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Abstract

Background: Copy number alteration is a main genetic structural variation that plays an important role in tumor
initialization and progression. Accurate detection of copy number alterations is necessary for discovering cancer-causing
genes. Whole-exome sequencing has become a widely used technology in the last decade for detecting various
types of genomic aberrations in cancer genomes. However, there are several major issues encountered in these
detection problems, including normal cell contamination, tumor aneuploidy, and intra-tumor heterogeneity.
Especially, deciphering the intra-tumor heterogeneity is imperative for identifying clonal and subclonal copy
number alterations.

Results: We introduce CloneCNA, a novel bioinformatics tool for efficiently addressing these issues and automatically
detecting clonal and subclonal somatic copy number alterations from heterogeneous tumor samples. CloneCNA fully
explores the log ratio of read counts between paired tumor-normal samples and tumor B allele frequency of germline
heterozygous SNP positions, further employs efficient statistical models to quantitatively represent copy number status
of tumor sample containing multiple clones. We examine CloneCNA on simulated heterogeneous and real tumor
samples, and the results demonstrate that CloneCNA has higher power to detect copy number alterations than
existing methods.

Conclusions: CloneCNA, a novel algorithm is developed to efficiently and accurately identify somatic copy number
alterations from heterogeneous tumor samples. We demonstrate the statistical framework of CloneCNA represents a
remarkable advance for tumor whole-exome sequencing data. We expect that CloneCNA will promote cancer-focused
studies for investigating the role of clonal evolution and elucidating critical events benefiting tumor tumourigenesis
and progression.
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Background
Cancer is a dynamic disease featured by various genetic
alterations that accumulate during the procedure of
tumor development. The theory of clonal evolution [1]
states that once a single precursor cell is initiated, the
proceeding of neoplastic proliferation can to some
extent be considered as a natural selection process –
sequential selection by an evolutionary process. Over
time, both similar and divergent genetic alterations
beneficial for tumor persistence and growth are acquired
by different tumor cells through clonal expansions. This
results in the emergence of variant cell populations in
tumors with each cell population containing a distinct
complement of genetic alterations, which is known as
the intra-tumor heterogeneity [1–3]. These genetic al-
terations consist of clonal aberrations, which derive
from the precursor cell and exist in all tumor cells,
and subclonal aberrations acquired during clonal ex-
pansions. Specifically, copy number alteration (CNA)
has emerged as one of the main categories of genetic
structural variations that plays an important role in
tumor progression [4].
Deciphering the intra-tumor heterogeneity is im-

perative for identifying clonal and subclonal CNAs
and further discovering cancer-causing genes. Associ-
ated studies [5–8] have benefited from continuous ad-
vances in experimental technologies [9–13] that are
used for high-throughput profiling of cancer genomes.
The recent next-generation sequencing (NGS) plat-
forms, such as whole-genome sequencing (WGS) and
whole-exome sequencing (WES), allows an unprece-
dented view of cancer genomes with nucleotide
resolution. With the improvement in reliability and
decrease in costs, WES has been considered as an
effective alternative to WGS for CNA detection in
tumors [14, 15]. However, such analysis is usually
complicated by several critical issues encountered in
interpretation of tumor WES data. First, the variable
efficiency of exome capture results in non-uniform
read depth between exome regions, and the read
depth is simultaneously affected by the GC-content
and length of individual exon [16]. These biases along
with the discrete nature of the capture make WES
unsuitable for whole-genome CNA detection methods.
Second, tumor sample is usually contaminated by
normal stroma and thus a mixture of tumor and non-
tumor cells [17]. Here we use tumor purity to denote
the proportion of cancerous cells in the tumor sam-
ple. Normal cell contamination will inevitably attenu-
ate sequencing-derived copy number signals of
aberrant exome regions. This sometimes makes it in-
tractable to distinguish aberrant exome regions from
normal regions, and eventually extract the aberration
information from miscellaneous signals. Third, various

numerical and structural chromosomal aberrations re-
sult in aneuploidy of tumor genomes, and the actual
tumor ploidy is usually unknown [17–19]. Another
critical issue comes from the fact that the tumor cell
population may be heterogeneous, resulting from on-
going subclonal evolution [20], and the underlying
number of distinct cell populations is unknown. Trad-
itional CNA detection methods that make assumption
of tumor homogeneity, i.e. mixture of normal and
one tumor population, may omit CNAs that are
present in only minor cell populations.
Critically, some of the aforementioned issues are

strongly intertwined and cannot be solved separately,
which may significantly complicate interpretation of WES
data if they arise in the same tumor sample. For example,
a gain of two copies of a chromosomal region in a tumor
sample with 50 % normal cells could also be explained as a
gain of one copy in a 100 % tumor sample. CNA detection
methods from WES analyze target-normalized read counts
or (log) ratio of read counts in exon, and detect deviations
in copy number profiles along the exome to identify
CNAs. Although several state-of-the-art computational
methods [5, 6, 14, 15, 21–23] have greatly improved accur-
acy of the detected CNAs, their performance may still be
limited by the aforementioned critical issues. For example,
ExomeCNV [15] uses circular binary segmentation (CBS)
method [24] to subdivide the exome and identify CNAs
with correction for normal cell contamination, and EXCA-
VATOR [14] adopts a heterogeneous shifting level model
(SLM) [25] to segment the exome and uses a classification
method to identify CNAs, but tumor aneuploidy and
intra-tumor heterogeneity are not explicitly modeled in
these approaches. Control-FREEC [21] first infers the copy
numbers of genomic segments, then uses Gaussian mix-
ture model (GMM) to identify tumor genotypes with cor-
rection for both normal cell contamination and tumor
aneuploidy. However, it does not take into account the
issue of intra-tumor heterogeneity. THetA [5, 6] infers
cancer subclones and detects subclonal CNAs in heteroge-
neous tumors using a delicate statistical model, but the
number of underlying tumor clones is not automatically
determined [26] and an integrated pipeline is not provided
for segmentation analysis [22]. Taken together, there is
great demand for developing sophisticated methods for
CNA detection from tumor WES data by addressing all of
the aforementioned challenges.
In this study, we introduce CloneCNA, an efficient

bioinformatics tool for automatically detecting clonal
and subclonal somatic CNAs using WES data of het-
erogeneous tumor samples. CloneCNA fully explores
the log read counts ratio (LCR) between paired
tumor-normal samples and tumor B allele frequency
(BAF) of germline heterozygous SNP positions, then
employs efficient statistical models to quantitatively
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represent copy numbers of tumor containing multiple
clones. We adopt a factorial hidden Markov model
(HMM) for jointly delineating aberration events and
clonal clusters, and implement a model selection
module based on Bayesian information criterion (BIC)
to automatically determine the number of distinct
clonal clusters. We compare CloneCNA with four
state-of-the-art methods on simulated heterogeneous
and real tumor samples, and the results demonstrate
that CloneCNA has high power to detect both high
and low cellularity CNA events.

Methods
The statistical model in CloneCNA
To depict tumors containing multiple subclones, we as-
sume that the observed copy number profiles result from
contributions of underlying three distinct cell populations:
normal (non-cancerous) cells, cancerous cells with normal
genotype, and cancerous cells harboring the aberration
event. Thus, all cells can be further divided into two parts
by a somatic aberration event at each locus: one with nor-
mal genotype and another containing the somatic aberra-
tion. We further assume multiple co-occurring events at
different genomic loci share same cellularity, and can be
designated to one of K clonal clusters. Here, a clone is de-
fined as a cell population that is uniquely identified by a
complement of aberration events, and the cellularity of an
aberration is defined as the proportion of cells harboring
the aberration. In addition, we use β1:K to denote the
cellularity of the K clonal clusters.

The workflow is illustrated in Fig. 1a. The inputs to
the model include exon-level read counts of paired
tumor-normal samples, tumor allelic read depths of
germline heterozygous SNP positions, and GC-content
of all exon regions. All the inputs are obtained by using
an in-house tool. Reads aligned to each exon are
counted and sample-normalized for tumor and normal
samples respectively, and the read counts ratio (CR) is
calculated for each exon, which eliminate the inherent
biases induced by difference in exon size and efficiency
of exome capture. We assume that the paired tumor-
normal samples are processed in the same way, i.e.
samples are sequenced in same platform, and reads are
processed under same configuration. Following our
previous study [19], we adopt a non-parametric ap-
proach to normalize the CR for GC-content by using
the following formula:

~r i ¼ ri⋅m=mX ð1Þ

where ri is the normalized CR and ri is the original
CR of the ith exon, m denotes the median CR of all
exons and mX represents the median CR of the exons
that have the same GC-content as the ith exon. The
logarithm of the normalized CR (LCR) is then calcu-
lated to represent copy number measurements, and
denoted as l1:N for N exons. In addition, germline
heterozygous SNP positions are extracted from nor-
mal genome by using SAMtools [27]. BAF of each
SNP position is represented by the ratio between the
B allelic and total read depths derived from tumor

Fig. 1 Overview of the CloneCNA probabilistic framework. a CloneCNA analysis workflow. Three inputs are required: 1) exon-level read counts of
paired tumor-normal samples; 2) tumor allelic read depths of germline heterozygous SNP positions; 3) GC-content of all exon regions. The LCR
and MAF data is modeled using a factorial HMM. The number of clonal clusters is determined using BIC. b HMM adopted in CloneCNA. Two
Markov chains are adopted to delineate copy number aberrations and clonal clusters
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genome, and for each exon, we evaluate the median
value of major allele frequency (MAF):

mi ¼ median
j

max bij; 1−bij
� �� � ð2Þ

where bij denotes the BAF value of the jth SNP within
the ith exon.
We use an integrated HMM to jointly analyze LCR

and MAF signals (Fig. 1b), and determine the number of
underlying clonal clusters based on BIC.

Hidden Markov model
We introduce a state list to depict copy number aberra-
tion states of tumor genomes (Table 1). Given a copy
number aberration state c, the mean values of total and
major allele copy number associated with the kth clonal
cluster are defined as follows:

yck ¼ ns 1−βk
� �þ ncβk ð3Þ

zck ¼ nsμs 1−βk
� �þ ncμcβk ð4Þ

where ns is the copy number of normal genomes, nc is
the tumor copy number associated with state c, μs repre-
sents the expected MAF of normal genomes, and μc
denotes the expected MAF of tumor genotypes in state
c. The mean values of LCR and MAF signals are then
formulated with:

μlck ¼ log2 yck=2
� �þ o ð5Þ

μmck ¼ zck=yck ð6Þ
The parameter o is introduced to account for the base-

line shift of LCR signals and varies with respect to the

change of tumor ploidy. The parameters μlck and μmck are
thus the functions of β1:K and therefore reflect the joint-
effect on LCR and MAF signals from three types of cell
populations, respectively. We assume l1:N are Student’s
t-distributed with the conditional probability density
function defined as follows:

f lijc; k; σ l; νl; oð Þ ¼ Γ νl þ 1ð Þ=2ð Þ
Γ νl=2ð Þ ffiffiffiffiffiffiffi

πνl
p

σ l
1þ 1

νl

li−μlck
σ l

� �2
 !−

νlþ1
2

ð7Þ
where νl is the number of degrees of freedom, σl is the
scale parameter, and Γ represents the gamma function.
Similarly, we also assume m1:N are Student’s t-distributed:

f mijc; k; σm; νmð Þ ¼ Γ νm þ 1ð Þ=2ð Þ
Γ νm=2ð Þ ffiffiffiffiffiffiffiffiffi

πνm
p

σm
1þ 1

νm

mi−μmck
σm

� �2
 !−νmþ1

2

ð8Þ
The conditional probability densities of LCR and MAF

signals depend on two latent variables, namely copy
number aberration state c and clonal cluster k, therefore
we implement CloneCNA as a HMM with C × K hidden
states (Fig. 1b). Here, C is the number of copy number
aberration states defined in Table 1 and K is the number
of clonal clusters. The HMM is thus equivalent to a fac-
torial HMM with 2 underlying Markov chains with one
chain depicting aberrations and another delineating
clonal clusters (Fig. 1b). For a given value of K, expect-
ation maximization (EM) algorithm [28] is employed to
estimate the model parameters θ = (π, A, β, o, σl, νl, σm,
νm), where π represents initial state probability distribu-
tion, and A denotes state transition matrix. In the ex-
pectation step of the EM algorithm, the expectations of
the partial log-likelihood functions of LCR and MAF are
formulated as:

E LLlð Þ ¼
XN
i¼1

XC
c¼1

XK
k¼1

γick log f lijc; k; σ l; νl; oð Þð Þ ð9Þ

E LLmð Þ ¼
XN
i¼1

XC
c¼1

XK
k¼1

γ ick log f mijc; k; σm; νmð Þð Þ

ð10Þ
We use forward-backward algorithm [29] to calculate

the posterior probability γick that the ith exon is in state
c and clonal cluster k. In the maximization step,
Newton–Raphson method [30] is used to iteratively
update model parameters.
The parameter updating procedure is stopped when

the EM algorithm converges. The copy number aberra-
tion state and clonal cluster of each exon are determined
by the hidden state associated with the maximum posterior

Table 1 Copy number aberration states defined in CloneCNA

Id Total copy
number

Major copy
number

Tumor genotypes Aberration
type

1 0 0 N/A HOMD

2 1 1 A, B HEMD

3 2 1 AB NHET

4 2 2 AA, BB NLOH

5 3 2 AAB, ABB AHET

6 3 3 AAA, BBB ALOH

7 4 2 AABB AHET

8 4 3 AAAB, ABBB AHET

9 4 4 AAAA, BBBB ALOH

10 5 3 AAABB, AABBB AHET

11 5 4 AAAAB, ABBBB AHET

12 5 5 AAAAA, BBBBB ALOH

Aberration types include homozygous deletion (HOMD), hemizygous deletion
(HEMD), copy neutral heterozygosity (NHET), copy neutral LOH (NLOH),
amplified heterozygosity (AHET) and amplified LOH (ALOH)
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probability. Segmentation of the exons is then performed
to output copy numbers and cellularity of all segments.
Moreover, for each segment, a reliability score is calculated
based on observed probability densities to evaluate
the reliability of CloneCNA results (Additional file 1).
We also adopt a grid search of θ to find the optimal
solution that give the maximum log-likelihood value
of LCR and MAF data.

Model selection
The hidden state space of the HMM in CloneCNA is ex-
panded as a function of the number of clonal clusters K,
which is determined under the BIC in the CloneCNA
framework. We aim to find an optimal value of K that
leads to the model associated with the lowest value of
BIC. Starting with the initial assumption of tumor
homogeneity (K = 1), CloneCNA iteratively increases the
number of clonal clusters by one until the BIC of the
model no longer decreases or the allowed maximum
number of clonal clusters (10) is reached. We provide a
detailed description of the model selection procedure in
the Additional file 1.

Real WES data of tumor samples
WES data from 9 paired primary triple negative breast
cancer (TNBC) samples [31] is used in this study. Reads
are sequenced to approximately 30× coverage on Illumina
Genome Analyzer IIx platform and mapped to the refer-
ence genome NCBI36/hg18 using BWA [32]. We down-
load the data from European Genome-Phenome Archive
(EGA) under accession number EGAS00001000132.

Simulated heterogeneous tumor samples
Four test tumor genomes (denoted as t1, t2, t3 and t4)
are generated to simulate multiple tumor clonal popula-
tions by mixing different combinations of genomes at
predefined proportions. We use the WES data of a real
normal sample to generate sequencing data of the test
genomes (Additional file 2: Figure S1). Each test genome
is constructed by following four steps: 1) divide the ref-
erence genome into a series of segments, each segment
is then assigned with a specific genomic aberration de-
fined by total copy number and major allele copy num-
ber, 2) randomly sample reads from the normal genome
according to the copy number of each segment of the
test genome, 3) further process the sampled reads to
match the BAF of SNPs within each segment, and 4)
merge and process the modified reads using SAMtools
[27] to generate BAM. In addition, a normal genome
(denoted as n) is also constructed by following the same
procedure to simulate normal cell contamination in
tumor samples. The detailed aberration information of
each genome is provided in (Additional file 3: Table S1).
For each combination of samples, reads are sampled at

known proportion from BAM files to generate the mix-
ture. By this way, we totally generate 20 heterogeneous
tumor samples, of which each mixture is derived from a
specific combination of the normal and four tumor ge-
nomes (Additional file 4: Table S2). With these simu-
lated samples, we perform a comprehensive evaluation
of CloneCNA in terms of detecting clonal and subclonal
somatic CNAs.

Competitive methods
In evaluating performance of CloneCNA, four state-of-
the-art methods for CNA detection using WES data, i.e.
ExomeCNV [15], Control-FREEC [21], EXCAVATOR
[14], and THetA [6], are adopted to make comparison
between CNA calling methods. The detailed description
of performance evaluation strategy and investigated
methods is provided in Additional file 1.

Results
GC-content correction of LCR data
We first investigate the effect of GC-content on the
LCR signals, and assess the capability of GC-content
correction procedure. The LCR values and GC-content
of exons with copy number ranging from 1 to 3 are
analyzed respectively, and the results are shown in
(Additional file 2: Figure S2). Our analysis indicate that
the LCR signals demonstrate a significant correlation
with GC-content (correlation coefficient = 0.32, 0.29
and 0.34 for 1–3 copies respectively), and require a
normalization procedure before being used to identify
aberrant exome regions. Based on our previous study
[19], we then implement a normalization procedure for
the removal of GC-content bias (see Methods for more
details). After normalization (Additional file 2: Figure
S2B), the GC-content effect is significantly eliminated
(correlation coefficient = 0.09, 0.03 and 0.06 for 1–3
copies respectively).

Results on simulated data
We first investigate the LCR and BAF distributions asso-
ciated with different types of aberrations to analyze the
influence of normal cell contamination for WES data
and the results are shown in Additional file 2: Figure S3.
When tumor purity decreases, it is observed that for
each aberration both the LCR and BAF signals gradually
approach close to the expected values of normal geno-
type (0.5 for BAF and 0 for LCR). These results imply
that normal cell contamination will inevitably diminish
aberrant signals and needs to be corrected for accurately
inferring genomic aberrations.
We apply CloneCNA to 20 simulated samples to

examine its ability of predicting cellularity of distinct
clonal clusters and detecting CNAs. An example of the
results on a simulated sample is shown in Fig. 2. Four
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tumor genomes (t1, t2, t3 and t4) and the simulated nor-
mal genome (n) are mixed to generate the simulated
sample with corresponding proportion of 0.3, 0.15, 0.1,
0.15 and 0.3 respectively. This results in the emergence
of four clonal clusters with different cellularity of 0.15,
0.25, 0.4 and 0.7 (see details in Additional file 1). The re-
sults show that CloneCNA correctly estimates the num-
ber of clonal clusters and infers their cellularity (0.16,
0.27, 0.4 and 0.7), meanwhile CNAs represented in each
clonal cluster are well identified. CloneCNA exhibits
similar performance on other simulated tumor samples
(data is not shown).
To assess the abilities of different methods in detect-

ing clonal CNAs, we first apply the five methods to
homogeneous tumor samples. The tumor purity of
these samples ranges from 0.1 to 0.9. The CNA states
of all exons are used as the golden standard to evaluate
different computational methods, and two metrics, sen-
sitivity and specificity, are measured for each sample
and method (see details in Additional file 1). The
results of five methods, ExomeCNV, Control-FREEC,
EXCAVATOR, THetA and CloneCNA, are shown in
Additional file 2: Figure S4. ExomeCNV, Control-
FREEC and EXCAVATOR present good specificity
across all samples, and meanwhile ExomeCNV and
Control-FREEC shows a generally higher sensitivity
than other existing methods. In addition, all the four
methods show excellent performance for detecting
CNAs when tumor purity is greater than 0.7. By Com-
parison, CloneCNA demonstrates strong robustness to
tumor purity and keeps high sensitivity (>0.94) with

tumor purity greater than 0.1. It also maintains com-
parable high specificity (>0.96).
Next, we proceed to evaluate the performance of each

method for detecting clonal and subclonal CNA events
in samples containing multiple tumor subclones. For this
purpose, we simulate 15 samples containing two, three
or four clonal populations (Additional file 4: Table S2).
The sensitivity and specificity of each method are shown
in Fig. 3. Similar to the case observed for homogeneous
tumor samples, ExomeCNV, Control-FREEC and EXCA-
VATOR consistently achieve high specificity (>0.99)
nearly in all samples. On the other hand, ExomeCNV
and THetA perform similarly in identifying CNAs with a
median sensitivity of 0.66 and 0.68 respectively, Control-
FREEC achieves a higher median sensitivity of 0.8. In
comparison, CloneCNA keeps consistent high sensitivity
(>0.89) for detecting either clonal or subclonal CNAs,
and shows remarkable advantage when compared with
other methods. It also gets comparable high specificity
(>0.99) across all samples. These results indicate that
CloneCNA can provide accurate identifications for
clonal and subclonal CNAs.
We further assess the performance of copy number

prediction of investigated methods, and the results are
shown in Additional file 2: Figure S5. The copy number
states of all exons are used to make comparison. Among
existing methods, ExomeCNV and Control-FREEC gen-
erally perform better than other methods, and achieve
median accuracies of 0.78 and 0.83, respectively, while
EXCAVATOR and THetA have median accuracies of
0.57 and 0.55. By comparison, CloneCNA demonstrates

Fig. 2 CNA detection and cellularity estimation results of CloneCNA on a simulated sample. The CNAs predicted by CloneCNA are significantly
consistent with the underlying ground truth. At the same time, CloneCNA correctly estimates the number of clonal clusters and their cellularity
with 0.16, 0.27, 0.4 and 0.7
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high accuracy for predicting copy numbers with median
accuracy of 0.94.
To evaluate the accuracy of cellularity predictions of

CloneCNA, we make a comparison between the esti-
mated cellularity and the underlying ground truth cel-
lularity for each simulated sample. For each simulated
sample, the underlying cellularity is computed by using
contribution from each tumor genome making up the
mixture (see details in Additional file 1). CloneCNA accur-
ately estimates the cellularity with highly significant posi-
tive correlation (correlation coefficient > 0.99, p < 1×10−5,
and mean absolute error < 0.03) with the ground truth
cellularity across all mixed samples (Additional file 2:
Figure S6), indicating CloneCNA can precisely repro-
duce clonal components. The number and cellularity
of underlying clonal clusters for all mixtures are pro-
vided in (Additional file 5: Table S3). Moreover, we
evaluate the accuracy of tumor purity estimations of
CloneCNA, and the results show statistically signifi-
cant correlation for the all simulated mixtures (correl-
ation coefficient = 0.99, p = 2.99×10−26, mean absolute
error = 0.008) relative to the underlying tumor purity
(Additional file 2: Figure S7).

Results on real data
Having demonstrated the validity of CloneCNA on sim-
ulated data, we proceed to examine the performance of
CloneCNA on 9 TNBC paired tumor-normal samples.
The TNBC samples are also assayed by Affymetrix

SNP6.0 genotyping arrays. We use results from ASCAT
[33] software based on the SNP array data as a baseline
for comparison between different methods. Details on
investigated tools and performance evaluation strategy
are described in Additional file 1.
We first evaluate the tumor purities of the TNBC sam-

ples using four algorithms – Control-FREEC, THetA, Clo-
neCNA and ASCAT, and the results are summarized in
Table 2. The tumor purities estimated by ASCAT are used
as the ground truth to make a comparison between other
algorithms. We find CloneCNA is more accurate with
mean absolute error (MAE) of 0.07 when compared with
Control-FREEC (MAE = 0.24) and THetA (MAE = 0.09).
The good concordance with the ground truth underscores
the ability of CloneCNA in reliably inferring the tumor
purity from WES of complicated tumor samples.
Next, we evaluate the CNA detection performance of

ExomeCNV, Control-FREEC, EXCAVATOR, THetA and
CloneCNA on the TNBC samples (Fig. 4). For all samples,
CloneCNA compares favorably to other methods and pre-
sents higher sensitivity in most of the samples, with speci-
ficity comparable to those of the other methods. The
median values of accuracy of ExomeCNV, Control-FREEC,
EXCAVATOR and THetA are 0.63, 0.65, 0.54 and 0.55 re-
spectively. In comparison, CloneCNA achieves superior
accuracy with median value of 0.96.
Then, we proceed to investigate whether there exists

multiple tumor subclones in the TNBC samples. From
the results of ASCAT on sample SA052, we find a

Fig. 3 CNA detection performance of ExomeCNV, Control-FREEC, EXCAVATOR, THetA and CloneCNA on simulated heterogeneous samples. Sensitivity
and specificity are calculated for each sample based on the results of each investigated method. a Results for samples containing two clonal
populations. For the sample with tumor purity of 0.25, EXCAVATOR reports a running error, therefore the performance of EXCAVATOR and THetA on
this sample is not evaluated. b Results for samples containing three clonal populations. c Results for samples containing four clonal populations
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distinct mismatching between the mean of observed
BAF signals and the expected BAF value for regions
of homozygous and hemizygous deletions on chromo-
somes 5 and 10 (Additional file 2: Figure S8A), which
indicates that there may be tumor subpopulations in
the sample. Interestingly, in the CloneCNA analysis of
the sample SA052, we find there are multiple clonal
clusters. The log-likelihoods and BIC difference of the
models associated with different number of clonal
clusters are shown in Additional file 2: Figure S9.
When the number of clonal clusters increases to 6, the
BIC difference changes to positive, therefore CloneCNA

finally infers K = 5 as the optimal number of clonal clus-
ters. The cellularity of clonal clusters are 0.23, 0.34, 0.42,
0.54 and 0.84 respectively (Fig. 5). CloneCNA identifies
board hemizygous deletions on chromosome 1p, 2q, 5, 7q,
10, 14 and 18q. These hemizygous deletions are repre-
sented in subclonal clusters. The difference of the BAF
and LCR signals in hemizygous deletion regions repre-
sented in clonal and subclonal clusters is shown in
Additional file 2: Figure S10. Moreover, ASCAT infers a
homozygous deletion on chromosome 5, while CloneCNA
predicts it as clonal hemizygous deletion, and the hemizy-
gous deletions identified by ASCAT are almost repre-
sented in subclonal clusters from the results of CloneCNA
(Additional file 2: Figure S8B).
Finally, we extract the mutations of TNBC samples

that are validated in a previous study [31], and make
mappings between the mutations and copy number de-
tections of the CNA-calling methods (Additional file 6:
Table S4). We separately count the number of mutations
predicted to be in copy deleted, neutral and amplified
regions by multiple methods, and the results are
shown in Additional file 2: Figure S11. Our analysis
show that for CNA regions simultaneously inferred by
all methods, there are 35 copy amplified mutations,
of which 4 mutations derive from sample SA052
(Additional file 7: Table S5). For two mutations, Clo-
neCNA predicts similar clonality of 0.64 and 0.50 respect-
ively when compared with the clonality (0.68 and 0.52)
inferred from mutation level.

Table 2 Tumor purity estimated by Control-FREEC, THetA,
CloneCNA and ASCAT for TNBC samples

Sample Control-FREEC THetA CloneCNA ASCAT

SA018 0.78 0.67 0.61 0.63

SA029 0.84 0.6 0.44 0.48

SA030 0.87 0.51 0.44 0.47

SA031 0.26 0.51 0.36 0.41

SA051 0.3 0.5 0.38 0.44

SA052 0.84 0.62 0.84 0.51

SA065 0.96 0.49 0.66 0.67

SA069 0.55 0.5 0.41 0.42

SA071 0.94 0.63 0.66 0.72

MAE 0.24 0.09 0.07 N/A

Fig. 4 CNA detection performance of ExomeCNV, Control-FREEC, EXCAVATOR, THetA and CloneCNA on TNBC samples. CNAs detected by ASCAT
from Affymetrix SNP6.0 arrays are used as ground truth for comparing different methods. Sensitivity, specificity and accuracy of all methods on
each sample are measured

Yu et al. BMC Bioinformatics  (2016) 17:310 Page 8 of 10



Discussion
CloneCNA is a novel algorithm for detecting clonal and
subclonal somatic CNAs from whole-exome sequencing
data of heterogeneous tumor samples. It fully explores
the log ratio of depth-of-coverage between paired
tumor-normal samples and tumor allelic read depths of
germline heterozygous SNP positions. A HMM is inte-
grated in the framework of CloneCNA to depict copy
number aberrations of tumors containing multiple clonal
populations. Moreover, the underlying number of clonal
clusters is determined under the BIC in the CloneCNA
framework. Upon these specific features, CloneCNA
presents advantages in several aspects. First, the appro-
priate deconvolution of miscellaneous signals of sequen-
cing reads enables improved performance for detecting
CNAs. Second, CloneCNA is much more sensitive to
low cellularity clonal and subclonal CNA events when
compared to existing methods, demonstrated by intra-
tumor heterogeneity simulation experiment. Third, the
algorithm provides accurate estimation of tumor purity.
In summary, by benchmarking the performance of our
algorithm on both simulated and real whole-exome se-
quencing data, we demonstrate that proper representa-
tion of the tumor WES data by considering intra-tumor
heterogeneity can lead to more sensitive CNA detection
power, and CloneCNA outperforms existing methods
in detecting either high or low cellularity clonal and
subclonal CNAs.
Despite the advantages mentioned above, CloneCNA

has several limitations in analysis of tumor WES data
due to its adopted modelling assumptions. First,

CloneCNA simply assumes that, at each aberrant
locus, there exists only one tumor genotype. This
assumption will not hold if more than one aberrant
genotypes exist at the same locus and represented in
distinct tumor populations. However, it is much chal-
lenging to distinguish among multiple tumor clones
that have variable aberrated genotypes. The statistical
models for representation of LCR and MAF signals in
CloneCNA need to be improved to account for mul-
tiple tumor genotypes, and the analysis of data may
be confounded by multiple similar solutions. Second,
CloneCNA is unable to identify the coexistence of
distinct clones that are present at the same or similar
cellularity within the sample. This is a common prob-
lem for most mixture separation methods. Third, one
of the potential improvement of CloneCNA is to integrate
somatic SNVs, we plan to further extend CloneCNA in
this direction to provide more comprehensive “finger-
print” of a clonal expansion.

Conclusions
Efficiently addressing critical issues such as normal cell
contamination, tumor aneuploidy, and intra-tumor het-
erogeneity, is necessary for accurately identify somatic
CNAs from heterogeneous tumor samples. In this study,
we demonstrate that CloneCNA statistical framework rep-
resents a remarkable advance in detecting somatic CNAs
for tumor whole-exome sequencing data. We expect that
CloneCNA will promote cancer-focused studies for inves-
tigating the role of clonal evolution and elucidating critical
events benefiting tumor tumourigenesis and progression.

Fig. 5 CNA detection and cellularity estimation results of CloneCNA on real sample SA052. CloneCNA identifies five clonal clusters with corresponding
cellularity of 0.23, 0.34, 0.42, 0.54 and 0.84 respectively

Yu et al. BMC Bioinformatics  (2016) 17:310 Page 9 of 10



Additional files

Additional file 1: This file provides detailed description of CloneCNA
statistical framework, performance evaluation strategy, simulation experiment,
and details of the investigated methods. (PDF 605 kb)

Additional file 2: Presentations of Supplementary Figures. (PDF 1712 kb)

Additional file 3: Detailed aberration information of each simulated
genome. (XLS 36 kb)

Additional file 4: Simulated mixtures with combinations of four
genomes. (XLS 26 kb)

Additional file 5: The number and cellularity of underlying clonal
clusters for all simulated mixtures. (XLS 28 kb)

Additional file 6: Mappings between mutations and copy number
detections of the CNA-calling methods. (XLS 65 kb)

Additional file 7: Four amplified mutations in sample SA052. (XLS 23 kb)

Acknowledgements
This manuscript was prepared using a limited access dataset obtained from
British Columbia Cancer Agency Branch (BCCA) and does not necessarily
reflect the options or views BCCA.

Funding
This work was supported by grants from National Natural Science Foundation
of China (61571414 and 31100955).

Availability of data and materials
Our software can be download from http://bioinformatics.ustc.edu.cn/clonecna.

Authors’ contributions
AL and ZY conceived the study. ZY design the methods. ZY implemented
the CloneCNA algorithm and analyzed the data. ZY, AL and MW wrote the
manuscript. All authors read and approved the final manuscript for publication.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study was approved by the Research Ethics Board of University of
Science and Technology of China.

Received: 18 June 2016 Accepted: 11 August 2016

References
1. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;

194(4260):23–8.
2. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences.

Biochim Biophys Acta Rev Cancer. 2010;1805(1):105–17.
3. Swanton C. Intratumor heterogeneity: evolution through space and time.

Cancer Res. 2012;72(19):4875–82.
4. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;

458(7239):719–24.
5. Oesper L, Mahmoody A, Raphael BJ. THetA: inferring intra-tumor

heterogeneity from high-throughput DNA sequencing data. Genome
Biol. 2013;14(7):R80.

6. Oesper L, Satas G, Raphael BJ. Quantifying tumor heterogeneity in whole-
genome and whole-exome sequencing data. Bioinformatics. 2014;30(24):
3532–40.

7. Yau C. OncoSNP-SEQ: a statistical approach for the identification of somatic
copy number alterations from next-generation sequencing of cancer genomes.
Bioinformatics. 2013;29(19):2482–4.

8. Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G, Steers G, Harris A, Ragoussis
J, Sieber O, Holmes CC. A statistical approach for detecting genomic aberrations
in heterogeneous tumor samples from single nucleotide polymorphism
genotyping data. Genome Biol. 2010;11(9):R92.

9. Chen GK, Chang X, Curtis C, Wang K. Precise inference of copy number
alterations in tumor samples from SNP arrays. Bioinformatics. 2013;29(23):2964–70.

10. Kamalakaran S, Varadan V, Janevski A, Banerjee N, Tuck D, McCombie WR,
Dimitrova N, Harris LN. Translating next generation sequencing to practice:
opportunities and necessary steps. Mol Oncol. 2013;7(4):743–55.

11. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet.
2010;11(1):31–46.

12. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw
CA, Belmont J. High-resolution genomic profiling of chromosomal aberrations
using Infinium whole-genome genotyping. Genome Res. 2006;16(9):1136–48.

13. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M.
PennCNV: an integrated hidden Markov model designed for high-resolution
copy number variation detection in whole-genome SNP genotyping data.
Genome Res. 2007;17(11):1665–74.

14. Magi A, Tattini L, Cifola I, D’Aurizio R, Benelli M, Mangano E, Battaglia C,
Bonora E, Kurg A, Seri M. EXCAVATOR: detecting copy number variants
from whole-exome sequencing data. Genome Biol. 2013;14(10):R120.

15. Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S,
Quackenbush J, Nelson SF. Exome sequencing-based copy-number variation and
loss of heterozygosity detection: ExomeCNV. Bioinformatics. 2011;27(19):2648–54.

16. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM,
Handsaker RE, McCarroll SA, O’Donovan MC, Owen MJ. Discovery and
statistical genotyping of copy-number variation from whole-exome
sequencing depth. Am J Hum Genet. 2012;91(4):597–607.

17. Li A, Liu Z, Lezon-Geyda K, Sarkar S, Lannin D, Schulz V, Krop I, Winer E, Harris L,
Tuck D. GPHMM: an integrated hidden Markov model for identification of copy
number alteration and loss of heterozygosity in complex tumor samples using
whole genome SNP arrays. Nucleic Acids Res. 2011;39(12):4928–41.

18. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability
and cancer. Nat Rev Mol Cell Biol. 2004;5(1):45–54.

19. Yu Z, Liu Y, Shen Y, Wang M, Li A. CLImAT: accurate detection of copy number
alteration and loss of heterozygosity in impure and aneuploid tumor samples
using whole-genome sequencing data. Bioinformatics. 2014;30(18):2576–83.

20. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling
Y, Troge J, Grubor V. Inferring tumor progression from genomic
heterogeneity. Genome Res. 2010;20(1):68–80.

21. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G,
Janoueix-Lerosey I, Delattre O, Barillot E. Control-FREEC: a tool for assessing
copy number and allelic content using next-generation sequencing data.
Bioinformatics. 2012;28(3):423–5.

22. Ha G, Roth A, Khattra J, Ho J, Yap D, Prentice LM, Melnyk N, McPherson A,
Bashashati A, Laks E. TITAN: inference of copy number architectures in
clonal cell populations from tumor whole-genome sequence data. Genome
Res. 2014;24(11):1881–93.

23. Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M,
Nevedomskaya E, Xu G, de Ruiter J, Lolkema MP. CopywriteR: DNA copy
number detection from off-target sequence data. Genome Biol. 2015;16(1):49.

24. Olshen AB, Venkatraman E, Lucito R, Wigler M. Circular binary segmentation for
the analysis of array‐based DNA copy number data. Biostatistics. 2004;5(4):557–72.

25. Magi A, Benelli M, Marseglia G, Nannetti G, Scordo MR, Torricelli F. A shifting
level model algorithm that identifies aberrations in array-CGH data. Biostatistics.
2010;11(2):265–80.

26. Li Y, Xie X. Deconvolving tumor purity and ploidy by integrating copy number
alterations and loss of heterozygosity. Bioinformatics. 2014;30(15):2121–9.

27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. The sequence alignment/map format and
SAMtools. Bioinformatics. 2009;25(16):2078–9.

28. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39:1–38.

29. Rabiner LR. A tutorial on hidden Markov models and selected applications
in speech recognition. Proc IEEE. 1989;77(2):257–86.

30. Rao SS. Engineering optimization : theory and practice. History of Economic
Thought. 1996;52(5):27-45.

31. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K,
Haffari G. The clonal and mutational evolution spectrum of primary triple-
negative breast cancers. Nature. 2012;486(7403):395–9.

32. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics. 2009;25(14):1754–60.

33. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, Weigman
VJ, Marynen P, Zetterberg A, Naume B. Allele-specific copy number analysis of
tumors. Proc Natl Acad Sci. 2010;107(39):16910–5.

Yu et al. BMC Bioinformatics  (2016) 17:310 Page 10 of 10

dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
dx.doi.org/10.1186/s12859-016-1174-7
http://bioinformatics.ustc.edu.cn/clonecna

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The statistical model in CloneCNA
	Hidden Markov model
	Model selection

	Real WES data of tumor samples
	Simulated heterogeneous tumor samples
	Competitive methods

	Results
	GC-content correction of LCR data
	Results on simulated data
	Results on real data

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

