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localization of post-translational
modification sites in protein-protein
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Abstract

Background: One very important functional domain of proteins is the protein-protein interacting region (PPIR),
which forms the binding interface between interacting polypeptide chains. Post-translational modifications (PTMs)
that occur in the PPIR can either interfere with or facilitate the interaction between proteins. The ability to predict
whether sites of protein modifications are inside or outside of PPIRs would be useful in further elucidating the
regulatory mechanisms by which modifications of specific proteins regulate their cellular functions.

Results: Using two of the comprehensive databases for protein-protein interaction and protein modification site
data (PDB and PhosphoSitePlus, respectively), we created new databases that map PTMs to their locations inside or
outside of PPIRs. The mapped PTMs represented only 5 % of all known PTMs. Thus, in order to predict localization
within or outside of PPIRs for the vast majority of PTMs, a machine learning strategy was used to generate predictive
models from these mapped databases. For the three mapped PTM databases which had sufficient numbers of
modification sites for generating models (acetylation, phosphorylation, and ubiquitylation), the resulting models
yielded high overall predictive performance as judged by a combined performance score (CPS). Among the multiple
properties of amino acids that were used in the classification tasks, hydrophobicity was found to contribute
substantially to the performance of the final predictive models. Compared to the other classifiers we also evaluated,
the SVM provided the best performance overall.

Conclusions: These models are the first to predict whether PTMs are located inside or outside of PPIRs, as demonstrated
by their high predictive performance. The models and data presented here should be useful in prioritizing both known
and newly identified PTMs for further studies to determine the functional relationship between specific PTMs and
protein-protein interactions. The implemented R package is available online (http://sysbio.chula.ac.th/PtmPPIR).
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Background
Post-translational modification (PTM) of proteins is a
key mechanism for cellular regulation including protein-
protein interactions, protein functions, protein turnover,
protein localization, cell signaling, and proteomic diversity
[1, 2]. More than 200 different types of amino acid-
specific PTMs have been identified, including acetylation,
methylation, glycosylation, phosphorylation, sumoylation,
ubiquitylation and so on [2]. Several types of PTMs are
known to have specific functions regarding protein-
protein interactions: for example, phosphorylation sites
tend to be localized on protein binding hotspots and
modulate the stability of protein interactions [3]; ubiquity-
lation plays an important role in cellular signaling such as
protein degradation, autophagy, and protein turnover by
promoting interactions with various proteins which
recognize this PTM [4–6]; acetylation controls a variety of
cellular processes, and alters the properties of protein-
binding interfaces by neutralizing the positive charge of
the lysine residues or disrupting hydrogen bonds on lysine
side-chains [7].
Because of advances in high-throughput technologies

especially in protein mass spectrometry, enormous
amounts of data related to PTMs have been obtained. At
the present, there are multiple databases available for
studying PTMs such as UniProt [8], dbPTM [9],
PTMCuration [10], PTMcode [11], and PhosphoSitePlus
[12]. Among these databases, PhosphoSitePlus is the lar-
gest, most frequently updated and curated PTM data-
base which both stores non-redundant information and
provides tools for studying PTMs [9, 12, 13]. While the
rate of new PTM identification is rapid, the functional
annotation process of these PTMs is relatively slow.
Functional annotation of PTM sites is usually obtained
from different experimental methods, e.g., site-directed
mutagenesis, radiolabeling, immunoblot analysis, and
multidimensional liquid chromatography tandem mass
spectrometry [14]. However, these methods typically take
a long time to implement. Computational methods that
can help to predict the functional significance of new
PTM sites will allow researchers to prioritize their tar-
gets for the functional validation. Several attributes of
PTM sites, such as the degree of conservation and the
localization in functional domains, have been used for
such predictions [9, 10, 14]. One of the important
functional domains on proteins is a protein-protein
interacting region (PPIR), which is a binding/interacting
interface between a protein and its protein partner/sub-
strate. PTMs that occur in the PPIR can either interfere
with or facilitate the interaction between proteins, thus
they are functionally important.
PPIRs can only be confidently identified from protein

structures that were determined using high resolution tech-
niques such as X-ray crystallography, NMR spectroscopy,

and/or cryo-electron microscopy. The Protein Data Bank
(PDB) is a rapidly expanding resource consisting of a large
number of structures for protein-protein complexes, in-
cluding detailed information of PPIRs at the amino acid
residue level [15]. These structures can be represented as
3D images and enable the interacting regions of proteins
to be visualized and identified. The integration of this
structural information with PTM identification could
greatly facilitate the determination of the functional rela-
tionship between specific PTMs and protein-protein
interactions.
We began this study with a simple question: For any de-

tected protein modification, can we predict whether that
modification is inside or outside of a PPIR? To address
this question, we first integrated the information from the
PDB and PhosphoSitePlus databases to generate new
supervised datasets indicating which PTM sites are experi-
mentally confirmed to be inside or outside of PPIRs
(mapped PTMs). Subsequently, we used several conven-
tional features including hydropathy index, secondary
structure, PSSM (Position-Specific Scoring Matrix), and
sequence conservation (surrounding the modified site),
along with existing web-based applications, to perform
the prediction. However, these features and applications
proved to be insufficient to accomplish the task. There-
fore, a different approach was required.
One strategy that has been used successfully to make

predictions based on pattern recognition is “machine
learning”. In fact, this strategy has been recently employed
to predict individual sites of protein modification with
high performance [16–18], although with no indication of
whether the modified sites are inside or outside of PPIRs.
Therefore, we applied a machine learning strategy to gen-
erate the models for predicting whether a known PTM
site is inside or outside of a PPIR. Since most machine
learning algorithms require numeric data, the mapped
PTM-specific sequence datasets from PhosphoSitePlus
database were first encoded numerically using AAindex
[19], a database of numerical indices representing physico-
chemical and biochemical properties of amino acids,
which has been utilized in numerous previous applications
for decades. For example, the AAindex database was
recently used in a machine learning strategy to develop
the PAAQD [20] and EpicCapo [21] applications for im-
munogenicity and epitope predictions, respectively. The
performance of PAAQD and EpicCapo was high and out-
performed other applications at the time they were devel-
oped, supporting the use of both the AAindex database
and a machine learning strategy for predictive modeling.
In this study, the integrated PDB/PTM-specific data-

sets were analyzed and modeled using machine learning
algorithms. Our predictive models showed high per-
formance measures, and important features contributing
to predictive power were identified. These predictive
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models are available online and may be useful in
providing additional insight related to the functional re-
lationship between specific PTMs and protein-protein
interactions.

Results
Preparation of datasets for generating predictive models
Figure 1 illustrates the workflow and overall results of
the data generation and preparation processes. Starting
with the entire PDB database, filtering steps were

employed to generate a dataset containing only structures
for proteins with interacting protein partners. The number
of PDB files was decreased by slightly more than half dur-
ing the filtering processes. For the PhosphoSitePlus data-
base, entries are provided as sequences with lengths up to
15 amino acid residues, with up to ±7 neighboring AAs
surrounding the PTM site. After removing sequences with
lengths < 15 residues (i.e., with modification sites close to
protein termini, which represented less than 1 % of se-
quences), the number of remaining sequences was further

PDB database
(total number of files)

PhosphoSitePlus database
(total number of sequences)

96,318

67,181

Remove unusable files

Filter out files with no 
interacting partners

43,653

442,010

438,479

Identify interacting
residues using Jmol

PPIR map

22,482

3,693

18,789

Inside PPIRs

Outside PPIRs

Sequences with 15 residues

Sequences with 
structure information

Remove sequences 
with residues < 15

- Remove sequences with no 
structure information

- Identify whether the modified sites
are inside/outside of PPIRs

Sequence mapping process

Fig. 1 Flow diagram of the data generation and preparation processes. Numerical results are shown for each step of the overall process
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dramatically reduced (by 95 %) following the sequence
mapping process. The distribution of modification sites
inside and outside of PPIRs for each individual type of
PTM is shown in Fig. 2.
Although the number of data points required for ma-

chine learning is a function of the variability and com-
plexity of the datasets and research problems being
addressed, at least 75–80 data points have been reported
as the minimum necessary for achieving acceptable
performance levels [22, 23]. This suggests that a total of
approximately 500 data points might be needed to
generate reliable predictive models using 5-fold cross-
validation as employed in this study. Consequently, only
the three datasets for acetylation, phosphorylation, and
ubiquitylation included enough sequences to be used for
further analyses.

Use of conventional features to generate predictive
models
Initially, we focused on the phosphorylation dataset and
performed position-specific sequence analysis surround-
ing the phosphorylation sites found either within or out-
side of PPIRs using PhosphoLogo [24].
Using this conventional approach, a few general con-

clusions were possible: 1) there was a rather strong pref-
erence for tyrosine as the phosphorylation site within
PPIRs (Fig. 3a); 2) the identity of amino acid residues
surrounding the phosphorylation site within PPIRs was
not completely random, revealing a preference for cer-
tain amino acid properties at some specific positions
(Fig. 3a); 3) the anti-logo analysis showed that serine and
threonine were strongly disfavored as the phosphorylation
site within PPIRs (Fig. 3b); 4) the anti-logo analysis also
demonstrated that polar amino acids were strongly disfa-
vored at all positions surrounding the phosphorylation site

within PPIRs (Fig. 3b); and 5). Finally, nonpolar amino
acids were favored for all positions surrounding the phos-
phorylation site outside PPIRs (Fig. 3c), and no preference
was detected for amino acid residues surrounding that
phosphorylation site following anti-logo analysis (Fig. 3d).
While this analysis revealed some possible patterns, no
quantitative rules were generated that would enable devel-
opment of a prediction tool. Furthermore, when the same
type of analysis was performed on ubiquitylation and
acetylation datasets using Motif-x [25], no pattern of pref-
erences was detected.
Next, we used individual conventional features (namely,

amino acid hydropathy, secondary structure, and homolog
site/motif conservation) in a machine learning strategy in
an attempt to develop models for predicting whether
modification sites are inside or outside of PPIRs (see
Methods for details). Table 1 shows the final results for
the initial machine learning strategy using these three con-
ventional features. Obviously, the predictive performance
was poor, essentially being no better than random chance.
Therefore, we developed an alternate machine learning
strategy based on encoding a large number of features
representing various physicochemical and biochemical
properties of amino acids.

Initial predictive models for PTM-specific datasets using
multiple features
Three PTM-specific datasets (i.e., acetylation, phosphor-
ylation, and ubiquitylation) were individually encoded
into numerical arrays using 102 indices of AAindex1
[19] and then analyzed using the SVM, with 10 inde-
pendent iterations of 5-fold cross-validation to evaluate
for classification performance measures.
As shown in Fig. 2, all PTM-specific datasets were im-

balanced, i.e., the number of modification sites outside

Fig. 2 The numbers of modification sites inside and outside of PPIRs
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of PPIRs is substantially greater than that of sites inside
of PPIRs. As we expected, by using all data without
correcting for imbalance, Sn, AUC, and MCC were low
(<0.5), while Sp could reach the maximum at 1 (Additional
file 1: Table S2). Thus, it was necessary to correct for im-
balance before proceeding to the model generation
process, and the GibbsCluster [26] clustering algorithm
was employed in the balancing process (see Methods and
Fig. 5). Subsequently, the balanced datasets were analyzed
in classification tasks using the SVM as the classifier; the

results are shown in Table 2. The performance measures
are shown as averaged values of 10 iterations of 5-fold
cross-validation. Overall, the resulting performance mea-
sures were quite good, with minimum values greater than
0.70 and most values greater than 0.85. This indicated that
the predictive power of our machine learning strategy was
relatively robust.

Predictive model refinement by feature selection
In order to improve the power of the predictive models
and to eliminate indices making no contribution to the
predictive power, the datasets were analyzed using indi-
vidual indices which were then combined one at a time
in an iterative process. For each encoded PTM-specific
dataset, the results using the SVM for each individual
index were ranked based on CPS (i.e., summation of
ACC, MCC, and AUC; see Methods). Classification tasks
were then repeated by consecutive addition of each
index-specific sub-dataset in order of rank until an opti-
mal set of indices was identified, based on reaching a
maximum value for CPS. This rank based optimization
uncovered and preserved information related to the
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Fig. 3 Results of PhosphoLogo analysis. The x- and y-axes correspond to residue positions and bit scores (×10−1), respectively. For phosphorylated
sequences within PPIRs, position-specific sequence analyses revealed favored (a, logo) and disfavored (b, anti-logo) amino acid residues. Similar
analyses of phosphorylated sequences outside PPIRs were performed (c, logo, and d, anti-logo). Amino acid types for neighboring positions of
central phosphorylated residues (S, T, Y, or H) are indicated by symbols as follows: Φ = nonpolar, Δ = polar, Θ = acidic, Ψ = basic

Table 1 Classification results for each PTM-specific dataset using
conventional features and the SVM as a classifiera

F1 Sn Sp PPV ACC AUC MCC

Acetylation

Hydropathy 0.51 0.51 0.51 0.51 0.51 0.50 0.01

Secondary structure 0.49 0.49 0.50 0.49 0.49 0.50 −0.01

Conservation 0.55 0.57 0.48 0.53 0.53 0.54 0.06

Combined features 0.53 0.53 0.54 0.53 0.54 0.55 0.07

Phosphorylation

Hydropathy 0.53 0.58 0.40 0.49 0.49 0.48 −0.03

Secondary structure 0.48 0.45 0.58 0.52 0.52 0.53 0.03

Conservation 0.53 0.55 0.45 0.50 0.50 0.51 0.01

Combined features 0.55 0.56 0.52 0.54 0.54 0.55 0.08

Ubiquitylation

Hydropathy 0.52 0.53 0.49 0.51 0.51 0.52 0.02

Secondary structure 0.48 0.46 0.52 0.49 0.49 0.48 −0.02

Conservation 0.57 0.59 0.50 0.54 0.55 0.56 0.09

Combined features 0.54 0.54 0.53 0.53 0.53 0.55 0.06
aThis table shows results when datasets were balanced (see Methods). The
results using unbalanced datasets are shown in Additional file 7: Table S1

Table 2 Averaged performance measures for each PTM-specific
dataset using the SVM as a classifier and 102 indices of AAindex1
in the encoding process

Dataset F1 Sn Sp PPV ACC AUC MCC

Acetylation 0.86 0.81 0.94 0.93 0.87 0.89 0.75

Phosphorylation 0.84 0.74 0.99 0.99 0.86 0.92 0.75

Ubiquitylation 0.86 0.81 0.92 0.92 0.86 0.90 0.73

The highest possible value for all measures is 1
Standard deviations for all values were < ±0.005
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relative importance of each index in contributing to the
predictive power of the models.
Table 3 shows the result of classification when only

sub-datasets corresponding to indices in the optimal sets
were used. From the total of 102 indices in AAindex1,
the numbers of indices after optimization were de-
creased to 71, 31, and 86 for acetylation, phosphoryl-
ation, and ubiquitylation, respectively. For acetylation
and phosphorylation, many of the performance measures
were significantly increased after optimization when
compared with the use of all 102 indices. However,
except for MCC, the performance measures were
unchanged for the ubiquitylation dataset. Figure 4 shows
the overlap of optimal sets of indices for the PTM-
specific datasets, including the 20 indices that were
common to all three datasets after optimization. Inter-
estingly, 11 of the 20 indices were related to the same
basic property of amino acids, namely hydrophobicity.
In addition, all 71 of the indices from the optimized
acetylation-specific dataset were also present in the opti-
mized ubiquitylation-specific dataset. The full list of
indices included in the optimized sets is shown in
Additional file 2: Table S3, Additional file 3: Table S4,
Additional file 4: Table S5.
For further refinement of the predictive models,

Relief-F [27] and Information Gain [28] algorithms were
employed to rank the features. The best-feature subsets
were constructed by including the features sequentially,
one by one, from the top ranked feature to the last one
in the classification task using the SVM (see Methods).
Table 4 shows the resulting performance measures when
best-feature subsets were used in the classification tasks.
ACC, AUC, and MCC were comparable for both feature
selection algorithms, and were significantly increased
compared with the performance measures without fea-
ture selection. In addition, both algorithms dramatically
reduced the number of features required for generating
predictive models, with Information Gain requiring only
about half as many features as Relief-F.

Comparisons of classifiers
For the predictive models described in the preceding sec-
tions, the SVM was used as a classifier. Next, using the
optimized lists of indices and features identified in previ-
ous section as an input, we evaluated the performance of

five additional classifiers: k-nearest neighbors (k-NN),
Random Forest (RF), C4.5, KStar, and Multilayer Percep-
tron (MLP). Table 5 compares the resulting performance
measures of all six classifiers for all three PTM-specific
datasets.
Except for RF (see below), the SVM provided the best

performance overall (i.e., for the entire collection of
PTM data, based on total sum of CPS values), and the
best individual performance for two of the three PTM-
specific datasets, namely acetylation and ubiquitylation.
For the phosphorylation-specific dataset, the k-NN and
C4.5 classifiers (with Information Gain algorithm) pro-
vided slightly better performance than the SVM. Despite
the latter results, since the SVM was used to obtain the
optimized lists of indices and features for subsequent
modeling by the other classifiers, some biases may have
been introduced (e.g., ranking order, indices/features
excluded, etc.) that compromised the performance of the
other classifiers. To address this issue, the phosphorylation-
specific dataset was re-evaluated using either k-NN or
C4.5 exclusively as the classifiers (instead of the SVM) for
all feature selection and classification tasks. As shown in
Table 6, the performance measures using the optimized
lists of indices and features identified by k-NN or C4.5
were both lower than those using the SVM. This indicated
that no significant bias in the refinement processes was
introduced when the SVM was used. Finally, while the
performance of RF appeared to be “perfect” (maximum of
1.00 for all three measures) for the acetylation and ubiqui-
tylation datasets, this result is clearly an anomaly, resulting
from over-fitting [29]. Over-fitting as a result of using RF
was not surprising, since previous experiments showed
that the performance of RF implemented in Weka fre-
quently outperformed other classifiers, but the resulting
predictive models using RF tend to be over-fitted [29].

Implementation and evaluation of final predictive models
In order to maximize performance and minimize the
number of features required, the final PTM-specific pre-
dictive models were generated using the optimized lists
of indices and features as described (Tables 3 and 4),
employing Relief-F for the acetylation dataset and Infor-
mation Gain for the phosphorylation and ubiquitylation
datasets. We used the SVM implemented in the R
package “kernlab” [30] as the classifier for all three final

Table 3 Resulting performance measures when only sub-datasets corresponding to indices in the optimal sets were used in the
classification tasks

Dataset F1 Sn Sp PPV ACC AUC MCC #indices used (of 102 total) #features used (of 1428 total)

Acetylation 0.87a 0.82 0.93 0.93 0.87 0.90a 0.76a 71 994

Phosphorylation 0.89a 0.81a 1.00 0.99 0.90a 0.92 0.82a 31 434

Ubiquitylation 0.86 0.81 0.92 0.93a 0.87 0.90 0.74a 86 1204

The maximum possible value for all measures is 1
aSignificantly increased (t-test, α < 0.05) when compared with the use of all 102 indices
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predictive models, based on (i) performance measures
(previous section), (ii) cross-platform compatibility, and
(iii) ease of computational coding. These models were
then implemented as an R package which is available at
http://sysbio.chula.ac.th/PtmPPIR.
The final models were evaluated using 10 independent

iterations of 5-fold cross-validation, and the resulting
calculated performance measures for the models were
high (Table 4). Nevertheless, to independently confirm
the robustness of our models, an ideal approach would
be to test the models using sequences with known
localization in relation to PPIRs but which were not pre-
viously used in generation of the models. Therefore, we
collected additional non-overlapped sequences from
dbPTM [9], Huebner et al. [31], and Hou et al. [32] to
construct the validation datasets for acetylation, phos-
phorylation, and ubiquitylation that reflected reality, i.e.,

possessing large class imbalances (see Table 7 and
Additional file 5: Table S12). Table 8 shows the results
following predictions by the final models for the valid-
ation datasets. Overall, performance measures were rela-
tively good: AUC for the predictions was ≥ 0.82 for all
three PTM datasets, PPV (precision) was similar (≥0.79),
and FPR was ≤ 4 %.
Finally, the overall performance of our predictive

models was compared with that of NPS-HomPPI [33], a
more general method for predicting protein interaction
sites (i.e., without regard to presence or absence of
PTMs). After employing our models and NPS-HomPPI
to perform predictions for the validation datasets, our
method outperformed NPS-HomPPI (Additional file 6:
Table S13), again indicating that the method described
here is relatively good at identifying the characteristics
of PTM sites on protein-protein interfaces.

Prediction of PPIR localization for PTMs in the absence of
3D structure information
Finally, we applied our predictive models to the large
number of sequences from the PhosphoSitePlus database
that have no corresponding 3D structure in the PDB
database (i.e., the ~ 380,000 PTM sequences with no
mapped location inside/outside PPIRs). Table 9 shows
the prediction results for these sequences with currently
unknown PPIR localization. For the three PTMs studied
here, 1–4 % of the modification sites were predicted to
be located inside PPIRs.

Discussion
In this study, we developed machine learning models for
predicting whether post-translationally modified sites in
proteins are inside or outside of PPIRs (protein-protein

Fig. 4 Overlap among of the three PTM-specific optimized sets of indices. Reference for each index is showed in Additional file 14: Table S6

Table 4 Resulting performance measures when best-feature
sets were used in the classification tasks, using two different
feature selection algorithms

Dataset Relief-F

ACC AUC MCC PPV Sn Sp #Features used

Acetylation 0.88 0.92 0.78 0.95 0.82a 0.95 144

Phosphorylation 0.91 0.93 0.83 0.99a 0.82 1.00a 73

Ubiquitylation 0.88 0.91 0.77 0.96 0.80a 0.96 512

Information Gain

Acetylation 0.88 0.90a 0.78 0.97 0.80a 0.97 82

Phosphorylation 0.91 0.93 0.84 0.99a 0.83 1.00a 35

Ubiquitylation 0.88 0.91 0.77 0.96 0.80a 0.96 343
aExcept for these values, others were significantly increased (t-test, α < 0.05)
when compared with the results using optimized sets of indices shown
in Table 3
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interacting regions). We combined data from two of the
most comprehensive databases currently available, namely
3D structural and protein-protein interaction data from
the PDB, and protein modification site data from the
PhosphoSitePlus database. After the filtering and mapping
processes (Fig. 2), only the three most abundant types of
modifications (acetylation, phosphorylation, and ubiquity-
lation) had sufficient numbers of modification sites (≥500)

for further analyses. In addition, the number of interacting
residues in the final PPIR map represented only a minor
fraction (average of ~15 %) of the total residues present in
PDB polypeptide chains, and only 16 % of the known
PTM sites (from the PhosphoSitePlus database) were
located inside PPIRs. Despite these limitations which
reduced the number of sequences available for analysis,
the final predictive models generated in this study were
characterized by relatively high performance measures.
These results were in contrast to those obtained during
our initial attempts to generate such predictive models,

Table 5 Resulting performance measures of all six classifiers for all three PTM-specific datasets, using the optimized lists of indices
and features as an input

Classifier Dataset Relief-F Information gain

ACC AUC MCC CPS ACC AUC MCC CPS

SVM Acetylation 0.88 0.92 0.78 2.58 0.88 0.90 0.78 2.56

Phosphorylation 0.91 0.93 0.83 2.67 0.91 0.93 0.84 2.68

Ubiquitylation 0.88 0.91 0.77 2.56 0.88 0.91 0.77 2.56

summation 7.81 summation 7.80

k-NN Acetylation 0.87 0.91 0.74 2.52 0.87 0.91 0.75 2.53

Phosphorylation 0.89 0.93 0.80 2.62 0.92 0.93 0.84 2.69

Ubiquitylation 0.80 0.86 0.61 2.27 0.81 0.89 0.65 2.35

summation 7.41 summation 7.57

RF Acetylation 1.00 1.00 1.00 3.00 1.00 1.00 1.00 3.00

Phosphorylation 0.91 0.93 0.82 2.66 0.90 0.93 0.80 2.63

Ubiquitylation 1.00 1.00 1.00 3.00 1.00 1.00 1.00 3.00

summation 8.66 summation 8.63

C4.5 Acetylation 0.85 0.87 0.70 2.42 0.88 0.89 0.76 2.53

Phosphorylation 0.89 0.90 0.78 2.57 0.92 0.93 0.85 2.70

Ubiquitylation 0.80 0.82 0.61 2.23 0.81 0.82 0.62 2.25

summation 7.22 summation 7.48

KStar Acetylation 0.83 0.88 0.65 2.36 0.83 0.89 0.66 2.38

Phosphorylation 0.87 0.92 0.74 2.53 0.89 0.93 0.79 2.61

Ubiquitylation 0.71 0.76 0.43 1.90 0.79 0.82 0.57 2.18

summation 6.79 summation 7.17

MLP Acetylation 0.85 0.91 0.70 2.46 0.84 0.90 0.67 2.41

Phosphorylation 0.88 0.92 0.76 2.56 0.91 0.93 0.83 2.67

Ubiquitylation 0.84 0.90 0.68 2.42 0.83 0.89 0.66 2.38

summation 7.44 summation 7.46

Table 6 Resulting performance measures for the phosphorylation
dataset, using k-NN or C4.5 as the classifiers (instead of the SVM)
for all feature selection and classification tasks, including
identification of optimized sets of indices and features

Classifier Dataset Information gain

PPV Sn Sp ACC AUC MCC CPS

SVM Phosphorylation 0.99 0.83 1.00 0.91 0.93 0.84 2.68

k-NN Phosphorylation 0.95 0.85 0.95 0.89 0.92 0.79 2.60

C4.5 Phosphorylation 0.96 0.87 0.97 0.91 0.92 0.84 2.67

Table 7 The validation datasets of sequences collected from
dbPTM [5], Huebner et al. [31], and Hou et al. [32]

Dataset Inside PPIRs Outside PPIRs Total

Acetylation 14 71 85

Phosphirylation 92 542 634

Ubiquitylation 33 71 104
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using either existing web-based applications or a machine
learning approach based on a limited set of conventional
features (see Table 1).
During the initial generation of the predictive models,

the imbalance between the total numbers of interacting
and non-interacting sites caused misclassifying during
the learning process, as indicated by poor performance
measures (Additional file 7: Table S1, Additional file 1:
Table S2). In addition, computational times required for
generating predictive models were relatively long for the
imbalanced datasets (Table 10). After balancing by under-
sampling techniques using a clustering algorithm, perform-
ance measures were significantly improved (Table 2
compared to Additional file 1: Table S2) and computational
times were decreased approximately 10-fold (Table 10). Be-
sides under-sampling techniques, over-sampling techniques
also have been used to cope with imbalanced datasets [34].
However, it has been reported that certain over-sampling
techniques may lead to over-fitting, a phenomenon in
which the resulting models perform well with the training
dataset but subsequently exhibit poor performance mea-
sures during the validation process [35].
The initial predictive models were generated using 102

individual indices from AAindex1 and then refined by
index ranking and feature selection processes to identify
the optimal reduced set of indices and features for each
PTM-specific dataset (see Methods). For the initial col-
lection of indices from AAindex1, approximately half
were related to hydrophobic properties of the amino
acids; after optimization, a similar representation of
hydrophobicity-related indices was observed for each
PTM-specific dataset, as well as for the overlapping set
of 20 indices common to all three PTMs (see Fig. 3).
This finding is not surprising and is consistent with
previous studies demonstrating the importance of hy-
drophobicity to protein-protein interactions [36, 37].
Nevertheless, no single property can distinguish between
residues located inside and outside of PPIRs, and most

methods for predicting residues at protein-protein inter-
faces use a combination of several properties [38]. Fur-
thermore, factors other than hydrophobicity were also
important to the performance of the models presented
here—and presumably, to the actual protein-protein
interaction themselves—as evident from the values of
performance measures determined separately for the
hydrophobicity- and non-hydrophobicity-related indices
(see Additional file 8: Table S7).
While the final predictive models generated in this

study were characterized by relatively high performance
measures, one limitation needs to be mentioned. Inde-
pendent evaluation of the models’ performance was only
possible for PTMs located outside PPIRs, since all the
PTMs known to be located inside PPIRs were used to
generate the models. Thus, the high level of predicted
accuracy observed for PTMs located outside PPIRs
(≥90 %) should not be directly extrapolated to the other
class of PTMs (located inside PPIRs). Nevertheless,
when the models were applied to the large number of
PTM sequences with no PDB structure information
(~380,000), between 1–4 % of the modification sites
were predicted to be located inside PPIRs (Table 9). As
already mentioned above, ~16 % of the mapped PTM
sites with known 3D structures were actually located in-
side PPIRs (3693 out of 22,482; see Fig. 1). The apparent
discrepancy between this latter value for sites with
known structure (16 %) and the value of 1–4 % for sites
lacking structure information can be explained. Proteins
with no interacting partners were removed from the
downloaded dataset of PDB structures prior to mapping
PTM sites. Therefore, the mapped PTM sites were
enriched with interacting sequences relative to the broader
population of PTM sequences with unknown structure.
We anticipate that the predictive models presented

here will be useful in several ways. First, as large num-
bers of new PTMs are identified using high-throughput
proteomics techniques (e.g., LC-MS/MS), it will be
necessary to prioritize which individual PTMs will be
selected for further studies of their roles in regulating
protein functions. The prediction for any newly identi-
fied PTMs as being localized inside PPIRs would help
with this prioritization, since PTMs located inside PPIRs
are likely to significantly impact (promote or disrupt)
protein-protein interactions. However, we should note

Table 8 Results of model evaluation using the validation dataset

Dataset PPV F1 Sn Sp FPR FNR ACC AUC MCC

Acetylation 0.82 0.72 0.64 0.97 0.03 0.36 0.92 0.91 0.68

Phosphirylation 0.79 0.81 0.84 0.96 0.04 0.16 0.94 0.93 0.78

Ubiquitylation 0.87 0.71 0.61 0.96 0.04 0.39 0.85 0.82 0.63

Table 9 Results of predictions using sequences with unknown PPIR localization (see Additional file 10: Table S11 for the complete
list of predicted PPIR localization for these sequences)

Dataset Total # of sequences Prediction result

Inside PPIRs Percent Outside PPIRs Percent

Acetylation 32033 359 1.1 31674 98.9

Phosphorylation 258407 8967 3.5 249440 96.5

Ubiquitylation 49628 411 0.8 49217 99.2

Saethang et al. BMC Bioinformatics  (2016) 17:307 Page 9 of 15



one caveat to this generalized approach in predicting the
importance of specific PTMs for their effects on protein-
protein interactions: some PTMs located outside of
PPIRs could also affect protein-protein interactions (e.g.,
by inducing a conformational change, etc.), but such
PTMs would not be identified using our approach. As a
second potential use for the data generated by these
models, investigators can search the lists provided here
of known PTMs either determined or predicted to be
located inside PPIRs (Additional files 9 and 10, respect-
ively). Such searches for specific PTM sites in proteins
of interest could facilitate prioritization for further
functional studies. As one final note, since our tool was
designed and trained based on sites of known modifica-
tions, it should not be used for predictions of sites for
which modification status is unknown.

Conclusion
In this study, we developed the first models for predict-
ing whether sites of protein modifications are inside or
outside of protein-protein interacting regions (PPIRs),
based on the existing structural and PTM databases.
Our models show relatively high predictive performance
measures. As more data become available, the perform-
ance of these models should be even better. Specifically,
discovery of new PPIRs as a result of rapidly increasing
3D structure determinations should increase the accur-
acy of the predictive models. These predictive models
are available online and may be useful in providing
additional insight related to the functional relationship
between specific PTMs and protein-protein interactions.

Methods
Generation and preparation of datasets
The protein-protein interacting region (PPIR) map was
generated based on the PDB database [15]. First, all PDB
structures were downloaded from the PDB database
(10/19/2014) using FTP service (ftp://ftp.wwpdb.org/).
Because a significant number of PDB files remain uncu-
rated, it was necessary to use filtering software (written in-
house) to remove files with unusable formats (e.g., files
containing mislabeled chains, multiple conformational
states, lack of sequence agreement with the corresponding
Uniprot ID, etc.). Subsequently, an additional filtering

software module (also written in-house) was employed to
remove those PDB files for proteins with no interacting
protein partners. Next, the dataset containing the
remaining PDB files was analyzed using the “contact”
function of Jmol [39] to detect specific residues that form
contact points between interacting protein partners (i.e.,
between both heterologous and homologous polypeptide
chains, but not between interfaces on a single polypeptide
chain). For this analysis, a pair of interacting residues is
defined as residues with an overlapped Van der Waals sur-
face. A modified site was included in our PPIR map when
it was determined from Jmol calculations to be a contact
residue in at least one PPIR. For proteins with multiple
interacting partners, since all subsequent analyses were
based on the sequences containing the modified sites, the
number and identity of PPI partner(s) became irrelevant.
Thus, the final map contained only non-redundant infor-
mation for each modified site, independent of its binding
partners. The assignment of every residue in the dataset
as interacting or non-interacting was recorded to produce
the PPIR map.
Datasets of protein post-translational modifications

(PTMs) were downloaded from PhosphoSitePlus (3/29/
2015) [12]. These datasets consist of peptide sequences
that are up to 15 amino acid residues in length and which
include the modification site and up to seven neighboring
amino acids on either side of the site. In a few cases (<1 %),
the modification sites were close to protein termini and
thus, the length of sequence was less than 15. To facilitate
the subsequent computational analyses, these sequences
were removed from the datasets. During construction
of our models we examined the effect of sequence
length (3–15 residues) on performance and found that a
sequence length of 15 provided the highest performance
measures (data provided to reviewer but not shown here).
Employing a matching algorithm (written in-house), the
remaining sequences were then used as input for the
interacting residue map (generated from the PDB database
as described above) to find an exact match in the PPIR
map for each PTM sequence; simultaneously, sequences
with no exact match, representing those with no corre-
sponding structure information in the PDB database, were
removed. The mapped PTM sequences were identified
and tagged as being inside or outside of a PPIR, based on
whether the modified residues were assigned as interact-
ing or non-interacting in the PPIR map. After the modi-
fied sites were identified as being inside or outside of a
PPIR, sequences were segregated into seven PTM-specific
datasets, corresponding to the seven different types of
modifications represented in the PhosphoSitePlus data-
base (i.e., acetylation, methylation, O-GalNAc, O-GlcNAc,
phosphorylation, sumoylation, and ubiquitylation) (see
Additional file 9: Table S10 for the three datasets analyzed
further in this study).

Table 10 Relative computational time required for generating
predictive models

Dataset Computational time required (ms)

Balanced dataset Imbalanced dataset

Acetylation 4,304 38,872

Phosphorylation 37,840 351,856

Ubiquitylation 12,009 124,460

All tests were performed on a personal computer (CPU:Intel®Core™i5-4200U,
RAM:8.00 GB, OS:Windows7 Ultimate)
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Analysis of datasets using conventional features
PTM–specific datasets were subjected to analysis using
different existing algorithms to calculate position-specific
amino acid preferences for the modified site and its sur-
rounding residues: PhosphoLogo [24] (https://hpcwe-
bapps.cit.nih.gov/PhosphoLogo/) was used for the
phosphorylation dataset, and Motif-x [25] (http://motif-
x.med.harvard.edu/motif-x.html) was employed for the
acetylation and ubiquitylation datasets. Please note that
PhosphoLogo is not compatible with phosphorylated histi-
dine input [24]. Therefore, sequences corresponded to
phosphorylated histidine were removed before using
PhosphoLogo. These sequences were belonged to bacteria
species. Additional file 11: Figure S1 showed the numbers
of sequence in acetylation, phosphorylation, and ubiquity-
lation datasets categorized by their source organisms.
Three additional features were also subjected to the classi-
fication task of the machine leaning strategy; hydropathy
indices were calculated using Kyte-Doolittle hydropathy
scores executed in R [40]; secondary structure analysis
was performed by NetsurfP [41] (http://www.cbs.dtu.dk/
services/NetSurfP/); conservation of the modified site and
its surrounding residues was calculated by CPhos [42]
(https://hpcwebapps.cit.nih.gov/CPhos/).

Sampling strategy for imbalanced datasets
Based on the PPIR map, the number of interacting resi-
dues (average of ~15 % of all residues) was markedly
smaller than that of non-interacting residues. Therefore,
the chance for a modified site to be located inside an
interacting region was correspondingly lower than that
for localization outside an interacting region, thus creat-
ing a class imbalance which introduces a computational
bias. Such an imbalance causes misclassification during
the learning process of predictive model generation
[43–45]. In this specific study, machine learning algo-
rithms would be overwhelmed by modified sites located
outside an interacting region and would ignore those
located inside an interacting region.
One solution to deal with this imbalance problem is

an approach called under-sampling [46–48], using a
clustering algorithm to equalize the number of in-
teracting and non-interacting sequences. First, each
PTM–specific dataset was categorized into interacting
and non-interacting sub-datasets, then the non-
interacting sub-dataset was clustered into 10 groups
by GibbsCluster [26], based on position-specific scor-
ing matrices (PSSM), in order to maintain propor-
tional representation of relative sequence similarities
in this sub-dataset. Finally, from each cluster we ran-
domly selected an equivalent proportion of sequences,
such that the combined size of the reduced non-
interacting sub-dataset was approximately equal to
that of the interacting sub-dataset. Figure 5 illustrates

the strategy for balancing interacting and non-interacting
sub-datasets in this study.

Data encoding
After the balancing process, sequences contained in each
of the seven PTM-specific datasets were then encoded
into numerical data using AAindex1 [19], a database of
544 numerical indices representing various physico-
chemical and biochemical properties of amino acids.
These indices can be grouped into 6 general categories
representing different fundamental properties of amino
acids (e.g., hydrophobicity, secondary structure probabil-
ity, etc.) [19, 49].
A total of 102 indices (out of 544) were selected for use

in the encoding step (see Additional file 12: Table S8)
based on the following criteria: 1) since each general
category of AAindex1 includes multiple indices for a
specific property, only one index per specific property
was chosen (i.e., indices were chosen to be non-
redundant); 2) only indices representing amino acid
properties directly related to protein structure were se-
lected; and 3) indices representing each of the 6 general
categories of fundamental amino acids properties were
selected, with a final proportional representation of in-
dices from each category similar to that of the entire
database.
For each index, an individual sequence was first

encoded into a vector of 15 numeric values. Next, values
at each position 1–7 and 9–15 were subtracted from the
value of position 8, which is the modification site, yield-
ing a vector of 14 numeric values. Thus, in total, each
sequence was encoded into a vector of 1428 values, since
102 indices were used. For each PTM-specific dataset,
all vectors were concatenated into an array, wherein
each row represented an individual sequence and each
column represented a position-specific feature.

Classification task
The support vector machine (SVM) has been widely
applied in computational biology fields due to its high
predictive performance [50–53] compared to other clas-
sifiers. Therefore, encoded PTM-specific datasets were
used as input for the SVM using the R package “kernlab”
[30]. Throughout this study, the parameter C (cost of
constraint violation), epsilon, and the type of kernel used
for the SVM were 1, 0.1, and the radial basis kernel, re-
spectively. The predictive performance measures were
evaluated using 10 independent iterations of 5-fold
cross-validation. Here, the predictive performance mea-
sures evaluated were averaged values of overall accuracy
(ACC), Matthew’s correlation coefficient (MCC), preci-
sion or positive predictive value (PPV), F-measure (F1),
sensitivity (Sn) or true positive rate (TPR), specificity
(Sp) or true negative rate (TNR), and area under receiver
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operating characteristic curve (AUC). ACC, MCC, PPV,
F1, Sn, and Sp are defined as

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp

PPV ¼ TP
TP þ FPð Þ

F1 ¼ 2TP
2TP þ FP þ FNð Þ

Sn ¼ TP
TP þ FNð Þ

Sp ¼ TN
FP þ TNð Þ

where TP, FP, TN, and FN are the number of overall true
positives, false positives, true negatives, and false
negatives, respectively. For this study, the definitions of
TP, FP, TN, and FN are shown in Additional file 13:
Table S9.

Feature selection task
To improve the performance of the predictive models, op-
timal subsets of indices (from AAindex1) were identified
for encoded PTM-specific datasets using a “greedy-based”
algorithm. First, individual encoded dataset arrays were
divided into 102 14-column blocks of features (a total of
1428 features), each block representing an individual
index. The classification functions were fitted to these
index-specific sub-datasets, and indices were then ranked
based on multiple performance measures. While AUC is
the most frequently used performance measure, alterna-
tive performance measures could also be used, each of
which could potentially yield different results. Thus, to

non-interacting 
sub-dataset

interacting 
sub-dataset

GibbsCluster

Randomly select
sequences

Balanced sub-datasets

Combine into a reduced non-
interacting sub-dataset

Unbalanced sub-datasets 10 clusters Characteristic
motifs

Fig. 5 The sampling strategy for balancing interacting and non-interacting sub-datasets. The larger non-interacting sub-dataset was clustered by
GibbsCluster into 10 clusters. Each cluster contained sequences representing a different characteristic motif; for the purpose of illustration, shown
here are example motifs from the phosphorylation dataset. Equal numbers of sequences from each cluster were randomly selected and combined to
create a reduced non-interacting sub-dataset which was similar in size to the interacting sub-dataset
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minimize biases arising from any individual measure, we
employed an approach based on the highest summation
of three different performance measures (AUC, ACC, and
MCC), designated as the Combined Performance Score
(CPS). After initial ranking of indices using CPS, classifica-
tion tasks were performed sequentially by including the
index-specific sub-datasets one by one in order of their in-
dividual rank. As a result, the optimal set of indices that
led to the maximum CPS value for each PTM-specific
dataset was identified. Finally, encoded PTM-specific data-
sets were reduced to contain only sub-datasets corre-
sponding to indices in the optimal sets.
For each reduced PTM-specific dataset, the Relief-F

[27] and Information Gain [28] algorithms, implemented
in the machine learning software Weka [54], were
employed to rank the features. The default parameters
provided by Weka were used for evaluating feature im-
portance. The best-feature subsets were constructed by
adding the features sequentially, one by one, from the
top ranked feature to the last one in the classification
task using the SVM. The CPS gradually increased with
the addition of features, until it reached the maximum
value. Features after this point were considered irrele-
vant and ignored. The resulting reduced feature subsets
were then used in all subsequent analyses.

Comparisons of classifiers
The reduced feature subsets for encoded PTM-specific
datasets were evaluated in the classification tasks using
the k-nearest neighbors (k-NN, k = 10), KStar, Random
Forest (RF), C4.5, and Multilayer Perceptron (MLP) clas-
sifiers implemented in the machine learning software
Weka [54]. The default parameters provided by Weka
were used in classification tasks which were conducted
in 10 independent iterations of 5-fold cross-validation.
The results of performance measures were then com-
pared among classifiers.

Final predictive models
The classifier that led to the highest performance mea-
sures was used to generate final predictive models that
were specific to each PTM type. The R language was
used to implement the models. We host the R package
in our server at http://sysbio.chula.ac.th/PtmPPIR.
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