutionary distance. A PAM matrix was created in the
protein sequence alignment and various phylogenetic
trees with the assumption that amino acids are amino
acids and that each amino acid is substituted with an-
other amino acid, to establish an acceptable point muta-
tion matrix (accepted point mutation matrix).
A matrix is usually employed to mark aligned peptide

sequences in order to identify the similarity of such
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sequences. By comparing aligned protein sequences with
a known homology and determining the “accepted point
mutations”, the aforementioned numbers were derived.
The frequencies of such mutations were arranged in a
table as a “log odds matrix”:

Mij ¼ 10 log10Rij
� �

;

where Mij is the matrix component and Rij is the prob-
ability of that substitution, then divided by the standard-
ized frequency of amino acid sequences. Note that all

Table 1 Statistics of all retrieved FAD binding proteins with
FAD and non-FAD binding sites

Number of
proteins

FAD binding
sites

Non-FAD
binding sites

FAD binding in electron
transport

6 63 3030

General FAD binding proteins 55 940 26475

Fig. 2 Flowchart of the proposed method for identifying FAD binding sites in electron transport proteins
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the numbers are rounded to the integer number. The
base-10 log is utilized so that the numbers can be added
instead of multiplied to decide the score of a practical
set of sequences.

BLOSUM62
The block substitution matrix (BLOSUM) [15] is used to
assess differences in effectiveness between evolutions of
protein sequence alignment methods. They are retrieved
from the BLOCKS database, and some of the protein
amino acid sequences are retained; the calculated rela-
tive amino acid is replaced by the calculated frequency
and probability. A BLOSUM62 matrix is commonly col-
lected in a database sequence BLOCKS with 62 % se-
quence similarity, and the sequence is then deduced
from a score matrix.

PSSM profiles
PSSM is a matrix commonly used for representing mo-
tifs in biological sequences [16]. It is a matrix of score
values and provides a weighted match to any specific
substring of fixed length. This matrix has one row for
each letter of the alphabet and one column for each pos-
ition in the pattern.
In recent years, the PSSM has widely been considered

an indicator of the properties of protein sequences. The
PSSM is used in determining the evolution of sequence
information in a specific location as well as the amino
acid replacement ratio to identify protein sequences;
such sequences represent the original 20 amino acid
types in the protein and are used to replace an amino
acid with its degree of influence. The PSSM has been ex-
tensively used for predicting the secondary structure of
proteins as well as subcellular locations and other

biological information, and it has been reported to pro-
duce favorable results.
We collected all sequence data from BLAST [11]

and the non-redundant protein database and used
them to establish the sequences in a PSSM. After the
PSSM sequences were established, we calculated the
optimal protein sequence for each amino acid. We
placed 20 types of amino acids in the calculated se-
quences, leading to the creation of a matrix. If a win-
dow size of 17 is used, then the matrix size is 17 *
20 = 340 (because the calculated value for each amino
acid was 20). This matrix should be added to predict
the properties of the protein sequence. Identical
amino acid residues can be replaced with a specific
value of amino acids. We used the following numer-
ical normalization formula to convert the values to
values between 0 and 1:

F xð Þ ¼ 1
1þ exp ‐xð Þ

F-score
In binary classification analysis, an F-score is a simple
parameter applied for measuring the accuracy of a test
by using two sets of real numbers [17]. The F-score is
defined as follows:

F ið Þ ¼ xi þð Þ−xi
� �2 þ xi −ð Þ−xi

� �2
1

nþ−1

Xnþ
k¼1

x þð Þ
k;i −x

þð Þ
i

� �2
þ 1

n−−1

Xn−

k¼1
x −ð Þ
k;i −x

þð Þ
i

� �2

where n+ is the number of positive instances and n− is
the number of negative instances. Furthermore, xi; xi þð Þ ,
and xi −ð Þ are the averages of the ith feature of the entire,
positive, and negative data sets, respectively; x(+) k,i is
the ith feature of the kth positive instance; and x(−) k,i

is the ith feature of the kth negative instance. We cal-
culated all F-score values for all feature sets of FAD
binding sites in electron transport proteins. A higher
F-score indicates that the corresponding feature has a
higher amount of special information. Therefore, we
added the F-score values to the PSSM features. In
this study, we added the 30 highest F-scores to the
PSSM features.

Significant amino acid pairs
We adopted SAAPs to improve the performance of
the proposed method in predicting FAD binding sites
in electron transport proteins. The SAAPs around the
FAD binding sites were identified on the basis of six
FAD binding proteins, and the remaining SAAPs were
identified on the basis of a statistical distribution
measurement. Each amino acid pair surrounding FAD
binding sites was calculated using a p-value:

Table 2 Details of all 61 FAD binding proteins with a UniProt ID
in the present study (six FAD binding proteins in electron
transport served as an independent data set)

Independent dataset Training dataset

P00455 O95831 P21890 P08165 Q5SJP8 Q92947

Q03103 P00371 P26440 Q5SH33 Q5SK63 Q945K2

Q96HE7 P00390 P37747 P66004 Q5UVJ4 Q96329

Q9YHT1 P07342 P38038 Q0QLF4 Q709F0 Q9AL95

P55931 O53355 P39662 Q28943 Q7SID9 C6ELC9

A3KEZ1 O54050 P41367 P97275 Q7WZ62 D0VWY5

O60341 P45954 Q2GBV9 Q7X2H8 O52582

P0A6U3 P47989 Q389T8 Q7ZA32 Q9RSY7

P15651 P49748 Q47PU3 Q8DMN3 Q9UBK8

P19920 P55789 Q52437 Q8X1D8 Q9UKU7

P07872 P09622 Q9HJI4 Q9HKS9 Q9HTK9
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p‐valuek ¼
M
x

� �
N‐M
n‐x

� �

N
n

� � ;

where N denotes the number of sequences in the en-
tire data set, M denotes the number of sequences in
the positive data set, and (N-M) denotes the number
of sequences in the negative data set; n, x, and n-x
denote the number of sequences including a kth
SAAP in the entire data set, positive data set, and
negative data set. Figure 3 shows the method used for
calculating the p-value from FAD binding sites in
electron transport chains.
A p-value less than 0.13 indicates that the amino acid

pair surrounding FAD binding sites is significant. That
is, numerous special features exist, with some features
having a p-value less than 0.13. After we calculated the
p-values for all amino acid pairs surrounding FAD bind-
ing sites with a window size of 17, we added the ranked
SAAPs to the feature set in descending order. Finally, 38

SAAPs were added to the feature set of FAD binding
sites in electron transport proteins.

Radial basis function networks
We employed the QuickRBF package [18] to con-
struct RBFN classifiers. Figure 4 shows the architec-
ture of the RBF network. Furthermore, we assigned a

Fig. 3 Proposed method for calculating initial SAAP values

Fig. 4 Architecture of the RBFN
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constant bandwidth of 5 for each kernel function in
the network. We also used all training data as
centers. Subsequently, the RBFN classifier was used
to identify FAD binding sites according to the
output function value. We explained the details of
the network structure and design in our previous
article [19].
RBFN-based classifications have been used in sev-

eral applications in bioinformatics to predict cleavage
sites in proteins [20], interresidue contacts [21], and
protein disorder [22]; furthermore, they have been
applied for discriminating β-barrel proteins [23], clas-
sifying transporters [24, 25], identifying O-linked gly-
cosylation sites [26], and identifying ubiquitin
conjugation sites [27].

The general mathematical form of output nodes in an
RBFN is expressed as follows:

gj xð Þ ¼
Xk
i¼1

wjiφ x−μik k; σ ið Þ;

where gj(x) is the function corresponding to the jth out-
put node and is a linear combination of k radial basis
functions φðÞ with center mi and bandwidth si; in
addition, wji is the weight associated with the correlation
between the jth output node.

Assessment of predictive ability
We measured the predictive performance of the pro-
posed method by using sensitivity, specificity, accuracy,

Fig. 5 Amino acid composition of FAD binding interacting residues and noninteracting residues in 55 general FAD binding proteins

Fig. 6 Amino acid composition of FAD interacting residues and noninteracting residues in six FAD binding proteins in the electron
transport chain
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and MCC metrics. TP, FP, TN, and FN represent true
positive, false positive, true negative, and false negative,
respectively.

Sensitivity
This parameter enables computing the percentage of ac-
curately predicted FAD binding sites.

Sensitivity ¼ TP
TPþ FN

Specificity
This parameter enables computing the percentage of ac-
curately predicted non-FAD binding sites.

Specificity ¼ TN
TNþ FP

Accuracy
This parameter enables computing the percentage of ac-
curately predicted FAD and non-FAD binding sites.

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

MCC
This parameter represents the quality of prediction and
is used for resolving imbalance in data sets. An MCC
value of 1 indicates a perfect prediction.

MCC ¼ TP� TN‐FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp

Results and discussion
Amino acid composition analysis
We analyzed the composition of interacting and non-
interacting FAD binding sites by computing the occur-
rence frequency of amino acids in these sites. Regarding
the interacting FAD binding sites, the amino acids G, S,
A, and T exhibited the significantly highest occurrence
frequency in two interaction instances (general FAD
binding proteins and FAD binding proteins in electron
transport proteins) (Figs. 5 and 6). We inferred that gly-
cine is vital for the interaction with FAD binding sites.

Fig. 7 Comparison of percentage composition of FAD interacting residues in six FAD binding proteins in the electron transport chain and 55
general FAD binding proteins

Table 3 Comparison of performance in identifying FAD binding sites in the electron transport chain with different window sizes

Window Size True positive False positive True negative False negative Sens Spec Acc MCC

5-fold WS13 139 973 3909 33 80.8 80.1 80.1 0.27

WS15 139 990 3893 33 80.8 79.7 79.8 0.26

WS17 139 966 3917 33 80.8 80.2 80.2 0.27

WS19 138 1004 3879 35 79.8 79.4 79.5 0.26

indept WS13 50 1444 1586 13 79.4 52.3 52.9 0.09

WS15 50 1223 1807 13 79.4 59.6 60 0.11

WS17 51 1169 1861 12 81 61.4 61.8 0.12

WS19 51 1225 1805 12 81 59.6 60 0.12
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Regarding non-interacting binding sites, the amino acids
A, L, and G exhibited the highest occurrence frequency
in both instances.
Figure 7 shows a comparison between general FAD

binding proteins and FAD binding proteins in electron
transport proteins. We observed some differences be-
tween the two types of proteins, and the amino acids V,
E, and I exhibited considerable differences.

Performance in predicting FAD binding sites in electron
transport proteins by using various window sizes
We created an FAD binding classifier by using the 61
FAD binding proteins collected. We applied the
QuickRBF classifier by using window sizes ranging from

13 to 19 for comparison (Table 3). We measured the
predictive performance of the proposed PSSM-based
method. As shown in Table 3, changing the window size
did not exert considerable effects on the result. The
result obtained when the window size was set to 17 was
favorable, and the measured sensitivity, specificity, ac-
curacy, and MCC were approximately 80.8 %, 80.2 %,
80.2 %, and 0.27, respectively. Although the MCC was
low, all the other performance metrics were approxi-
mately 80. We used the experiment with a window size
of 17 to create the FAD binding classifier model.
As shown in Figs. 8 and 9, the sequence frequency

logo was generated using a tool provided by the
WebLogo server [28]. The window size was set to 17

Fig. 8 Sequence logo for 55 general FAD binding proteins (generated from WebLogo)

Fig. 9 Sequence logo for six FAD binding proteins in the electron transport chain (generated from WebLogo)
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and used to confirm the FAD binding fragment for com-
parison. These two figures indicate that some differences
exist between the general FAD binding proteins and
FAD binding proteins in the electron transport chain.
For example, the amino acids T, K, I, and R exhibited
clear differences at positions ranging from −4 to −1.

Performance in predicting FAD binding sites in electron
transport proteins with different feature sets
Table 4 shows the performance assessment results ob-
tained by discriminating FAD binding sites in electron
transport chains with different feature sets. We used

the established FAD classifier to predict our inde-
pendent data set (six FAD binding proteins in the
electron transport chain) by setting the window size
to 17. As shown in Table 4, the predictive perform-
ance of the proposed method was more favorable
than that of the other methods (i.e., BINARY, BLO-
SUM62, PAM250, and F-Score). Although the per-
formance of the proposed method was not extremely
high (sensitivity = 80.95 %, specificity = 69.6 %, accur-
acy = 69.84 %, and MCC = 0.15), it was still superior
to that of the other methods. We observed that the
performance improved when we added SAAPs from

Table 4 Comparison of performance in identifying FAD binding sites in the electron transport chain with different feature sets

Feature set True positive False positive True negative False negative Sens Spec Acc MCC

BINARY 45 972 2058 18 71.43 67.92 67.99 0.12

BLOSUM62 41 977 2053 22 65.08 67.76 67.7 0.1

PAM250 42 996 2032 21 66.67 67.11 67.1 0.1

PSSM 51 1169 1861 12 80.95 61.42 61.82 0.12

PSSM + F-score 51 1142 1888 12 80.95 62.31 62.69 0.13

PSSM + SAAPs 54 1074 1955 9 85.71 64.54 64.97 0.15

Fig. 10 ROC Curve for performance of predicting FAD binding sites in electron transport proteins with PSSM and SAAPs
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FAD binding proteins in the electron transport chain
to the PSSM. Thus, the proposed method was effect-
ive in predicting FAD binding sites in electron trans-
port proteins.

Significance analysis based on the proposed method
Receiver operating characteristic (ROC curve) and area
under the curve (AUC) are also used in presenting the
accuracy of the test in the presented results [29, 30].
Figure 10 plots the ROC curve based on Sensitivity and
Specificity of our prediction results. According to the
ROC curve, we calculated the AUC to measure the ac-
curacy. The AUC from this study reached 0.8618325,
and therefore we can use this model to identify FAD
binding sites in the electron transport chains with good
results.

Performance in predicting FAD binding sites in electron
transport proteins with different classifiers
Table 5 shows the performance assessment results ob-
tained by discriminating FAD binding sites in electron
transport chains with different classifiers. We applied
our method in independent dataset with different
classifiers, i.e., kNN, RandomForest (in WEKA pack-
age [31, 32]) and LibSVM classifiers [33]. The results
show in Table 5 can prove that our classifier perform
well than the others. Therefore we can use our
method to identify FAD binding sites in electron
transport proteins with high results.

Leave-one-out analysis with six FAD binding proteins in
electron transport chains
Table 6 shows the final results obtained from a leave-
one-out analysis of six FAD binding proteins in electron
transport chains. Although the number of proteins used
in the experiment was not high, we conducted this

experiment to obtain a reference for comparison and
validate the performance of the proposed method in pre-
dicting FAD binding sites in electron transport chains.
The analysis results revealed that the proposed method
performed well, exhibiting an average sensitivity of
97.37 %, average specificity of 96.36 %, average sensitivity
of 96.39 %, and average MCC of 0.66.

Comparison of the proposed method with another
method
We compared the performance of the proposed
method with that of the FADPred approach pre-
sented by Mishra and Raghava [1]. In this compari-
son, in addition to the six FAD binding proteins in
the electron transport chain, we used two new pro-
teins, namely Q96HE7 and A3KEZ1, which have
been demonstrated in experiments conducted after
2010. We subsequently evaluated the results of the
proposed method in analyzing these two proteins
and compared them with results of the FADPred
approach [1]. Table 7 shows the comparison results,
indicating that the proposed method demonstrates
superior performance relative to the FADPred
method [1].

Identification of new FAD binding sites in electron
transport protein
In this part, we applied our method for prediction of
FAD binding sites in electron transport human proteins.
The testing dataset retrieved from Swiss-Prot [34], which
is a famous protein database. After using BLAST to
remove sequence similarity more than 30 %, the rest of
dataset contained 100 proteins, which including 21985
amino acids. Then our model can found 1136 FAD bind-
ing sites from dataset. Thus our research can help

Table 6 Comparison of performance in identifying FAD binding sites in the electron transport chain with PSSM and SAAPs

Protein True positive False positive True negative False negative Sens Spec Acc MCC

Q9YHT1 17 223 417 9 65.38 65.16 65.17 0.12

P00455 9 111 247 3 75 68.99 69.19 0.17

Q03103 6 1 557 0 100 99.82 99.82 0.92

Q96HE7 6 68 394 1 85.71 85.28 85.29 0.24

A3KEZ1 6 5 400 0 100 98.77 98.78 0.73

P55931 6 0 612 0 100 100 100 1

Table 5 Comparison of performance in identifying FAD binding sites in the electron transport chain with different classifiers

Classifier True positive False positive True negative False negative Sens Spec Acc MCC

kNN 45 1448 1581 9 85.71 52.2 52.88 0.11

RandomForest 31 1055 1974 32 49.21 65.17 64.84 0.04

LibSVM 53 1149 1880 10 84.13 62.07 62.52 0.13

QuickRBF 54 1074 1955 9 85.71 64.54 64.97 0.15
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biologists discover some new FAD binding sites in elec-
tron transport proteins.

Web server for predicting FAD binding sites in electron
transport protein
The web server FAD-ETC.-RBF was built for present-
ing our method in this study. FAD-ETC.-RBF trained
for the identification of FAD binding sites in electron
transport proteins by using QuickRBF classification
based on PSSM profiles and SAAPs. The web server
can be access at http://140.138.155.226/~kahn/Bioin
formatics/. We developed friendly web interface in-
cluding many page menus that users can easily use to
retrieve information and submit their sequences. More-
over, the users just wait for the short time to receive the
prediction result because the performance of this server is
especially fast. In the result page, users can easily check
the results because the amino acids predicted were dis-
played as different colors. According to this web server,
biologists can discover new FAD binding sites in electron
transport protein to understand clearly the operating
mechanism of electron transport chains.

Conclusions
Predicting FAD binding sites in electron transporters is
vital in helping biologists clearly understand the operat-
ing mechanisms of electron transport chains and Com-
plex II. In this study, we developed a method based on
PSSM profiles and SAAPs for identifying FAD binding
residues in electron transport proteins. We used the
independent data set to evaluate the performance of the
proposed method, which achieved an accuracy of
69.84 %. We compared the performance of the proposed
method in analyzing two newly discovered electron
transport protein sequences with that of the general
FADPred approach of Mishra and Raghava. We observed
that the accuracy of the proposed method improved by
9 %–45 % and its MCC was 0.14–0.5. The proposed
method can serve as an effective tool for predicting
FAD binding sites in electron transport proteins and
can help biologists understand the functions of the
electron transport chain, particularly those FAD bind-
ing sites. We also developed a web server for the
method described in this paper.

The contributions of this study provide a basis for fur-
ther research that can enrich the field. However, this
study still has some limitations related to the small sam-
ple size and limited time. The number of suitable FAD
binding proteins in electron transport chains was not
sufficient, potentially affecting the performance of the
proposed method. To create a more effective model, we
must identify additional FAD binding proteins in elec-
tron transport proteins. Doing so can enable us to con-
duct a comparative study and enhance prediction
performance.
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