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sequence evolution via insertions/deletions:
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Abstract

Background: Insertions and deletions (indels) account for more nucleotide differences between two related DNA
sequences than substitutions do, and thus it is imperative to develop a method to reliably calculate the occurrence
probabilities of sequence alignments via evolutionary processes on an entire sequence. Previously, we presented a
perturbative formulation that facilitates the ab initio calculation of alignment probabilities under a continuous-time
Markov model, which describes the stochastic evolution of an entire sequence via indels with quite general rate
parameters. And we demonstrated that, under some conditions, the ab initio probability of an alignment can be
factorized into the product of an overall factor and contributions from regions (or local alignments) delimited by
gapless columns.

Results: Here, using our formulation, we attempt to approximately calculate the probabilities of local alignments under
space-homogeneous cases. First, for each of all types of local pairwise alignments (PWAs) and some typical types of
local multiple sequence alignments (MSAs), we numerically computed the total contribution from all parsimonious
indel histories and that from all next-parsimonious histories, and compared them. Second, for some common types of
local PWAs, we derived two integral equation systems that can be numerically solved to give practically exact solutions.
We compared the total parsimonious contribution with the practically exact solution for each such local PWA. Third,
we developed an algorithm that calculates the first-approximate MSA probability by multiplying total
parsimonious contributions from all local MSAs. Then we compared the first-approximate probability of each
local MSA with its absolute frequency in the MSAs created via a genuine sequence evolution simulator, Dawg. In all
these analyses, the total parsimonious contributions approximated the multiplication factors fairly well, as long as gap
sizes and branch lengths are at most moderate. Examination of the accuracy of another indel probabilistic model in the
light of our formulation indicated some modifications necessary for the model’s accuracy improvement.

Conclusions: At least under moderate conditions, the approximate methods can quite accurately calculate ab initio
alignment probabilities under biologically more realistic models than before. Thus, our formulation will provide other
indel probabilistic models with a sound reference point.

Keywords: Stochastic evolutionary model, Insertion/deletion (indel), Sequence alignment probability, Indel likelihood,
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Background
The evolution of DNA, RNA, and protein sequences is
driven by mutations such as base substitutions, insertions
and deletions (indels), recombination, and other genomic
rearrangements (e.g., [1–3]). Thus far, analyses on sub-
stitutions have predominated in the field of molecular
evolutionary study, in particular using the probabilistic
(or likelihood) theory of substitutions that is now
widely accepted (e.g., [4–6]). This is probably because
evolutionary models describing residue substitutions
are relatively easier to handle. However, it must be re-
membered that the study of indels is at least as crucial
as the study of substitutions. There are two major reasons
for this. First, it is indels but not substitutions that yield
the skeletons (or the gap configurations) of the sequence
alignments (reviewed, e.g., in [7]), which provide essential
inputs to most homology-based analyses in computational
biology. And second, some recent comparative genomic
analyses have revealed that indels account for more base
differences between the genomes of closely related species
than substitutions (e.g., [8–12]). These circumstances
make it imperative to develop a stochastic model that
enables us to reliably calculate the probability of se-
quence evolution via mutations including insertions
and deletions. Since the groundbreaking works by
Bishop and Thompson [13] and by Thorne, Kishino
and Felsenstein [14], many studies have been done to
develop and apply methods to calculate the probabil-
ities of pairwise alignments (PWAs) and multiple se-
quence alignments (MSAs) under the probabilistic
models aiming to incorporate the effects of indels. Such
methods have greatly improved in terms of the computa-
tional efficiency and the scope of application. See excellent
reviews for details on this topic (e.g., [15–17]). A majority
of these studies are based on hidden Markov models
(HMMs) (e.g., [18]) or transducer theories (e.g., [19]). Both
of them calculate the indel component of an alignment
probability as a product of inter-column transition prob-
abilities or of block-wise contributions. And the study on
these methods is still advancing, strengthening their
mathematical and algorithmic bases (e.g., [20, 21]). Unfor-
tunately, most of these methods have at least either of two
fundamental problems, one regarding the evolutionary
consistency and the other regarding the biological realism.
(For details, see Background of [22].) Regarding the evolu-
tionary consistency, it is a priori unclear whether or how a
HMM or a transducer is related with any genuine stochas-
tic evolutionary model (or “evolutionary model” for short),
which describes the evolution of an entire sequence via
indels along a time axis. Regarding the biological realism,
the standard HMMs or transducers can at best handle
mixed geometric distributions of indel lengths (e.g., [23])
(and usually implement simple geometric distributions),
whereas many empirical studies showed that the real indel

lengths are distributed according to power-laws (e.g., [24]
and references therein). Besides, very few studies thus far
(e.g., [25]) addressed the issue of indel rate variation across
regions.
In a previous study [22], we presented a theoretical

formulation that facilitates the ab initio calculation of
alignment probabilities under a genuine stochastic evolu-
tionary model, specifically, a general continuous-time
Markov model of sequence evolution via indels. Our
evolutionary model was created as a result of incorporat-
ing the idea of position-specific evolutionary rates [25]
into the most general “substitution/insertion/deletion
model” [26]. Thus, the model is naturally devoid of the
aforementioned two problems. Aided by some techniques
of time-dependent perturbation theory in quantum me-
chanics [27–29], we formally expanded the ab initio prob-
ability of an alignment into a series of terms with different
numbers of indels. This expansion gave an intuitively
clearer representation of Feller’s theorems [30]. And it
theoretically underpinned the stochastic evolutionary
simulation method of Gillespie [31], which provides the
foundation for genuine sequence evolution simulators
(e.g., [32–34]). And we also showed that, if the indel
model parameters satisfy a certain set of conditions, the
ab initio probability of an alignment is indeed factorable
into the product of an overall factor and contributions
from local alignments delimited by preserved ancestral
sites (PASs), i.e., gapless columns. This suggested that the
evolutionary models satisfying such conditions could pro-
vide a sort of generalized HMMs, which extend the space-
and time-homogeneous “long indel” model [26] to some
space- and time-heterogeneous situations.
In this paper, we focus on how to concretely calculate

the contribution from each local alignment, assuming that
the indel model satisfies the conditions for factorable
alignment probabilities. (To clearly illustrate the concrete
computations, we deal with space-homogeneous models
in the bulk of this manuscript (i.e., in sections R2-R6), and
briefly discuss extensions to more general cases near the
end (i.e., in subsection R7.1).) As noted in [26] and section
R1 of Results and discussion of this manuscript, the con-
tribution from each local alignment is a summation over
an infinite number of local indel histories. Thus it cannot
be computed literally exactly within a finite amount of
time. This makes it necessary to devise some approxima-
tion methods, each of which sums contributions from a fi-
nite number of indel histories (as first proposed in [26]).
An auspice is that indel rates (say, λID indels per site per
unit time) are known to be at most around 1/10 of the
substitution rates (say, λS substitutions per site per unit
time) (e.g., [24, 35]). And the probability of an indel his-

tory involving NID indels is roughly O λID tð ÞNID

� �
times

the probability of a history with no indel, where t is a time

Ezawa BMC Bioinformatics  (2016) 17:397 Page 2 of 21



scale characteristic of the system under consideration. In
conjunction, these suggest that taking account only of
histories with minimum and near-minimum required
numbers of indels may provide a good approximation
to each local alignment probability, as long as the se-
quence divergences (e.g., λS t) are within the scope of
phylogenetic analyses (i.e., at most O(1) substitutions
per site).
In section R1 of Results and discussion, we briefly re-

view the relevant portion of the theoretical basis that
was established in our previous study [22]. We introduce
simplified notation so that we can focus on a single local
alignment. In sections R2-R4, we demonstrate how our
perturbative formulation can be concretely used to ap-
proximately calculate the contributions to the ab initio
alignment probabilities from local alignments, i.e., align-
ment regions separated by gapless columns. We examine
all types of local pairwise alignments (PWAs) in section
R2, and some typical types of local multiple sequence
alignments (MSAs) in section R4. For each local align-
ment type, we calculate the total parsimonious contribu-
tion and the total next-parsimonious contribution to its
probability (more precisely, its multiplication factor). In
section R3, we discuss two systems of integral equations
that can be numerically solved to give practically exact
solutions (or “exact” solutions, for short) for some com-
mon types of local PWAs. There, we also study the be-
haviors of the “exact” solutions. Then, by comparing the
total parsimonious contribution with the total next-
parsimonious contribution, or with the “exact” solution,
we investigate the parameter regions in which the total
parsimonious contribution can approximate the align-
ment probability quite accurately (in sections R2-R4). In
section R5, we perform simulation analyses with a genuine
evolutionary simulator, Dawg [32], to examine whether or
not the conclusions from sections R2-R4 also apply to
local MSAs of more general types. For this purpose, we
developed an algorithm to calculate the “first-approxi-
mate” probability of a given MSA under a given parameter
setting (including a given tree) by multiplying the overall
factor and the total parsimonious contributions from all
local MSAs. And we examine the accuracy of the first-
approximate multiplication factors calculated by the algo-
rithm. In section R6, we use our ab initio formulation as a
“yardstick” to measure the accuracy of other indel prob-
abilistic models. As a representative model, we chose the
generalized HMM of [36], which aims for the biological
realism but not fully for the evolutionary consistency. In
section R7, we discuss some outstanding issues and
possible improvements, extensions and applications of
the presented algorithm and methods. The topics in-
clude the risks associated with the naïve application of
our algorithm or methods to reconstructed alignments.
The sections in Methods describe the settings for numerical

analyses (M1) and simulation analyses (M2). And the sec-
tions in Supplementary methods in Additional file 1 explain
methodological details on concrete perturbation calcula-
tions and the first-approximate algorithm.
This paper basically uses the same conventions and

notations as used in [22]. Briefly, a sequence state s (∈ SII)
is represented as an array of sites, each of which is
equipped with an ancestry index (υx ∈ ϒ).1 (In this study,
we focus on indels. Hence, we do not consider the residue
states of sequences. For the incorporation of residue states
and substitutions, see, e.g., [37, 38].) And each indel event
is represented as an operator acting on the bra-vector, 〈s|,
representing a sequence state. More specifically, the oper-
ator M̂I x; lð Þ denotes the insertion of l sites between the
x-th and (x+ 1) th sites, and the operator M̂D xB; xEð Þ de-
notes the deletion of a sub-array between (and including)
the xB-th and the xE-th sites. Readers unfamiliar with the
bra-ket notation (as adapted from theoretical physics (e.g.,
[27, 28])) can simply regard a bra-vector (〈s|), a ket-vector
(|s0〉) and an operator M̂

� �
as convenient reminders of a

row vector, a column vector and a matrix, respectively, just
as in the standard representation of a continuous-time
Markov model. (See section SA-1 in Additional file 2 of
[22] for the equivalence between them.) And, also as in
[22], the following terminology is used. The term “an indel
process” means a series of successive indel events with both
the order and the timing specified. And the term “an indel
history” means a series of successive indel events with only
the order specified.
As a last note, an “alignment,” a “PWA” and a “MSA”

in this paper will mean their homology structures [39].
Briefly, the homology structure of an alignment is a set
of alignment columns (i.e., sets of homologous sites in
the aligned sequences) that are spatially arranged in a
looser way than in a usual alignment, i.e., constrained
only by the spatial relationships between the sites within
each aligned sequence.2

Results and discussion
[Descriptions given here are somewhat sketchy. For
methodological details, as well as the relationship with
the results of [22], see the relevant sections of Supple-
mentary methods in Additional file 1.]

R1. Perturbation expansion of multiplication factor for
local alignment
In this section, we briefly explain some results in [22]
that are essential for this paper. Similarly to that of the
probabilistic alignment methods in general, one of the
main goals of our theoretical formulation (presented in
[22]) is to calculate the absolute occurrence probabilities
of the alignments and to compare the calculated align-
ment probabilities. Therefore, unless stated otherwise,
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the probabilities considered in this paper are not condi-
tioned on a particular alignment (or even on extant se-
quences). (Once the absolute probabilities are calculated,
such conditional probabilities (e.g., of indel histories)
could be obtained by dividing the absolute probabilities
of the outcomes (e.g., the indel histories) by the absolute
probability of the condition (e.g., the resulting align-
ment), similarly to Eq. (SM-5.3.6a) in Additional file 1.)
Let P[(α(sA, sD), [tI, tF]) | (sA, tI)] be the probability

that a PWA (α(sA, sD)) between an ancestral sequence
state (sA) and a descendant (sD) result from the evolu-
tion of a sequence during a time interval ([tI, tF]),
given sA at tI. In [22], we formally showed that
P[(α(sA, sD), [tI, tF]) | (sA, tI)] is given as a series:

P α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

¼
X∞

N¼Nmin α sA;sDð Þ½ �P Nð Þ α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

ð1Þ
Here, Nmin[α(s

A, sD)] is the minimum number of indels
required to create α(sA, sD). And P(N)[(α(s

A, sD), [tI, tF]) |
(sA, tI)] is the fraction of P[(α(sA, sD), [tI, tF]) | (sA, tI)]
contributed from all N-event indel histories that can yield
α(sA, sD). A “preserved ancestral site” (PAS) is a site of sA

that was hit by no indel and thus was preserved all
through [tI, tF]. Now, using some (but not necessarily all)
PASs, we partition α(sA, sD) into “local regions” (i.e., inter-
PAS regions), γ1; γ2; …; γκmax

, in which all potentially
causative indels are confined. In [22], we derived the two
conditions.

Condition (i): Each indel rate parameter is independent
of the portion of the sequence state outside of the local
region where the indel occurred.
Condition (ii): The increment of the exit rate due to
each indel event is independent of the portion of the
sequence state outside of the local region where the
indel occurred. (The “exit rate” of a state is the rate at
which the system “exits” the state, that is, the total
rate at which the state changes to any of other states.)

Under these conditions, the PWA probability, Eq. (1),
can be factorized as:

P α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

¼ P ½ �; tI ; tF½ �ð Þ sA; tI
� ���� � Yκmax

κ¼1

~μP γκ ; α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

ð2Þ
Here P[([ ], [tI, tF]) | (sA, tI)] is the probability that

the sequence underwent no indels during [tI, tF], given
sAat tI. And ~μP γκ; α sA; sD

� �
; tI ; tF½ �� �

sA; tI
� ���� �

is
the multiplication factor contributed from the local re-
gion, γκ. Because the multiplication factor is a summation

of contributions over all local indel histories that can yield
the local PWA confined in γκ , it can also be expressed as a
series similar to Eq. (1):

~μP γκ; α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

¼
X∞

N¼Nmin α sA; sDð Þ; γκ½ �μP Nð Þ γκ; α sA; sD
� �

; tI ; tF½ �� �
sA; tI
� ���� �

ð3Þ

Here, Nmin[α(s
A, sD); γκ] is the minimum number of

indels required for the portion of α(sA, sD) in γκ. And the
term μP (N)[γκ; (α(s

A, sD), [tI, tF]) | (sA, tI)] is the por-
tion of the multiplication factor contributed from all
local-PWA-consistent N-indel local histories in γκ.

3 (For
more details, see the first half of SM-1 of Supplementary
methods in Additional file 1.)
It should be noted that the multiplication factor, ~μP …½ �

(e.g., in Eq. (2)), is not a probability; actually, it is not
even a conditional probability, and it can exceed 1
(unity) in some cases (in such manners that the entire
right hand side of Eq. (2) will always be less than 1
(unity)). In this sense, the “generalized HMM” given by
Eq. (2) differs from normal HMMs. The contribution of
each local indel history to a multiplication factor is the
ratio of the probability of the history (given an ancestral
state) to the probability that the ancestral state under-
went no indel. (See Eq. (SM-1.7) in Additional file 1 for
the mathematical definition.) When comparing the con-
tributions from two different sets of histories (potentially
giving rise to the same local alignment), the denomin-
ator (i.e., the probability of no indel) is usually identical.
Therefore, in general, the comparison of two multiplica-
tion factor contributions gives the same result as the
comparison of the corresponding probabilities. (Similar
notes apply also to the analyses of local MSAs below.)
Similar arguments hold also for the probability, P

α s1; s2;…; sNX½ � Tj½ �, that a MSA (α s1; s2;…; sNX½ �) of
NX sequences, s1; s2;…; sNX , results from the evolution
along a given phylogenetic tree (T) [22]. Basically in line
with the idea in [18, 19, 40], we can build up the prob-
ability of a MSA, first by multiplying the root state prob-
ability and the probabilities of ancestor–descendant
PWAs along branches, and second by summing such
products over all MSA-consistent ancestral states. The ab
initio MSA probability thus composed can be expressed as
a series:

P α s1; s2;…; sNX½ � Tj½ �
¼

X∞

N¼Nmin
P Nð Þ α s1; s2;…; sNX½ � Tj½ �

ð4Þ

Here, Nmin is the minimum number of indels required
for creating the MSA. (For simplicity, we omitted the
obvious dependence of Nmin on the MSA and the tree.)
And P Nð Þ α s1; s2;…; sNX½ � Tj½ � is the portion of the
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probability contributed from all MSA-consistent N-event
indel histories. A MSA-counterpart of a PAS is a gapless
column, which indicates that the corresponding site was
hit by no indel throughout the evolution along T. (Here-
after, a gapless column in a MSA is also called a “PAS.”)
Using some PASs, we partition the MSA into local re-
gions, C1; C2; …; CΚmax . Meanwhile, there are infin-
itely many possible root sequence states (sRoot ' s)
consistent with the MSA. Among them, we choose one
as the “reference” root state (s0

Root). Then, in addition to
the aforementioned conditions (i) and (ii), we impose
the following condition.

Condition (iii): the (prior) probability of each root
state (sRoot) is given by the probability of s0

Root multiplied
by the product of factors over the local regions, where
each factor depends only on the difference between sRoot

and s0
Root in a local region.

Under these conditions, the MSA probability is factor-
ized as:

P α s1; s2;…; sNX½ � Tj½ �

¼ P0 sRoot0 Tj� � YΚmax

Κ¼1

e
Μ
^

P α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
ð5Þ

Here, P0[s0
Root | T] is the probability that the root se-

quence state is s0
Root and that it was hit by no indel all

across T. And
e
Μ
^

P α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
is

the multiplication factor contributed from the local re-
gion, CK. As in Eq. (4), the multiplication factor also can
be expressed as a series:

e
Μ
^

P α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
¼

X∞

N¼Nmin CΚ½ �Μ
⌣

P Nð Þ α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
ð6Þ

Here, Nmin[CΚ] is the minimum number of indels re-
quired for the portion of the MSA in CK. And the term
Μ
⌣

P Nð Þ α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
is the fraction

of the multiplication factor contributed from all local-
MSA-consistent N-indel local histories in CK. (For more
details, see the second half of SM-1 of Supplementary
methods in Additional file 1.)
As agued above, under conditions (i) and (ii) (and, in

addition, (iii) for a MSA), the probability of a given
alignment is factorized into the product of an overall
factor and local contributions (as in Eq. (2) and Eq. (5)).
This factorization could drastically speed up the com-
putation of the probability. However, each local contri-
bution is still a summation over an infinite number of

indel histories (Eq. (3) and Eq. (6)), and its literally
exact calculation would take infinitely long. This study
examines two kinds of approximation methods. One
is the “first approximation,” which approximates
each multiplication factor with the “total parsimoni-
ous contribution,” i.e., the summation of contribu-
tions over all possible parsimonious indel histories.
(It corresponds to the term, μP (N)[γκ; (α(s

A, sD), [tI,
tF]) | (sA, tI)] with N = Nmin[α(s

A, sD); γκ] or Μ
⌣

P Nð Þ
α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �

with N = Nmin[CΚ].)
And the other is calculating a practically exact solution
(or an “exact” solution, for short) of each local contribu-
tion from a local PWA of a certain type (see section R3).
Especially, we examine the accuracy of the first approxi-
mation by comparing the total parsimonious contribution
either with the total next-parsimonious contribution (sec-
tions R2 and R4), with the “exact solution” (section R3) or
with the results of simulations (section R5). Here, the
“total next-parsimonous contribution” is the summation
of contributions over all next-parsimonious indel histories.
(It usually corresponds to the above term with
N = Nmin[α(s

A, sD); γκ] + 1 or with N = Nmin[CΚ] + 1).
In the following sections, we will work with a

model that satisfies the conditions (i), (ii) and (iii),
and we will focus on calculating the multiplication
factor that comes from a single local region (i.e., a
“local alignment”) flanked by a pair of PASs. As in
[22], we will work in the state space SII. This means
that we will calculate the probability of the homology
structure of each local alignment (e.g., [39]). Let
ΔL(s) be the number of sites that a sequence s ∈ SII

has between the pair of PASs. We will re-assign the
site numbers so that the left- and right-flanking
PASs are numbered 1 and ΔL(s) + 2, respectively, and
the sites in between them are numbered 2, …, ΔL(s)
+ 1. This will make it easy to apply our theoretical
formulation [22] to the current situation. We will
re-assign the ancestries υ(1) = L and υ(ΔL(s) + 2) = R
to the left- and right-flanking PASs, respectively.
(See endnote (1) for a brief description of the
ancestry.) And we will usually (but not always) re-
assign the ancestries υ(x) = x − 1 to the sites in be-
tween the PASs, x = 2,…, ΔL(s) + 1, of the ancestral
sequence, s = sA (for a PWA), or the root sequence,
s = sRoot (for a MSA). See Fig. 1 for an illustration.
Hereafter, we will often employ shorthand notations

for the aforementioned (fractions of ) multiplication fac-
tors, e.g., μP (N)[γκ; (α(s

A, sD), [tI, tF]) | (sA, tI)] for a
PWA and Μ

⌣

P Nð Þ α s1; s2;…; sNX½ �; sRoot0 ; CΚ Tj� �
for a

MSA, either by omitting the arguments (like “μP (N)” and
“Μ

⌣

P Nð Þ ”) or by replacing the arguments with simpler ones
representing more concrete situations (like “μP (N)[case (ii);

ΔLA]” or “ Μ
⌣

P Nð Þ case IIð Þ; ΔLD12
� �

”). Unless stated
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otherwise, we consider the sequence evolution during time
interval [tI, tF] (for a PWA) or along a given tree, T (for a
MSA).
For illustration, we will use the indel evolutionary

model of Dawg [32], though the analyses could be ex-
tended with due modifications to more general models
(discussed in subsection R7.1).4 Its indel rates are space-
homogeneous and time-homogeneous, and they are
parametrized as follows. Let L(s) be the length of the
sequence with state s. The rate of insertion M̂I x; lð Þ is:

rI x; l; s; tð Þ ¼ λI f I lð Þ for x ¼ 0; 1;…; L sð Þ; l ¼ 1; 2;…LCOI
� �

ð7Þ

Here, λI is the total insertion rate (per site), fI(l) is the
insertion length distribution, and LI

CO is the cut-off in-
sertion length. The rate of deletion M̂D xB; xEð Þ is:

rD xB; xE ; s; tð Þ ¼ λDf D l ¼ xE−xB þ 1ð Þ
forxB≤L sð Þ; xE≥1; l ¼ 1; 2;…; LCOD
� �

ð8Þ

Here, λD is the total deletion rate (per site), fD(l) is the
deletion length distribution, and LD

CO is the cut-off dele-
tion length. Consequently, the exit rate from state s is:

a b

Fig. 1 Notation and re-numbering of sites typical in this study. a An example MSA. The Cκ’s (with κ = 1, 2,…, 10) label the regions that actually
or potentially accommodate local indel histories (marked by bottom curly brackets and yellow wedges, respectively). As an illustration, we choose
the local MSA confined in the region C4 (the portion in the green dashed box), and re-assign the ancestry indices (in the cells) as shown in panel
(b). Ancestries L and R were newly assigned to the flanking PASs. The ancestry indices in between the PASs are just examples and not always
assigned in this way. (The indices in panel (a) could be regarded as hexadecimal numerals, if preferred.) c Subsequences extracted from the local
MSA. Shown above each site (i.e., each cell) is the site number (i.e., spatial coordinate) re-assigned to it. And the ΔL(s) on the right of each
sequence (s = s1,…, s6 or sRoot) is the count of sites in between the PASs. In panels a and b, the boldface characters in the leftmost columns
stand for the sequence IDs. (More precisely, the number ‘i’ stands for sequence si, and the ‘R’ stands for the root sequence (sRoot).) A dash (‘-‘) in a
cell represents a gap. In panel b, triple dots (‘…’) in a cell indicate that the alignment continues outwards. Panel a was adapted from Figure S2 b
of [22]. Panels b and c were adapted from Figure 1 of [43]
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average deletion length [32]. In this study, we use the

power-law indel length distribution: f I lð Þ ¼ f D lð Þ
¼ l−1:6=

XL
I
CO

k¼1k
−1:6

h i
, which is among the typical ones

empirically observed (e.g., [24] and references therein).
We also set λI = λD according to a genome-wide data
analysis [41], unless otherwise stated. As for the se-
quence state probabilities at the root, we assume a uni-
form sequence length distribution hereafter.5 See
sections M1 and M2 of Methods for more specific
settings.

R2. Numerical comparison between parsimonious and
next-parsimonious contributions (1): for local PWAs
Here, we examine how accurately the first approxima-
tion will estimate the multiplication factor from each
local PWA by comparing the total parsimonious contri-
bution with the total next-parsimonious contribution,
both calculated via numerical computations of their ana-
lytical expressions (given in SM-2 of Supplementary
methods in Additional file 1). In this study, we are con-
cerned only with the homology structures [39] of align-
ments. Hence, local PWAs flanked by a pair of conserved
ancestral sites (PASs) can be broadly classified into four
cases, according to the sites between the PASs: (i) no ances-
tral or descendant sites (panel a of Additional file 1: Figure
S1); (ii) some (ΔLA > 0) ancestral sites but no descendant
sites (panel b); (iii) some (ΔLD > 0) descendant sites but no
ancestral sites (panel c); and (iv) some (ΔLA > 0) ancestral
sites and some (ΔLD > 0) descendant sites, but with no
ancestor-descendant homology (panel d). 6 (See Additional
file 1: Figure S2 for parsimonious and next-parsimonious
indel histories in case (ii), and Figure S3 for parsimonious
histories in case (iv).) Our numerical analyses indicated the
following. In case (i), the total next-parsimonious contribu-
tion (μP(2)[case (i)]) was negligibly smaller than the total
parsimonious contribution (μP(0)[case (i)] (=1)) for any
realistic situation we likely encounter, as far as a single
inter-PAS region is concerned. In case (ii) and case (iii), the
total next-parsimonious contribution (μP(2)[case (ii); ΔLA]
or μP(2)[case (iii); ΔLD]) amounted to 1/2 of the total
parsimonious contribution (μP(1)[case (ii); ΔLA] or
μP(1)[case (iii); ΔLD]), when the size of the local PWA (i.e.,
ΔLA or ΔLD) is equal to a threshold value, (ΔL)0.5

(NP) ≈ 1.2/
E[nID] (Additional file 1: Table S1 and Figure S4). Here

E[nID] (=(λI + λD)(tF − tI)) is the expected number of
indels per site during the sequence evolution. For example,
in typical analyses of neutral genomic sequences from eu-
therian mammals, the branch length is around 0.2 expected
substitutions per site (e.g., [42]). And the total indel rate
was estimated as 1/8 of the total substitution rate [35].
Using these values, E[nID] is approximately 0.2/8 = 0.025,
which gives the threshold (ΔL)0.5

(NP) roughly equal to 50 sites.
For the analyses of more closely related sequences, the
threshold becomes longer. For example, in a comparison
between primate sequences, a typical branch length would
be 0.05 expected substitutions per site (e.g., [42]). Then,
(ΔL)0.5

(NP) would be roughly equal to 200 sites. In case (iv),
the total next-parsimonious contribution (μP(3)[case (iv);
ΔLA, ΔLD]) did not substantially exceed 1/2 of the total
parsimonious contribution (μP(2)[case (iv); ΔLA, ΔLD])
until the local PWA or the time interval became quite long
(Table 1). For more details on these analyses, see SM-2 of
Supplementary methods in Additional file 1. (Further de-
tails on the calculations for cases (iii) and (iv) are given in
sections A1.1 and A1.2, respectively, in [43].)

R3. Numerical comparison between parsimonious
contribution and "exact solution" for local PWAs
It is difficult to calculate the summed contributions from
local histories involving more indels, especially in case (iv).
We could exactly calculate the contribution from a single
local history involving any number of indels if we use the
algorithm for a “trajectory likelihood” given by Miklós et
al. [26]. As we exemplified in Appendix A1.2 of [43], how-
ever, it is already quite hard to enumerate even all the pos-
sible next-parsimonious local indel histories for case (iv).
Nevertheless, if we consider only cases (i), (ii), and (iii)
under a (locally) space-homogeneous model, we can work
out systems of exact integral equations that could in
principle provide the numerical solutions for the total sum
of contributions up to a desired level of accuracy, i.e.,

~μ NIDh i
P ≡

XNID

N¼Nmin
μP Nð Þ with a desired upper-bound indel

count (NID), at the expense of some time and memory.
Applying the fundamental defining integral equations

of our evolutionary model (Eqs.(R4.4, R4.5) in [22]) to
the local MSAs of cases (i), (ii) and (iii), two systems of
integral equations can be derived. One system is for
cases (i) and (ii) (see SM-3 of Supplementary methods in
Additional file 1), and the other is for cases (i) and (iii)
(described in Appendix A1.3 of [43]). 7 These systems of
integral equations can be numerically solved by iteration,
and the results after NID iterations give the aforemen-

tioned ~μ NIDh i
P (see SM-3 of Supplementary methods). A

naïve implementation of this iteration (based on Eq.
(SM-3.2’) in Additional file 1) would be very slow, with
the time complexity of O(NID(L

CO)2(NP)
2). Here LCO is

the cut-off indel length and NP is the number of equal-
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sized sub-time-intervals introduced for the numerical
time integration. However, we devised a faster algorithm
for this iteration (based on Eqs.(SM-3.4a,b) in Additional
file 1), with the time complexity of O(NID LCO(LCO +
NP)NP). And we implemented it in Perl (available in
Additional file 2). Typically, the computation finished in
the order of an hour (using a single thread) in a Macin-
tosh computer with two quad-core 2.26 GHz Intel Xeon
processors and 8GB memory. One round of the compu-
tation provides the multiplication factors for all local
PWA sizes (ΔL = 0, 1,…, LCO) and for time-interval
sizes of k (tF − tI)/NP with k = 1, 2,…, NP. Our numer-
ical analyses confirmed that NID = 200 would be enough
to give the practically exact (or “exact”) solution for the
local PWAs of 300 sites or less in likely situations of
phylogenetic-level sequence analyses (data not shown).
Thus, we used the results of NID = 200 iterations as the
“exact” multiplication factors, and compared the parsi-
monious contributions with them (Fig. 2). We define an-
other threshold value, (ΔL)0.5

(1), at which the parsimonious
contribution becomes 1/2 of the “exact” solution. The
results indicated (ΔL)0.5

(1) ≈ 1.6/E[nID] (Additional file 1:
Table S1). Thus, (ΔL)0.5

(1) is approximately 4/3 of (ΔL)0.5
(NP)

in the previous section, implying that (ΔL)0.5
(NP) actually

gives a somewhat conservative criterion for the goodness
of the first approximation. A fringe benefit of these iter-
ation analyses is that we can also assess the “n-th ap-

proximation,” which is given by ~μ nh i
P (Fig. 2). We define

(ΔL)0.5
(n) as the local PWA size at which the n-th

approximation becomes 1/2 of the “exact” solution. It
seemed that (ΔL)0.5

(n) > n × (ΔL)0.5
(1) in general (Additional

file 1: Table S1). This suggests the benefit of incorporat-
ing non-parsimonious local indel histories, especially
when we deal with long local PWAs resulting from a
long time evolution.
Now that we have “exact” probabilities for local PWAs

of cases (i), (ii), and (iii), it would be interesting to exam-
ine their behaviors. Panel a of Fig. 3 shows the log-log
plots of exact solutions for different time intervals (in
units of the expected number of indels per site). We see
that even finite-time transition probabilities are well ap-
proximated by the power-law, with very high correlation
coefficients for the log-log plots (0.9998 or more in the
absolute value, see Additional file 1: Table S2). And
panel b of Fig. 3 indicates that, as the time interval in-
creases, the power-law exponent deviates gradually (yet
only slightly) from its value for the instantaneous indel
rates (1.6 here). Meanwhile, the coefficient seems almost
proportional to the time interval (panel c). The slopes
for these quantities differed for different values of the ra-
tio, λI : λD. (Additional file 1: Table S2 gives also their
numerical values for some representative cases.) These
results may be useful for future data analyses on indels,
e.g., when inferring the power-law exponents for the
indel rate parameters from the comparison of relatively
divergent homologous sequences.
Similarly to our ab initio formulation itself, these

systems of integral equations can accommodate any
practical indel length distributions. Therefore, we could
even examine cases where insertions and deletions follow
different length distributions and/or models that incorpor-
ate transposon insertions (e.g., [44, 45]) as well. Such ana-
lyses should be interesting and important.

R4. Numerical comparison between parsimonious and
next-parsimonious contributions (2): for local MSAs
We next studied some typical cases of local MSAs.
(The analytical calculations of the multiplication factors
are detailed in SM-4 of Supplementary methods in
Additional file 1.) We only examined MSAs resulting
from the evolution along a 3-OTU tree (Fig. 4a). This is
because a next-parsimonious indel history typically dif-
fers from its parsimonious counterpart in the sequence
state at the internal node that phylogenetically delimits
an indel event. We examined the following four cases,
which differ in the sets of homologous sites in between
the PASs: (I) none of the three sequences has any site
(Fig. 4b); (II) two sequences share a homologous run of
sites, but the third sequence has no site (Fig. 4c); (III)
one sequence has a run of sites, but the other two se-
quences have no site (Fig. 4d); and (IV) one sequence (s1)
has a run of sites, another sequence (s3) has no site, and
yet another sequence (s2) shares the homologous sites

Table 1 Perturbation analysis on local PWA probabilities in
case (iv)

(ΔLA, ΔLD) 0.01 indels/
site

0.04 indels/
site

0.1 indels/
site

0.2 indels/
site

(1, 1) 0.003 0.010 0.024 0.045

(3, 1) 0.021 0.084 0.204 0.393

(3, 3) 0.042 0.166 0.402 0.768

(5, 5) 0.073 0.283 0.672 1.256

(10, 1) 0.064 0.246 0.572 1.013

(10, 10) 0.149 0.561 1.292 2.288

(25, 1) 0.151 0.547 1.112 1.541

(25, 4) 0.198 0.723 1.519 2.234

(30, 10) 0.288 1.038 2.164 3.072

(100, 1) 0.537 1.333 1.507 1.574

(100, 3) 0.607 1.593 1.894 2.033

(300, 1) 1.165 1.394 1.427 1.527

Each cell shows the ratio of the total next-parsimonious contribution to the total
parsimonious contribution, when there are ΔLA ancestral sites and ΔLD descend-
ant sites in between the PASs. Each column is labeled with the expected number
of indels per site ((λI + λD)(tF − tI)). See section M1 of Methods for the parameter
setting. Because of the symmetry between probabilities under the time reversal,
the ratio for (ΔLA, ΔLD) = (L1, L2) is identical to that for (ΔLA, ΔLD) = (L2, L1)
when λI = λD. Thus we only showed the results for ΔLA ≥ ΔLD. The ratios that are
less than 0.5 are shown in boldface. This table is identical to Table 2 of [43]
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with s1 except a contiguous subset of sites it lacks (Fig. 4e).
In case (I), similarly to case (i) local PWAs, the total
next-parsimonious contribution Μ

⌣

P 2ð Þ case Ið Þ½ �� �
was

negligibly smaller than the total parsimonious contribution
Μ
⌣

P 0ð Þ case Ið Þ½ �� �
. The comparison in case (II) reduces to

that in case (ii) local PWAs, thanks to the phylogenetic
consistency condition that the ancestral sequence
states must satisfy (e.g., [46, 47]). The next-
parsimonious local indel histories in case (III) are
classified into two broad types: (A) those that have the
same ancestral sequence state as the parsimonious
history, and (B) those that have different ancestral states
than the parsimonious history. The comparison of the total
parsimonious contribution ( Μ

⌣

P 1ð Þ case IIIð Þ; ΔLD1
� �

)
to the total contribution from type (A) histories
Μ
⌣

P 2ð Þ case IIIð Þ; Að Þ; ΔLD1
� �� �

reduces to the compari-
son in case (iii) local PWAs. Thus, we can focus on the
total contribution from type (B) histories
Μ
⌣

P 2ð Þ case IIIð Þ; Bð Þ; ΔLD1
� �� �

. Our numerical analyses
showed that this contribution is much smaller than the
parsimonious contribution (Fig. 5), even if the branch or
the local MSA is quite long. Actually, the relative contri-
bution decreased as the local MSA got longer (Fig. 5). In
case (IV), the total next-parsimonious contribution
Μ
⌣

P 3ð Þ case IVð Þ; ΔLD1; ΔLD2
� �� �

did not substantially
exceed 1/2 of the total parsimonious contribution
Μ
⌣

P 2ð Þ case IVð Þ; ΔLD1; ΔLD2
� �� �

until the local MSA or
the branches became quite long (Table 2).8

Taken together, the results in sections R2-R4 suggest
that the first approximation by the parsimonious indel
histories alone will estimate the multiplication factor for

each local alignment fairly well, as long as the local
alignment size and the branch lengths (or the time inter-
val) are at most moderate.

R5. Simulation analyses to see goodness of first
approximation for local MSAs
Thus far, we examined all cases of local PWAs and some
typical cases of local MSAs. To study a much wider
variety of local MSAs, we developed an algorithm that
calculates the first approximation of the probability of a
given MSA under a given parameter setting including a
phylogenetic tree. Briefly, the algorithm first chops the
input MSA into gapped and gapless segments. Second, it
attempts to enumerate all parsimonious indel histories
that can give rise to each gapped segment (i.e. local
MSA) via what we call a “local multi-path downhill
search” algorithm. Third, it computes their contributions
to the multiplication factor for each gapped segment. And
finally, it computes the first-approximate MSA probability
as the product of an overall factor and the total parsimoni-
ous contributions to the multiplication factors from all
gapped segments. (For details on the algorithm, see SM-5
of Supplementary methods in Additional file 1, as well as
Additional file 1: Figures S5-S8.)
After manually validating the sub-algorithm to enumer-

ate all parsimonious indel histories (described in [48]), we
conducted simulation analyses using Dawg [32]. (See
section M2 of Methods for the settings of the simula-
tions.) We created five homogeneous sets of simulated
MSAs, namely, sets 1A, 1B, 3P, 3M and 3F. Each of sets
1A and 1B consists of 100,000 MSAs simulated along
a three-OTU tree that has equally long branches and

Fig. 2 Iterative solutions of integral equation system for local PWA probabilities. The results shown in this figure apply to both case (ii) and case
(iii) local PWAs. In both panels, the abscissa is the number of sites between PASs (i.e., ΔLA for case (ii) and ΔLD for case (iii)), with zero corresponding to case
(i). Each panel shows the ratio of the total contribution from histories with up to (and including) NID indels to the “exact solution” of the multiplication
factor. See section M1 of Methods for the parameter setting. Panel a is for 0.04 expected indels per site, and panel b is for 0.2 expected indels per site.
Panels a and b in this figure are modified versions of panels B and C, respectively, of Figure 3 of [43]
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is rooted at its sole internal node. The expected num-
ber of indels per site along each branch (E[nID]) is
0.01 (small) for set 1A and 0.04 (medium) for set 1B.
Sets 3P, 3M and 3F consist of 10,000 MSAs each,
which are simulated along the trees of 12 primates,
15 mammals and 9 fast-evolving mammals, respect-
ively (Additional file 1: Figure S9). These sets were
designed to mimic typically encountered MSAs of se-
lectively neutral genome sequences whose sequence
divergences are small, moderate and large, respectively.9

Every simulation started with a random DNA sequence
that is 1000 bases long. For reasons of computational
time, we excluded local MSAs containing gaps longer than
100 bases. The numbers of subject local MSAs in sets 1A,
1B, 3P, 3M and 3F were 2,676,332, 7,695,575, 397,455,
935,553 and 984,321, respectively. Among them, 0.15 %,

1.38 %, 0.12 %, 0.23 % and 0.49 %, respectively, exhibited
non-parsimonious ancestral sequence states. (See SM-6 of
Supplementary methods in Additional file 1 for how the
MSAs were compared.)
For each of sets 1A and 1B, we compared the absolute

occurrence frequency of each of the homology structures
of local MSAs with its first approximate prediction
(Fig. 6). (See SM-7 in Additional file 1 for how the
analysis was performed.) The approximation was pretty
good for both set 1A (Fig. 6a) and set 1B (Fig. 6b), with
correlation coefficients 0.9996 and 0.9975, respectively
(Additional file 1: Table S3). The scatter plot for set 1B
(Fig. 6b) showed a thin downward projection from
around the middle of the main diagonal, indicating the
underestimation of the frequency. However, it disap-
peared after removing the local MSAs in each of which
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Fig. 3 Power-law behaviors of “exact” multiplication factors from case (iii) local PWAs. a Log-log plots of the “exact” multiplication

factors (μ NID¼200h i
P ΔL½ �, ordinate) against the local PWA size (ΔL, abscissa), showing nearly perfect power-law behaviors. Although this panel

shows the results under λI : λD = 1 : 1 only, the power-law approximation is actually very good also under λI : λD = 1 : 3 and λI : λD = 3 : 1
(Additional file 1: Table S2). Panels b and c show the power-law exponent (γ) and the coefficient (A), respectively, as functions of the
distance ((λI + λD)(t − tI) indels/site, abscissa) and the rate ratio (λI : λD, different curves). Here, we assumed the approximate power-law

relation, μ NID¼200h i
P ΔL½ � ≈ A ΔLð Þ−γ . (See Additional file 1: Table S2 also for the results of correlation and regression analyses.) Note that the

results apply also to case (ii) local PWAs with due modifications
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one or more unobservable indels are expected (Fig. 6c).
This extends the conclusions in sections R2 and R3 that
the first approximation estimates the probability of a
local PWA fairly well as long as its size is within a
threshold ((ΔL)0.5

(NP) or (ΔL)0.5
(1)).

Then, for each of simulated sets 1A, 1B, 3P, 3M and
3F, we first examined the relative frequencies of actual
occurrences among different sets of parsimonious ances-
tral states consistent with each local MSA. Then we put
the relative frequencies into 20 bins of width 0.05 each.
And, finally, we compared the average frequencies in the

bins with their first-approximate predictions (Fig. 7 and
Additional file 1: Figure S10). The predictions were
shown to estimate the actual relative frequencies quite
well, with the correlation coefficients ranging from 0.997
to 0.99999 (Additional file 1: Table S4). (See SM-8 in
Additional file 1 for how this analysis was done.)
The results in this section suggest that the first ap-

proximation would work fairly well also for a majority of
local MSAs we are likely to encounter, as long as the
local MSA and the branches are at most moderately
long.10

Fig. 4 Gap configurations of local MSAs examined in perturbation analyses. a The 3-OTU tree used in the perturbation analyses. A node (open
circle) is labeled ni (i = 1,2 or 3) (external) or nRoot (root). A branch is labeled bi (i = 1,2 or 3). In the following, ΔLDi denotes the number of sites that
the sequence at node ni has between the PASs. b Local gap configuration in case (I). c Case (II) with ΔLD1 = ΔLD2 = 5. d Case (III) with ΔLD1 = 5.
e Case (IV) with ΔLD1 = 5 and ΔLD2 = 3. The figure is a modified version of Figure 4 of [43]

Fig. 5 Perturbation analysis on local MSA probabilities in case (III). The graph shows the ratio of the contribution of the type (B) next-parsimonious
history to that of the parsimonious history. The former history consists of a deletion along each of branches 2 and 3, and the latter consists of an
insertion along branch 1. The ratio is shown as a function of the length of the gapped segment (ΔLD1, abscissa) and the expected number of indels per
site along each branch (different curves). The figure is a reduced and modified version of Figure 5 of [43]
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R6. Examining other indel models and methods in light of
our formulation
One of the major merits of our ab initio perturbative
formulation is that it can be applied to considerably real-
istic evolutionary models of indels [22]. Therefore, it will
enable us to examine, e.g., the parameter ranges where
other indel probabilistic models can well approximate
the ab initio alignment probability under a fairly realistic
evolutionary model.
First we briefly study the goodness of approximation

by the geometric indel length distribution, which most
of commonly used indel models are based on. As in the
previous sections, we use the power-law distribution of
the indel length (l), f1.6

PL(l) = l− 1.6/[∑k = 1
∞ k− 1.6], as a refer-

ence. Then, we fitted the scaled geometric distribution,
f SG(l; A, q) = A (1 − q) ql − 1, to the power-law under a
least-square criterion. The best-fit parameters were ALS

= 0.7125 and qLS = 0.3957. Calculating the ratio, RLS(l) ≡
f SG(l; ALS, qLS)/f1.6

PL(l), for different indel lengths, we
find, e.g., RLS(5) = 0.3168, RLS(7) = 0.08495 and RLS(13) =
8.775 × 10− 3. The ratio decreases rapidly as the indel
length increases. If, for example, we allow the ratio as
small as 1/3, the geometric distribution is regarded as a
decent approximation only for l ≤ 4. With f1.6

PL(l), the
indels with l ≥ 5 account for about 30 % of all indels.
These mean that, for 30 % of actually occurring indels,
the geometric distribution substantially underestimates
their frequencies even according to the above lenient

criterion. This reconfirms the importance of using bio-
logically realistic indel length distributions, as pointed
out, e.g., in [23, 24]. 11

Next, as an example of indel models that incorporate
some biological realism, we investigate the HMM of
Kim and Sinha [36]. Their HMM can accommodate
power-law indel length distributions. However, similarly
to most other HMMs and transducers, it cannot cor-
rectly handle overlapping indels along the same branch,
although it can handle overlapping indels along different
branches. Another characteristic of their method is that
it applies the same indel length distributions to all
branches. The behaviors of the “exact” solutions (Fig. 3,
Additional file 1: Table S2) indicate that their HMM
could approximate the probabilities of local PWAs fairly
well in cases (i), (ii) and (iii), as long as branch lengths
are reasonable for phylogenetic analyses. Almost the
same conclusions were drawn also from the analyses
using up to next-parsimonious contributions in the per-
turbation expansion, Eq. (3). (See SM-9 of Supplemen-
tary methods in Additional file 1.) Regarding case (iv)
local PWAs, however, our analysis indicated that their
HMM could substantially underestimate the ab initio
probabilities, especially when long indels are involved
(Table 3). (How we performed this analysis is also de-
scribed in SM-9.) This is because their HMM, like most
HMMs and transducers, neglects 1/3 of the effects of
non-overlapping indels (panels a, b and c of Additional
file 1: Figure S3), as well as most effects of overlapping
ones (panels d and e), that can yield each case (iv) local
PWA. (Briefly, most HMMs neglect one of panels b and
c. See SM-9 for details.) These results suggest that a po-
tentially effective way to improve the accuracy of the
HMM of Kim and Sinha [36] would be to modify the
transition probabilities between a deletion-type block
and an insertion-type block. This measure will enable to
incorporate the effects of overlapping indels in case (iv).
As exemplified above, our ab initio perturbative

formulation provides other indel probabilistic models
with a sound reference point, under which the models
can be examined to improve their accuracy and evolu-
tionary consistency. A related topic is the Chapman-
Kolmogorov (CK) equation, which must be satisfied by
genuine stochastic evolutionary models. Unfortunately,
most of the currently common indel probabilistic
models violate the CK equation (as argued, e.g., briefly
in [41]). Because our perturbative formulation satisfies
the CK equation up to any desired order of the perturb-
ation expansion (Appendix A3 of [49]), our formulation
could also examine the effects of the violation of the CK
equation. For example, under a geometric indel length
distribution, the effects become conspicuous only when
the indel lengths exceed a “critical value” of O(10), where
the geometric distribution substantially underestimates

Table 2 Perturbation analysis on local MSA probabilities in case
(IV)

(ΔLD1, ΔLD2) 0.01 indels/
site

0.04 indels/
site

0.1 indels/
site

0.2 indels/
site

(2, 1) 0.004 0.016 0.037 0.067

(3, 1) 0.016 0.063 0.150 0.279

(3, 2) 0.012 0.049 0.118 0.225

(10, 1) 0.050 0.190 0.432 0.751

(10, 2) 0.060 0.225 0.509 0.895

(10, 8) 0.060 0.231 0.543 0.980

(10, 9) 0.047 0.182 0.421 0.740

(30, 1) 0.140 0.487 0.915 1.203

(30, 5) 0.163 0.563 1.118 1.645

(30, 25) 0.173 0.620 1.251 1.850

(30, 29) 0.139 0.486 0.909 1.189

(100, 1) 0.418 0.985 1.180 1.304

(100, 99) 0.418 0.981 1.170 1.290

Each cell shows the ratio of the total next-parsimonious contribution to the
total parsimonious contribution. In each local MSA, the first, second and
third sequences have ΔLD1 sites, ΔLD2 (<ΔLD1) sites and zero site, respectively,
in between the PASs. Each column is labeled with the expected number of
indels per site along each of the three branches. The ratios that are less than
0.5 are shown in boldface. This table is identical to Table 3 of [43]. See section M1
of Methods for the parameter setting
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the real indel frequencies. (See, e.g., subsection 2.3 of
[43].) This seems to explain the results of past studies
(e.g., [50, 51]), which did not detect remarkable effects of
the violation of the CK equation (or the effects of its
cause, i.e., inadequately incorporating overlapping indels).

R7. Outstanding issues and possible improvements,
extensions and applications
Here, we briefly discuss some outstanding issues and
their possible solutions in the forms of methodological
improvements and extensions, and also possible applica-
tions of the (improved/extended) methods to practical
problems. (For more details on most of these topics, see
Discussion of [48].)

R7.1. Possible improvements and extensions of our
computational methods and algorithms
In this study, we successfully constructed two integral
equation systems to calculate “exact” multiplication
factors for case (i), (ii) and (iii) local PWAs. For case
(iv) local PWAs (Additional file 1: Figure S1d), we only
provided methods to analytically calculate the total
parsimonious (i.e., 2-indel) and total next-parsimonious
(i.e., 3-indel) contributions. Although in principle we
could calculate contributions from indel histories with
more than 3 indels each, the question should be how
we can do this within a reasonable amount of time.
Even if we can construct an integral equation system
for case (iv), it is expected to contain terms with
complex gap configurations, and thus it would be difficult
to solve it “exactly.” Therefore, a key for this case should
be how we can reasonably quickly obtain approximate
multiplication factors each of which estimates the exact
factor more accurately than the summation over all parsi-
monious and next-parsimonious contributions.
The main purpose for the current algorithm to calculate

the first-approximate probability of a given MSA (SM-5 in
Additional file 1) was to see whether or not the first
approximation works also for local MSAs of general types.
This algorithm merely constitutes the first step toward an
automatic application of our ab initio perturbative formu-
lation. Consequently, the algorithm still has some rooms
for improvements. For example, the algorithm could be

a

b

c

Fig. 6 Simulation analyses on absolute alignment frequencies. Each
panel compares the predicted absolute frequency of each local
homology structure (ordinate) against the number of times that it
actually occurred in a simulated dataset (abscissa). The predicted
absolute frequency was calculated using Eq. (SM-7.1) in Additional
file 1. Note the logarithmic scaling for both axes, which tends to
exaggerate sampling errors on the lower-left region in each panel.
Panels a, b and c, respectively, show the results with the simulated
sets 1A, 1B and set 1B after removing long gapped segments. The
panels a-c are reformatted versions of panels A-C of Figure 29 of [48]
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very slow when applied to a local MSA containing a long
gap. Roughly speaking, the length of time consumed by
the algorithm applied to an input MSA is the summation
of the lengths of the consumed time over all local MSAs
in it. We estimated that the algorithm applied to each
local MSA has the time complexity roughly greater than
O B2NShG
� �

. (See subsection D1.1 of [48] for details.) Here,
B is the number of blocks of distinct gap patterns in the
local MSA, and NShG is the number of short gaps that are
spatially overlapping and phylogenetically neighboring the
long gap. For example, if B = NShG = 20, the time com-
plexity is greater than O(20 × 220) ≈ O(107). B should be
roughly on the order of NShG. And NShG is roughly ex-
pected to be around E[NShG] ≈ (E[nID1] + E[nID2]) × ΔL.
Here E[nID1] and E[nID2] are the expected numbers of
indels per site along the two neighboring branches of the

Fig. 7 Simulation analyses on relative frequencies among local indel
histories. Each panel compares the predicted relative frequencies
(ordinate) against the actual relative frequencies in simulations
(abscissa). The relative frequencies are among parsimonious local
indel histories that potentially yield the same local MSA. A blue
diamond, a red ‘X’ and a black cross represent a bin of all
parsimonious local indel histories, that of most likely (ML)
parsimonious histories, and that of least likely (LL) parsimonious
histories, respectively. Panels a, b and c show the results with sets
1A, 1B and 3M, respectively. See section SM-8 in Additional file 1 for
how the analysis was performed. Panels a and b are reformatted
versions of panels D and E, respectively, of Figure 29 of [48]

Table 3 Comparison of Kim-Sinha’s probability with ab initio
probability for case (iv) local PWA

(ΔLA, ΔLD) Ratio (= ref/KS) a Overlapping b

(1, 1) 1.667 0.167

(3, 1) 1.883 0.383

(3, 3) 2.449 0.949

(5, 5) 3.325 1.825

(10, 1) 2.165 0.665

(10, 10) 5.572 4.072

(25, 1) 2.355 0.855

(25, 4) 4.714 3.214

(30, 10) 8.300 6.800

(100, 1) 2.561 1.061

(100, 3) 4.896 3.396

(300, 1) 2.659 1.159

Each row gives values for a local PWA with ΔLA ancestral sites and ΔLD

descendant sites in between a pair of PASs. See section M1 of Methods for the
parameter setting. When λI = λD, the ratio for (ΔLA, ΔLD) = (L1, L2) is identical
to that for (ΔLA, ΔLD) = (L2, L1). Thus, we only showed the results for
ΔLA ≥ ΔLD. The ratios less than 2 are in boldface. This table is a modified
version of Table 4 of [43]
a The ratio of the ab initio probability to the corresponding probability given
by the HMM of Kim and Sinha [36], in the limit where the time interval (or
branch length) approaches zero
b The portion of the ratio contributed by overlapping indels (such as those in
panels d and e of Additional file 1: Figure S3)
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branch where the indel resulted in the long gap. (These
three branches share the node that accommodates the
subsequence aligned with the long gap.) And ΔL is the size
of the local MSA. For example, if we assume a rather
large value, E[nID1] = E[nID2] = 0.4/8 = 0.05, we have
E[NShG] ≈ 0.1 × ΔL. In this case, we expect NShG ≈ 20
almost always when ΔL = 200. Thus, such local MSAs
could virtually stop the current algorithm. 12 One way
to quickly process a local MSA containing long gaps
should be to treat the gaps hierarchically, first long gaps
alone and second the remaining short and medium
gaps (Additional file 1: Figure S11; see Discussion D1.1
of [48] for more details). If this strategy indeed works,
the O 2NShG

� �
component of the time complexity would

reduce to O(2NShG), because the short gaps that are
phylogenetically neighboring the long gap can be han-
dled independently of one another (panel d of Figure
S11). Another very similar strategy should be to narrow
down the ancestral sequence states to be searched for,
regardless of the presence/absence of gapless columns,
by exploiting the “phylogenetic correctness” condition
(e.g., [46, 47]). The condition must always be satisfied
by the ancestral sequence states consistent with MSAs,
and thus it should be very powerful.
Another possible improvement should be to incorpor-

ate non-parsimonious indel histories so that we can en-
hance the accuracy of the probability estimation. As in
section R4, we can classify non-parsimonious histories
into two broad categories: (A) those each of which
shares the set of all ancestral sequence states with a par-
simonious history, and (B) those that share the set with
no parsimonious history. Each non-parsimonious history
in category (A) yields the same ancestor-descendant
PWAs along all branches as a parsimonious history does
(section R7 of [22]). Hence, we could easily incorporate
the effects of category (A) histories by using local PWA
multiplication factors that take account of non-
parsimonious contributions, as we calculated in sections
R2 and R3. As the result in section R4 (Fig. 5) indicates,
this could considerably improve the accuracy relatively
easily. Incorporating histories in category (B) should re-
quire an algorithm to systematically enumerate such his-
tories. Some hints may come from the examples in
section R4 and SM-4 of Supplementary methods in Add-
itional file 1, and the “branch-and-merge” operation
(SM-5.2 of Supplementary methods). The real challenge,
though, should be to devise a method to enumerate such
histories efficiently. 13

In this paper, we presented the results of computing
local alignment probabilities (or multiplication factors)
under a space-homogeneous model implemented in
Dawg [32], mainly in order to avoid excessive presenta-
tional complications. At least theoretically, however, the

computational methods (in Additional file 1) could be
extended to space-heterogeneous situations relatively eas-
ily. All we have to do is substitute space-heterogeneous
counterparts for the space-homogeneous indel rates (and
exit rates) in the final formulas in SM-2, SM-3 and SM-4
(in Additional file 1), and replace multiplication by some
integer factors (such as (ΔLA + 1) in Eq. (SM-3.2) and Eq.
(SM-3.4b) in Additional file 1) with summation over pos-
sible positions (of a position-flexible indel event). The time
integration can be performed analytically (except in SM-3)
as long as the model is time-homogeneous. And the com-
putation could be automated as long as the indel rates are
specified according to some programmable rules. In some
cases, tricks or approximations may be necessary so that
the computation (involving the aforementioned summa-
tions) can be finished quickly enough. It should be kept in
mind, however, that such computation will make sense
only if the probabilities of the entire alignments are factor-
able. This means that the indel rates (and the exit rates)
must satisfy the conditions (i) and (ii) (and (iii) for MSAs)
explained in section R1, which may bring in some compli-
cations. For example, in the most general indel model we
currently know to have factorable alignment probabilities
(described in subsection R8-3 of [22]), each locally hetero-
geneous set of indel rates is confined in a region that does
not necessarily coincide perfectly with a gapped segment
(i.e., a local alignment). When the region accommodates
only one gapped segment (and some gapless columns),
there should be no serious problem; although each pos-
ition between contiguous gapless columns may experience
some indels, the effects of such indels should be negligible
(as shown in sections R2 and R3), allowing us to focus on
the single gapped segment. On the other hand, a serious
problem may arise when the region accommodates two or
more gapped segments. In this case, the contributions
from the gapped segments (overlapping the region) can
no longer be factorized, and thus all possible relative or-
ders will have to be considered among indels in different
gapped segments overlapping the region (while retaining
the order in each segment). This could substantially slow
down the computation, especially regarding non-
parsimonious indel histories (including practically exact
solutions), and some new measures may be necessary for
reasonably fast computation. In addition, it should be re-
membered that, in order to pursue further biological real-
ism, one must also overcome some other hurdles, such as
more realistic boundary conditions and mutations other
than indels and substitutions (discussed, e.g., in section R9
of [22] and [37]).

R7.2. Risks associated with naive applications to
reconstructed alignments
Some readers may consider conducting some evolu-
tionary analyses by applying the algorithm presented
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here to a MSA reconstructed by one of the state-of-
the-art aligners (reviewed, e.g., in [7]). We strongly cau-
tion the readers that it would be premature to conduct
such analyses at this point. What we demonstrated here
is that the algorithm estimates the probabilities quite
accurately, provided that it is fed a correct MSA. Unfor-
tunately, however, recent analyses (e.g., [38, 52, 53])
showed that reconstructed MSAs are considerably
error-prone, even if they were reconstructed via state-
of-the-art aligners. Thus, a naive application of the
algorithm to a reconstructed MSA would likely lead to
incorrect predictions. Therefore, the readers should
avoid such analyses whenever possible. Even if they
need to perform such analyses, the possibility of MSA
errors must be fully taken into account when interpret-
ing the results.

R7.3. Possible applications
Originally, we developed our theoretical formulation
[22] and the algorithm presented here for the purpose of
comparing candidate MSAs in terms of their occurrence
probabilities, i.e., their likelihoods. This purpose should
be adequately fulfilled considering the accuracy of the
predicted probabilities under moderate conditions, as
demonstrated in this paper. If the algorithm can be
coupled with a sampler that can preferentially explore
quite likely regions of the MSA space, we could obtain
an approximate probability distribution of MSAs. Such a
distribution should be very useful, because a substantial
fraction of alignment errors turned out to be due to the
stochastic nature of evolutionary processes [38]. In the
previous study [22], we showed that the “long indel”
model [26] is virtually equivalent to our ab initio formula-
tion under space-homogeneous indel rates. Hence, their
dynamic programming (DP) could be applicable to the
problem, possibly with some modifications. Although the
full version of their DP is quite slow, a device similar to
those used recently (e.g., [21, 41, 54]) might speed up the
MSA space exploration. It remains to be seen if such a
device could be successfully adapted to our formulation or
not. Most of currently available MSA aligners, whether
they implement probabilistic or single-optimum-search
algorithms, are based on geometric distributions. Because
biologically realistic indel length distributions were shown
to improve the accuracy of pairwise sequence compari-
sons (e.g., [23, 24]), we expect that this will be the case
also with multiple sequence comparisons. (This expect-
ation was partially confirmed in [38].)
Up to here, we assumed that the phylogenetic tree is

given. In many cases, however, the phylogenetic trees
must also be inferred from the input sequence data. A
theoretically ideal way would be to infer the joint distri-
bution of MSAs and phylogenetic trees, as it is expected
to minimize possible prediction biases (e.g., [18, 39, 55,

56]). A major problem is that such an analysis would be
very time-consuming in general. In this sense, the trad-
itional method of inferring the phylogenetic tree from an
input MSA (e.g., [5]) and the incorporation of indel in-
formation into the method (e.g., [57]) would still be use-
ful. When trying to adapt our algorithm or formulation
to any of these methods, we will have to further speed
up the calculation of approximate alignment probabil-
ities, especially under the moves in the tree space ex-
ploration, such as the nearest-neighbor interchange
(NNI) and the sub-tree pruning and re-grafting (SPR).
At present, it is a totally open question whether we can
really do this without compromising the accuracy of the
predicted probabilities. This should be a challenging,
formidable yet crucial problem of phylogenetic-level
molecular evolution.

Conclusions
In the previous study [22], we proposed a theoretical
formulation that facilitates the ab initio calculation of
the probabilities of given PWAs and MSAs under the
general continuous-time Markov model, which describes
the evolution of an entire sequence along a time axis via
indels. And we explicitly demonstrated that, under a cer-
tain set of conditions, each ab initio alignment probabil-
ity is factorable into the product of an overall factor and
multiplication factors originated from local alignments
delimited by preserved ancestral sites, thus providing a
sort of generalized HMMs (Eq. (2) and Eq. (5)).
In this study (especially in Supplementary methods in

Additional file 1), we provided some methods and an
algorithm to concretely calculate the total parsimonious
contribution and the total next-parsimonious contribu-
tion to the multiplication factor, Eq. (3) or Eq. (6),
originated from each local alignment, under space-
homogeneous situations for illustration purposes. Our
analyses indicated that even the total parsimonious
contribution approximates the multiplication factor
fairly well as long as (λI + λD)(tF − tI)ΔL is within an
O(1) threshold. Here, (λI + λD)(tF − tI) is the expected
number of indels per site and ΔL is the local alignment
size. Moreover, again under space-homogeneous situa-
tions, we deduced two systems of integral equations
that can be numerically solved to give practically exact
multiplication factors for local PWAs of cases (i), (ii)
and (iii). An inspection of the practically exact factors
indicated that the finite-time transition probabilities in
these local PWAs keep following the power-law, and
that the exponent only slightly deviates from the ori-
ginal exponent for the instantaneous indel length distri-
bution. Equipped with these results and new methods,
the theoretical formulation we proposed in [22] is ex-
pected to provide other indel probabilistic models with
a sound reference point, which could suggest necessary
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modifications to improve the accuracy of the models
(as exemplified in section R6).
However, considering that the commonly used aligners

are considerably error-prone (as shown e.g., in [38, 52,
53]), it would be very risky to naively apply the pre-
sented algorithm or methods to reconstructed MSAs.
Thus, it should be preferable to first develop programs
that exploit the fruits of the previous study [22] and this
study to accurately estimate the uncertainties in, and
rectify the errors of, reconstructed alignments under a
genuine stochastic model of sequence evolution via
indels that is biologically more realistic than almost all
models studied in the past.

Methods
M1. Parameter settings for numerical analyses
We performed all numerical analyses in this paper using
the space-homogeneous indel model implemented in
Dawg [32] (see Eqs.(7-9)). Unless otherwise stated, the
total insertion rate was set equal to the total deletion rate
(that is, λI = λD), according to a genome-wide data
analysis [41]. We used the power-law indel length
distribution for both insertions and deletions:

f I lð Þ ¼ f D lð Þ ¼ f PL1:6 l; LCO
� �

≡ l−1:6=
X

k¼1

LCO
k−1:6

	 

.

The power-law exponent of 1.6 is among the typical values
observed empirically (e.g., [24] and references therein).
The cut-off indel length, LCO, was set at 500 sites for the
perturbation analyses to assess the goodness of the first
approximation (Tables 1 and 2, Figs. 2, 3 and 5; Additional
file 1: Tables S1, S2 and Figure S4), whose results were al-
most independent of LCO. It was set at 5000 sites when
assessing the goodness of approximation by the HMM of
Kim and Sinha [36] (Table 3), because the result stabilized
around this value of LCO. In the perturbation analyses on
local MSAs (e.g., Table 2 and Fig. 5), we used a 3-OTU
tree with equally long branches (Fig. 4a). The tree was
rooted at its sole internal node. For the iterative perturb-
ation analysis (Figs. 2 and 3; Additional file 1: Tables S1
and S2), the sub-time-interval for the numerical time
integration was set at E[nID]/NP = 0.001 (indels per
site). 14 For local MSA analyses (both perturbative
and simulation-based), the uniform sequence length
distribution was employed as the prior probability of
the root sequence state.

M2. Simulations to prepare input MSA sets
To validate the entire algorithm described in section
SM-5 of Supplementary methods in Additional file 1,
we prepared five sets of MSAs using a genuine se-
quence evolution simulator, Dawg [32]. We performed
all simulations using the same Zipf power-law distribu-

tion, f D lð Þ ¼ f I lð Þ ¼ l−γ=
X

k¼1

LCO
k−γ

	 

, with the

exponent γ = 1.6 and the cut-off indel length of LCO(=
LI
CO = LD

CO) = 100 bases. The exponent γ = 1.6 is typical
among empirically observed values (e.g., [24] and refer-
ences therein). The cut-off length was chosen in order
to prevent it from taking extremely long to search for
parsimonious local indel histories. This is because, with
our current implementation, the search could be very
time-consuming when a gapped segment contains at
least one long gap (see subsection R7.1 of Results and
discussion for a possible solution). Each of the simula-
tions started with a random ancestral DNA sequence
that is l000 bases long. In each simulation, we labeled
all the internal nodes of the input tree, in order to keep
the ancestral sequences aligned with the “extant” se-
quences (at the external nodes). Other parameters and
options were set at default values unless otherwise
stated. We created five input MSA sets, namely, 1A,
1B, 3P, 3M and 3F.
Set 1A consists of 100,000 MSAs, each of which was

simulated along a 3-taxon tree starting at a root with
three child branches. The lengths of the three branches
were all set at 0.05 (substitutions per base). The total
rates of insertions and deletions were set at λI = λD = 0.1
(per expected substitution), which are close to the
upper-bounds for neutrally evolving mammalian DNA
sequences [24, 35].
Set 1B is nearly the same as Set 1A, expect that all

branch lengths were set at 0.2 (substitutions per base).
We prepared 1A and 1B, because validating the theoret-

ically predicted occurrence probabilities of local homology
structures necessitated a large number of MSAs simulated
under identical parameter settings.
Each of Sets 3P, 3M and 3F consists of 10,000 MSAs.

The settings for these three sets differ only in the phylo-
genetic tree used for the simulations. The MSAs in these
sets were simulated along the tree of 12 primates (panel
a of Additional file 1: Figure S9), the tree of 15 mammals
(panel b) and the tree of 9 fast-evolving mammals (panel
c), respectively. These three sets, 3P, 3M and 3F, were
intended to mimic typically encountered MSAs among
selectively neutral DNA sequences with small, moderate
and large sequence divergences, respectively. The total
indel rates for these three sets were set at λI = λD = 1/
16 = 0.0625 (per expected substitution), according to
genome-wide data analyses [35, 41]. For more details on
these three sets, see [38].
The Dawg control files used to generate these simu-

lated datasets, including the phylogenetic trees and indel
model parameters, are available as a part of Additional
file 2.
Before the analyses, all simulated MSAs were pre-

processed so that the MSAs with an identical homology
structure will be replaced with a unique representative
MSA. See Methods of [38] for details.
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M3. Program implementation
The Perl modules and main Perl scripts used in this
study are available (under the GNU General Public
License) as a package named “LOLIPOG” (for “LOg-
LIkelihood for the Pattern Of Gaps (in MSA)”) (version:
“FA_LOLIPOG_P.ver0.6.1.6”), which is archived in
Additional file 2. The latest version of the package will
be available in the “lolipog” directory at the FTP reposi-
tory of http://Bioinformatics.Org [58].

Endnotes
1An ancestry index (or an “ancestry” for short) is

assigned to each site, in order to distinguish between the
sites of different evolutionary origins. Once an ancestry
is assigned to a site, it will not change throughout the
evolutionary history. Sharing of the same ancestry between
the sites of different sequences indicates that the sites are
mutually homologous (more precisely, orthologous). See
section R2 of [22] for more details. The ancestry indices
also help realize the rate heterogeneity across regions
(section R3 of [22]).

2In this study, the homology structures we consider
will usually be among extant sequences, i.e., excluding
ancestral sequences. When dealing with each particular
indel history, however, ancestral sequences will also be
included.

3This “perturbative” calculation of a multiplication fac-
tor may look similar to the calculation of a “chop-zone”
probability proposed by Miklós et al. [26] under their
“long indel” model. In fact, our “perturbative” calculation
could be regarded as an (modified) extension of their
calculation method to somewhat more general evolu-
tionary models. (See section SA-3 of Additional file 2 of
[22] for their mutual equivalence with caveats.)

4For example, the results under the “long indel” model
[26] are essentially the same as those obtained here, if
the former is freed from the time-reversibility.

5It should be noted that this setting is just a represen-
tative of seemingly common situations. For example, the
empirically estimated power-law exponents vary between
near 1 and near 2, although the values within 1.4-1.8 are
quite common ([24] and references therein), regardless
of whether the sequences are genomic or protein-coding.
In the past, the deletion rate was often observed as greater
than the insertion rate (e.g., [59]). But a simulation study
[52] indicated that such observations are likely due to a
bias intrinsic to the similarity-based aligners (as classified
in [60]). And a recent analysis of mammalian sequences
via an evolution-based probabilistic aligner (expected to
be devoid of the above bias) indicated that the deletion
rate is nearly equal to the insertion rate [41]. It remains to
be seen whether this rate equality applies also to the taxa
other than mammals. Regarding the sequence length
distribution, we do not know any empirical results.

Although we believe that our choice of the uniform dis-
tribution should be theoretically very reasonable for
neutrally evolving regions sampled randomly from long
genomes/chromosomes (see endnote 14 of [22]), distri-
butions of regions under selection may show quite
different behaviors. It should be interesting, and im-
portant, to examine how the results in this paper will
change in response to the deviation of the setting from
that given here.

6These cases correspond to the “chop-zones” having
probabilities Nij [26], with: (i) i = j = 0; (ii) i > 0, j = 0; (iii)
i = 0, j > 0; and (iv) i > 0, j > 0.

7Because of the symmetry between the finite-time
transition probabilities under the time reversal, the latter
results become equal to the former when the insertion
and deletion parameters are swapped.

8The analytical expressions are somewhat complex in
case (IV). See Appendix A2 of [43] for details.

9On top of them, we also prepared yet another set,
Set 2, created by simulations under 33 sets of parame-
ters typical of the structure-based benchmark MSAs.
(See section M2.2 of Methods and Figure 28, both of
[48], for details on this input MSA set.) The validation
analyses on this Set 2 gave nearly as good results as
those on the 5 sets described here. (See Results of [48]
for details.)

10Incidentally, for the analysis on relative probabilities,
we only used local MSAs each of which can result from
two or more parsimonious local indel histories. The in-
stances of such gapped segments accounted for 4.5 %,
12.0 %, 17.5 %, 19.2 % and 14.2 % of all “parsimonious”
instances in sets 1A, 1B, 3P, 3 M and 3 F, respectively.
Out of them, the most likely (ML) histories were wrong
in 42.3 %, 43.4 %, 36.1 %, 13.1 % and 38.4 % of the in-
stances in the respective sets. Therefore, even if we make
an unlikely assumption that the aforementioned “non-
parsimonious” instances were all due to the ML histories
that are non-parsimonious, any algorithm that searches
for a single ML history would have overlooked the true
indel history in 1.9 %, 5.2 %, 6.3 %, 2.5 % and 5.4 % of
the cases in the respective sets. These frequencies are
much larger than those of the “non-parsimonious” in-
stances, i.e., 0.15 %, 1.4 %, 0.12 %, 0.23 % and 0.49 %, re-
spectively. This indicates that, given correct MSAs and
correct trees, our algorithm can recover the true indel
histories more frequently than any algorithm to search
for a single ML history.

11Mixed geometric distributions could decently ap-
proximate a power-law distribution in wider ranges. For
example, the approximation by a mixed distribution with
two geometric components (used, e.g., in [23]) is fairly
good up to a few dozen residues, but it gets poor when
indels become as long as hundreds of residues. To de-
cently approximate the realistic distributions of such
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long indels, more geometric components would be
necessary.

12In SM-8 of Supplementary methods of [38], we
roughly estimated the expected mean length Lloc Tð Þ� �
of a correct (i.e., not reconstructed) local MSA as:
Lloc Tð Þ ≈ exp Tj j λD lD

� � þ exp Tj j λI l I
� �

− 2
� �

=

1−exp − Tj j λD þ λIð Þð Þ½ � . Here, |T| is the total
branch length across the tree (T) (in units of the ex-
pected number of substitutions per site). λD and λI,
respectively, denote the deletion rate and the insertion
rate, both per expected substitution. And lD and lI are the
average lengths of a deleted subsequence and an
inserted subsequence, respectively. Under the param-
eter setting for the simulation analyses of this study, we
have lD ¼ lI ¼ 6:35 . If we set λD = λI = 1/16 =
0.0625 according to [35, 41], then, Lloc Tð Þ exceeds 100
when |T| is greater than 9, which is quite large. Thus,
as long as we are dealing with correct MSAs, our first-
approximate algorithm is expected to work on a major-
ity of local MSAs until |T| becomes this large. It should
be noted, however, that reconstructed MSAs could be
seriously erroneous even if |T| is, e.g., less than 3 [38].

13Strictly speaking, the current “local-multi-path down-
hill search” algorithm is not perfect, in the sense that it
misses some deletion-dominated parsimonious local his-
tories that can yield gap configurations belonging to the
class of “intersection between cousins” described in [61].
Fortunately, this drawback is not expected to be so ser-
ious, because such local histories require at least four
indels each and thus should be very rare.

14We calculated the multiplication factors, ~μ NID¼200h i
P

case iiið Þ; ΔLD; tI ; t½ �� �
with t ∈ [tI, tF], using E[nID]/

NP = 0.001, and compared them to those calculated
using E[nID]/NP = 0.0005. In each pair of values of ΔLD

and t, the difference was within 0.2 % of the multiplication
factor itself. Thus we concluded that they are virtually
exact.
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